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Abstract: The method of the optimal movement trajectory construction in the terrain patrolling tasks
is proposed. The method is based on the search of the Hamiltonian circuit on the graph of the terrain
map and allows automatic construction of the optimal closed path for arbitrary terrain map. The
distinguishing feature of the method is the use of the modified algorithm for the Hamiltonian circuit
search. The algorithm can be scaled for the maps corresponding to the graphs with a large (more than
100) number of the vertices, for which the standard brute-force algorithm of the Hamiltonian circuit
search requires significantly higher execution time than the proposed algorithm. It is demonstrated
that the utilized algorithm possesses 17 times less constant of the time complexity growth than the
standard brute-force algorithm. It allows more than one order of magnitude (from 30 to 500 vertices,
i.e., approximately to the 17 times) increase of the graph vertices that is used for the Hamiltonian
circuit search in the real time (0.1–100 s) regime.

Keywords: graph theory; Hamiltonian circuit; time complexity; monitoring; patrolling
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1. Introduction

The task of the search for the optimal patrolling path at the present time has special
relevance due to implementation of the automated moving devices, which require no
presence of the operator and can be used as mobile platforms for a variety of sensor classes:
optical, acoustical, chemical, etc. These devices allow solving of the wide range of tasks
related to the automation of the spatial monitoring processes [1–4]. The type of sensors used
with these devices is determined by the nature of the tasks that should be solved under the
process of terrain patrolling. Therefore, in particular, the patrolling can be carried out with
the aim of terrain mapping [5], search for minerals [6], echolocation [7], and also for local
registration of the weather conditions [8]. Since effective terrain patrolling requires the
construction of the optimal movement trajectory on the given map, the task of the effective
patrolling almost inevitably requires the use of the graph theory [9]. The graph-based
approaches for the patrolling problem solution are actively used in the modern works.
The frequently considered problem is a patrolling with the use of multiple sensors [10].
Therefore, in the work in [11], the problem of efficient patrolling with use of multiple robots
in a known environment is solved by assigning individual patrolling regions to each mobile
agent. The work in [12] addresses the same problem and demonstrates the method of
dynamical graph partitioning by moving ant-like agents using simple local interactions
during the patrolling procedure. In another work [13], authors discuss the approach of
complex automation of territory patrolling by use of a set of mobile robots and propose the
graph-based algorithm for the partitioning of the map between the robots. The article [14]
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is dedicated to the stochastic graph-based strategy for the terrain patrolling with a set of
agents, that can outperform the deterministic approaches.

Another approach for the graph-based solution of the patrolling problem in the frame
of Green Security Games is discussed in [15]. In this work, authors propose to construct the
patrolling path by the contraction of the complete terrain graph based on the importance
of each individual node for the patrolling procedure, which allows reduction of the time
complexity in the context of large-graph problem.

In the frame of this work, it is proposed to implement a patrolling procedure on the
entire graph with the use of one sensor moving on the map with the given placement of
obstacles, which is an alternative to the above-mentioned approaches based on multi-agent
partitioning of the graph and its contraction. In this case, as it will be discussed below, the
relevant method for the realization of effective terrain patrolling is to construct the graph
of the terrain map that allows movement of the sensor over the Hamiltonian circuit [9], i.e.,
closed path passing through each graph vertex exactly once.

The task of the Hamiltonian circuit search at the present time is a topical mathematical
problem, that possess applied nature in a variety of areas. In particular, it is the areas where
it is required to realize search of the optimal movement path of an object. These areas
include transport and logistics sphere [16,17], geological exploration directions [18], and as
it was mentioned above, the area of the terrain patrolling [19,20]. Despite its relevance, the
task of the Hamiltonian circuit search remains one of the most difficult for optimization
mathematical challenges at the present time.

The problem of the Hamiltonian path search and, in particular, search of the Hamilto-
nian circuit, is the NP-complete problem and in the case of the brute-force search algorithm
possesses exponential time complexity [9]. Under the presence of a priori information
about graph that is used for the Hamiltonian path search, it is possible to decrease the time
complexity of the problem to the subexponential [21] and even to the polynomial [22] level.
Exponential complexity of the Hamiltonian path search on the arbitrary graph restricts the
number of the graph vertices that allows solving of the problem in the real-time regime.
This factor is of particular importance in applications where it is required to construct an
optimal movement trajectory under fast change of the graph configuration.

The motivation of the present work is the development of the real-time (0.1–100 s)
algorithm for construction of the optimal patrolling route in the form of the Hamiltonian
circuit that ensures the full covering of the given terrain map. The novelty of the method is
provided by the modified algorithm of the Hamiltonian circuit search that lies at the core of
the proposed method and provides significant acceleration of the search procedure in com-
parison with the standard brute-force search algorithm while preserving the exponential
time complexity. Further in the paper, the complete statement of the problem, the descrip-
tion of the developed theoretic-graph method for the construction of the optimal patrolling
trajectory, and the results of the method effectiveness investigation are considered.

2. Problem Statement

In the frame of this work, the task of the terrain patrolling on the given two-dimensional
map of the obstacles is considered (Figure 1).

The “patrolling” (or “monitoring”) term in this work means the movement of one
sensor over map that is accompanied by the registration of generalized targets. At the
initial moment of patrolling targets are placed in the random points (x, y) of map with equal
probability. During the patrolling procedure, targets randomly move across the map. The
”obstacles” term means the areas of the map where targets cannot be placed and sensors
cannot be located. In a real situation, this kind of obstacle could be the mountain chains,
reservoirs, and elements of the urban terrain infrastructure, that can be insurmountable
obstacles for both the ground- and air-based sensors.

In the context of the approach under consideration, the sensor is assigned by a field of
view in which the sensor can register an event. The field of view is a circle of radius R with
the center at the sensor location point (Figure 2).
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Figure 1. The example of the two-dimensional terrain map considered in this work. The dark blue 
color stands for the obstacles, i.e., areas where a sensor cannot be located and where there is no 
need for patrolling procedure. The black color stands for the area where it is required to realize 
patrolling procedure and a sensor can be located. The white grid that marks ticks with the step of 
50 pixels is used for the visual reference and does not relate to the discussed problem. 

The “patrolling” (or “monitoring”) term in this work means the movement of one 
sensor over map that is accompanied by the registration of generalized targets. At the 
initial moment of patrolling targets are placed in the random points (𝑥, 𝑦) of map with 
equal probability. During the patrolling procedure, targets randomly move across the 
map. The ”obstacles” term means the areas of the map where targets cannot be placed and 
sensors cannot be located. In a real situation, this kind of obstacle could be the mountain 
chains, reservoirs, and elements of the urban terrain infrastructure, that can be insur-
mountable obstacles for both the ground- and air-based sensors. 

In the context of the approach under consideration, the sensor is assigned by a field 
of view in which the sensor can register an event. The field of view is a circle of radius 𝑅 
with the center at the sensor location point (Figure 2). 

 

Figure 1. The example of the two-dimensional terrain map considered in this work. The dark blue
color stands for the obstacles, i.e., areas where a sensor cannot be located and where there is no need
for patrolling procedure. The black color stands for the area where it is required to realize patrolling
procedure and a sensor can be located. The white grid that marks ticks with the step of 50 pixels is
used for the visual reference and does not relate to the discussed problem.

Mathematics 2023, 11, 223 3 of 14 
 

 

 
Figure 1. The example of the two-dimensional terrain map considered in this work. The dark blue 
color stands for the obstacles, i.e., areas where a sensor cannot be located and where there is no 
need for patrolling procedure. The black color stands for the area where it is required to realize 
patrolling procedure and a sensor can be located. The white grid that marks ticks with the step of 
50 pixels is used for the visual reference and does not relate to the discussed problem. 

The “patrolling” (or “monitoring”) term in this work means the movement of one 
sensor over map that is accompanied by the registration of generalized targets. At the 
initial moment of patrolling targets are placed in the random points (𝑥, 𝑦) of map with 
equal probability. During the patrolling procedure, targets randomly move across the 
map. The ”obstacles” term means the areas of the map where targets cannot be placed and 
sensors cannot be located. In a real situation, this kind of obstacle could be the mountain 
chains, reservoirs, and elements of the urban terrain infrastructure, that can be insur-
mountable obstacles for both the ground- and air-based sensors. 

In the context of the approach under consideration, the sensor is assigned by a field 
of view in which the sensor can register an event. The field of view is a circle of radius 𝑅 
with the center at the sensor location point (Figure 2). 

 
Figure 2. The sensor’s fields of view (#1 and #2, green color). Being at the center of area #1, in one
iteration of time the sensor can move to any point placed inside the circle of radius 2R (green dashed
line) including the point that determines the center of the field of view #2.

In the discussed model, it is considered that under the process of monitoring, the
sensor moves on the map in the discrete manner with the step ∆

→
r that is less or equal to

the diameter 2R of its field of view (1 pix ≤
∣∣∣∆→r ∣∣∣ ≤ 2R). This approximation corresponds

to the real situation under the condition that time step ∆t is much less than the complete
monitoring time T (∆t� T). The use of this approximation allows treating of the sensor
movement as a movement between centers of the fields of view placed in the monitoring
area with some intersection (density) between each other. By covering of the monitoring
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area with fields of view, it is possible to formalize the sensor movement on the map as a
movement between vertices of the graph that is constructed in correspondence with the
fields of view placement.

It can be demonstrated that in order to minimize the targets detection time, the
movement trajectory should represent a Hamiltonian circuit, which is discussed in previous
paper concerning the considered problem [19]. The main idea is as follows.

In case of one sensor moving with the constant speed and nonmoving targets, the
time of the targets registration ∆treg is equal to the time ∆tsweep of complete sweeping
(or coverage) of the monitoring area by the sensor that is inversely proportional to the
sweeping rate of the sensor:

∆tsweep =
Stotal

dSswept/dt
(1)

where Stotal is the total area of monitoring zone, dSswept/dt is the sweeping rate that is
area of map swept by the sensor in a unit of time. Under the given map area Stotal , in
order to minimize the sweeping time ∆tsweep and, consequently, the registration time ∆treg,
it is required to maximize the sweeping rate dSswept/dt. In turn, under the given sensor
movement speed, this maximization can be realized if every point of the map is covered
exactly once during the period ∆tsweep. This is ensured by the movement of the sensor
along the Hamiltonian path on the terrain graph.

In the case of moving targets, the single sweeping of the patrolling area can be insuf-
ficient for the registration of all targets and more sweeping cycles can be required. The
cyclic sweeping of the patrolling zone, which ensures the coverage of every point of the
map during one patrolling cycle exactly once and with equal coverage period, requires
the return of the sensor to the initial point at every patrolling cycle. This can be ensured
using the Hamiltonian cycle instead of the Hamiltonian path as a movement trajectory of
the sensor. Thus, the optimal movement trajectory, which minimizes the detection time of
moving targets in the discussed problem, is a Hamiltonian cycle.

Thus, the task of the effective terrain patrolling can be divided into two consecutive
tasks. The first task is the realization of the effective covering of the target monitoring zone
with the sensor fields of view and construction of the terrain graph in accordance with the
obtained placement of the fields of view. The second task is the search for the Hamiltonian
cycle on the constructed terrain graph that represents the optimal movement trajectory for
the sensor. Further in the Section 3 “Method description”, the algorithms for the solution
of these two tasks are discussed.

3. Method Description
3.1. The Algorithm of Target Zone Covering

In order to cover the monitoring area with the sensor fields of view, the following
algorithm is used (Figure 3).

In order to ensure the effective monitoring of the terrain map that is characterized by
the minimal crossing area between sensor fields of view and obstacles, the size of the field
of view R should be less or equal to the minimal distance between the obstacles on the
given map.

At the first step the grid with the uniform step ∆r consisting of the fields of view is
constructed on the map, where step ∆r is set as ∆r = ρ · 2R, ρ ∈ (0, 1] is the factor that
determines the density of the fields of view placement. The term density is used because ρ
determines the distance between the neighboring fields of view. Therefore, the smaller ρ,
the more fields of view is placed on a given area, that indicates the increase of density of
the fields of view placement.
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Figure 3. (a) Non-distorted grid of the sensor fields of view. Δ𝑟 = 𝜌 ⋅ 2𝑅 is the distance between the 
nodes of the grid; (b) The distorted grid of the sensor fields of view. The minimal size along x axis 
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At the second step, the grid is distorted: the grid step is changed in such a way that
the size of the noncovered map region along x axis is less or equal to 0.5 · ρR (Figure 3).
The fields of view are placed in the nodes of the distorted grid lying outside the obstacles.

As a result of the conducted procedure, the grid consisting of the sensor fields of
view is formed on the map. After passing through each of the grid nodes, the sensor will
provide an almost complete scan of the target monitoring zone area. As will be discussed
in Section 3.1, the fundamental limit of the fraction of covered area is 0.75 for the square
map filled with the circular sensor fields of view without overlap. This means that the
area of map patrolled by the sensor with the circular field of view will be covered almost
completely, i.e., 75% of the map area will be scanned. This is the consequence for the
application that cannot be overcome in the task of the patrolling with use of the sensor with
circular shape of the field of view. The possible solution here is to overlap fields of view on
the terrain map, which inevitably leads to the loss of the patrolling optimality, since in this
case there will be “selected” points, which sensor monitors for more time, than the other
ones, under one cycle of the terrain scan.

As mentioned above, the optimal movement trajectory, which minimizes the detection
time of moving targets in the discussed problem, is a Hamiltonian cycle. In order to find the
Hamiltonian circuit, the grid of the sensor fields of view is treated as a simple undirected
graph G1(V1, E1) with the vertices located at the corresponding nodes of the grid, i.e., at
the centers of the sensor fields of view (Figure 4).

The edges E1 of the graph G1(V1, E1) connect those vertices V1 that are located at the
distance of the sensor step

∣∣∣∆→r ∣∣∣ from each other,
∣∣∣∆→r ∣∣∣ ≤ 2R. The terrain graph G1(V1, E1)

does not contain self-loops (i, i) and parallel (i, j)k edges [9].
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3.2. Algorithm of the Hamiltonian Circuit Search

The idea of the algorithm is as follows. In the frame of the stated patrolling problem,
the number of the terrain graph vertices V1 can be too high to implement the standard
brute-force algorithm [23] for the Hamiltonian circuit search in real-time regime specified in
this work as 0.1–100 seconds (3 orders of magnitude). In order to overcome the problem of
the graph size, the following method is proposed. The terrain graph is decomposed into the
so-called clusters, i.e., separate connected graphs gk(vk, ek), k ∈ [1, n], n = |V1|/N, vk ∈ V1
which contains low number of the vertices N (N = 20− 30 in the frame of the conducted
computational experiments), that allows application of the standard brute-force algorithm
for the Hamiltonian path search in real-time regime in the frame of each cluster. The
decomposition of the terrain graph G1(V1, E1) into clusters gk(vk, ek) allows consideration
of the clusters set {gk(vk, ek)} as a single high-level graph G0(V0, E0), which can be treated
as a terrain graph in the zero approximation, where clusters gk(vk, ek) acts as vertices V0,
and edges E0 connect vertices V0, which correspond to the neighboring clusters. In the zero
approximation, it can be considered that the movement of the sensor under the patrolling
procedure is realized over the graph G0(V0, E0), which ensures the Hamiltonian circuit
search on its vertices in real-time regime due to low number N of the vertices V0. At the next
step, in order to clarify the route, the sensor movement in the frame of each cluster gk(vk, ek)
is considered. The movement trajectory of the sensor in each cluster is set as Hamiltonian
path pk(gk) that allows movement of the sensor from initial vertex in kth cluster gk(vk, ek)
to connected with the kth cluster vertex of the (k+1)th cluster gk+1(vk+1, ek+1). The latter
vertex becomes the initial vertex in (k+1)th cluster. The search of every Hamiltonian path
pk(gk) is realized with use of the standard brute-force algorithm, which due to the low
(N = 20− 30) number of the cluster vertices, can be implemented in real-time regime. By
the connection of the Hamiltonian paths pk(gk) in accordance with the Hamiltonian circuit
over the graph G0(V0, E0), the total Hamiltonian circuit C1(G1) over the graph G1(V1, E1)
is constructed.

In the common case of arbitrary high number of the terrain graph vertices V1, it is
possible to accelerate the procedure of the Hamiltonian circuit search by the recursive
multi-level repetition of the clustering process, which can be done with use of the fast
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METIS algorithm [24], and search for the Hamiltonian paths in each cluster. In the frame
of the present work, the case of a single-level clustering was realized, which provided the
opportunity to increase the number of graph vertices in 17 times in comparison with the
brute-force method while maintaining the real-time nature of the calculations.

The algorithm of the method is as follows (Figure 5). First, the clustering of the terrain
graph vertices V1 is performed. In the frame of clustering procedure at the first step, the
ascending sorting of the graph vertices V1 in accordance with vertices degree d is conducted.
The formation of the first cluster g1(v1, e1) is performed starting from the vertex with the
lowest degree d. The neighboring vertices with the degree d ≥ 2 in relation to the cluster
g1(v1, e1) are added to this cluster until either number of vertices in this cluster is equal to
limiting number of vertices N or vertices with the degree d ≥ 2 in relation to this cluster
are absent. The formation of the next cluster g2(v2, e2) is conducted by starting with the
non-clustered vertex with the lowest degree d among remaining ones. The repeating of
this procedure provides the clustering of almost all vertices of the terrain graph G1(V1, E1).
The clustering process is, in fact, the operation that is reversed in relation to the operation
of the replacing a graph vertex with a seed [25]. The algorithm of clustering itself can be
treated as a solution of the graph burning problem [26]. The number of the remaining
non-clustered vertices is relatively low and in the frame of the conducted experiments was
no more than 5% of the total number of the terrain graph vertices (Figure 5).

Mathematics 2023, 11, 223 7 of 14 
 

 

𝑝௞(𝑔௞) in accordance with the Hamiltonian circuit over the graph 𝐺଴(𝑉଴, 𝐸଴), the total 
Hamiltonian circuit 𝐶ଵ(𝐺ଵ) over the graph 𝐺ଵ(𝑉ଵ, 𝐸ଵ) is constructed. 

In the common case of arbitrary high number of the terrain graph vertices 𝑉ଵ, it is 
possible to accelerate the procedure of the Hamiltonian circuit search by the recursive 
multi-level repetition of the clustering process, which can be done with use of the fast 
METIS algorithm [24], and search for the Hamiltonian paths in each cluster. In the frame 
of the present work, the case of a single-level clustering was realized, which provided the 
opportunity to increase the number of graph vertices in 17 times in comparison with the 
brute-force method while maintaining the real-time nature of the calculations. 

The algorithm of the method is as follows (Figure 5). First, the clustering of the terrain 
graph vertices 𝑉ଵ is performed. In the frame of clustering procedure at the first step, the 
ascending sorting of the graph vertices 𝑉ଵ in accordance with vertices degree 𝑑 is con-
ducted. The formation of the first cluster 𝑔ଵ(𝑣ଵ, 𝑒ଵ) is performed starting from the vertex 
with the lowest degree 𝑑. The neighboring vertices with the degree 𝑑 ≥ 2 in relation to 
the cluster 𝑔ଵ(𝑣ଵ, 𝑒ଵ) are added to this cluster until either number of vertices in this cluster 
is equal to limiting number of vertices 𝑁 or vertices with the degree 𝑑 ≥ 2 in relation to 
this cluster are absent. The formation of the next cluster 𝑔ଶ(𝑣ଶ, 𝑒ଶ) is conducted by start-
ing with the non-clustered vertex with the lowest degree 𝑑 among remaining ones. The 
repeating of this procedure provides the clustering of almost all vertices of the terrain 
graph 𝐺ଵ(𝑉ଵ, 𝐸ଵ). The clustering process is, in fact, the operation that is reversed in relation 
to the operation of the replacing a graph vertex with a seed [25]. The algorithm of cluster-
ing itself can be treated as a solution of the graph burning problem [26]. The number of 
the remaining non-clustered vertices is relatively low and in the frame of the conducted 
experiments was no more than 5% of the total number of the terrain graph vertices (Figure 
5). 

  
(a) (b) 

Figure 5. (a) The clustering of the vertices 𝑉ଵ of the terrain graph 𝐺ଵ. The colors stand for the clus-
ters 𝑔௞, red points are the “centers of mass” of each cluster 𝑔௞. (b) The distribution of the clusters 𝑔௞ by number of vertices |𝑣௞|. This indicates that the average number of vertices in clusters 𝑔௞ is 
close to the selected limiting number 𝑁 = 21. 

After the clustering procedure, the search of the Hamiltonian circuit 𝐶଴(𝐺଴) on the 
graph of clusters 𝐺଴(𝑉଴, 𝐸଴) is started (Figure 6). 

Figure 5. (a) The clustering of the vertices V1 of the terrain graph G1. The colors stand for the clusters
gk, red points are the “centers of mass” of each cluster gk. (b) The distribution of the clusters gk by
number of vertices |vk|. This indicates that the average number of vertices in clusters gk is close to
the selected limiting number N = 21.

After the clustering procedure, the search of the Hamiltonian circuit C0(G0) on the
graph of clusters G0(V0, E0) is started (Figure 6).

If the Hamiltonian circuit C0(G0) on the graph of clusters is absent, the density of the
fields of view placement is increased by the decrease of the factor ρ. Then, the clustering
starts again and the search of the Hamiltonian cycle C0(G0) is performed on the updated
graph G0(V0, E0). This procedure is repeated until the Hamiltonian cycle C0(G0) is found.
Discussing this in more detail, if the algorithm does not find Hamiltonian cycle at the
fixed density coefficient ρ, the ρ is decreased by small step (0.05 in our realization), the
terrain graph is updated in correspondence with the updated vertices placement, and the
algorithm tries to find Hamiltonian cycle on the updated terrain graph. Since the increase
of the density of the vertex placement under decrease of ρ adds new vertices to the terrain
graph and, therefore, opens new possible routes for the sensor movement, then under
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certain small ρ, the possibility of Hamiltonian cycle construction on the terrain graph
will be guaranteed. Hamiltonian cycle found under sufficiently small ρ, which results in
significant overlap of sensor fields of view, will not be optimal, since in this case, there will
be “selected” points in the overlapped regions, which sensor monitors more time under
one cycle of the terrain scan than the other ones.
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After the Hamiltonian cycle C0(G0) is found, the search of the Hamiltonian paths
pk(gk) in each cluster gk(vk, ek) is performed. As it was mentioned above, the search
is conducted in such a way that every Hamiltonian path pk(gk) is connected with the
Hamiltonian path pk+1(gk+1), where order k of the clusters gk is fixed by the Hamiltonian
cycle C0(G0). The subsequent connection of the Hamiltonian paths pk(gk) gives the total
Hamiltonian cycle C1(G1) over the full terrain graph G1(V1, E1) (Figure 7).
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Formulation of the total algorithm for terrain graph construction and search of the
Hamiltonian circuit is presented in Algorithm 1 as MATLAB-like pseudo-code.

Algorithm 1 MATLAB-like pseudo-code of the total algorithm

hamCycle = empty; % initialization of total Hamiltonian cycle as empty constant.
N = 21; % Initialization of maximal number of nodes in cluster.
rhoCounter = 0;
while hamCycle == empty

rho = 1 – rhoCounter*0.01; % density factor ρ

%————————————————
% Construction of the terrain graph G1(V1, E1)

undistortedPlacement = fieldsUndistortedPlacement(Map, R rho);
distortedPlacement = fieldsDistortedPlacement(Map, R, rho, undistortedPlacement);
terrainGraph = createTerrainGraph(distortedPlacement, R, rho);
numGk = round(numNodes(terrainGraph)/N); % Calculation of number of clusters
% ———————————————-
% Execution of clustering procedure:
for i = 1:1: numGk
Gk(i) = “node with maximal degree d among non-clustered nodes”;
n = 0;

while n < N or “no new nodes with d ≥ 2 for current cluster Gk(i)”
Gk(i) = [Gk(i) “node with d ≥ 2 for Gk(i)”];

end
end
%—————————————————————–
% Construction of the graph of clusters G0(V0, E0)
clustersGraph = createClustersGraph(Gk, R, rho);
%—————————————————————–
% % Search of Hamiltonian cycle C0(G0) over graph of clusters G0(V0, E0)
hamCycleClusters = hamiltonianCycle(clustersGraph);
%—————————————————————–
% Search of Hamiltonian paths pk(gk) inside every cluster-subgraph gk(vk, ek)
if hamCycleClusters != empty

for i = 1:1:length(Gk)
hamPath(i) = hamiltonianPath(Gk(hamCycleClusters(i)), Gk(hamCycleClusters(i + 1)));

if hamPath(i) == empty
break;

end
end
%————————————————————–

% Connecting of Hamiltonian paths pk(gk) to the total Hamiltonian cycle C1(G1) over the terrain
% graph G1(V1, E1)

hamCycle = connect(hamPath);
end

end

4. Results and Discussion

In order to characterize the efficiency of the discussed approach for the search of
optimal patrolling route, it is proposed, first of all, to characterize the efficiency of the
terrain map covering algorithm and, secondly, to compare the time complexity of the
proposed algorithm for the Hamiltonian circuit search with the time complexity of the
standard brute-force algorithm.

The realization of the brute-force method, used in the frame of the discussed work,
is presented in [27]. This recursive algorithm checks at every iteration if the neighboring
vertex can be added to the Hamiltonian circuit or it has already been added. Thus, the
algorithm iterates through the path options and finally finds the Hamiltonian cycle in case
it exists for the given graph.
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The execution of discussed algorithms was performed in MATLAB R2021b (Math-
works, Natick, MA, USA) with the use of CPU 11th Gen Intel Core i7-11800H, 2.30 GHz.

4.1. Efficiency of the Terrain Map Covering Algorithm

For the assessment of the efficiency of the terrain map covering algorithm the ratio
SΣ/SΩ can be used, where SΣ is a total area of the monitoring zone covered by the sensor
fields of view, SΩ is a total area of the monitoring zone. As a reference value of this ratio
there can be used the value that characterizes the covering of the square monitoring zone
by the non-overlapping sensor fields of view (Figure 8). The value of ratio SΣ/SΩ in this
case is equal to π/4 ≈ 0.75 for every radius of the sensor fields of view inscribed in the
monitoring area.
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Based on this value, it is possible to characterize the coverage efficiency as follows:
SΣ/SΩ < 0.75 corresponds to the insufficient coverage of the target monitoring zone,
SΣ/SΩ = 0.75 corresponds to the maximum coverage of the target zone provided there
is no overlap of the fields of view areas, SΣ/SΩ > 0.75 corresponds to the increase of the
coverage area of the target zone due to the overlapping of the fields of view. Thus, one has
to choose between maximization of the covered area of target zone and minimization of
the overlap area of the fields of view. The discussed algorithm allows reaching of values
SΣ/SΩ at the level of 0.75–0.85, which indicates the relatively low (the ratio of overlap area
to the area of target zone is S∩/SΣ ≈ 0.01− 0.03 on the map in Figure 2) overlap of the
fields of view, which provides increase of the covered area in comparison with the case
of SΣ/SΩ = 0.75. A possible improvement of this coverage algorithm for the increase of
the coverage area while maintaining the overlap area of the fields of view is to realize
distortion procedure of the covering grid relatively to both x and y axes.
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4.2. Efficiency of the Algorithm for the Hamiltonian Circuit Search

In order to characterize the efficiency of the proposed algorithm for the Hamilto-
nian circuit search, the concept of time complexity is used [28]. The strict mathematical
derivation of the computational complexity of the proposed algorithm seems to be hardly
retrieved, since the performance depends on the map configuration. However, the statis-
tical approach, which is realized by measurement of the algorithm execution time on the
different maps, allows experimental determination of the complexity asymptotic law. It is
the approach that has been used in the frame of the present work for the establishment of
the time complexity growth law. The comparison of the experimentally determined time
complexity for modified algorithm and standard brute-force search method is presented in
Figure 9.
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To obtain these dependencies, the algorithms were run for various maps with random
location of obstacles and different sizes of visibility areas, that allowed achievement of a
different number of terrain graph vertices.

As it is indicated in Figure 9, the standard brute-force algorithm is performed in
a real-time regime (0.1–100 seconds) in the case of graphs with the number of vertices
up to 30, while the proposed modified method allows enhancement of this range up
to 500 vertices. It should be mentioned that values of 30 and 500 vertices determine the
number of vertices corresponding to the increase of the execution time by three orders of
magnitude for standard brute-force and modified algorithms respectively.

Both discussed algorithms possess the exponential law of the time complexity growth
under the increase of the input data volume, that is represented by the number of terrain
graph vertices V1. However, the growth constant t1 (Figure 9) of the time complexity curve
for the modified algorithm is significantly lower (in 36.52/2.16 ≈ 17 times) than the one
for the brute-force algorithm. Due to this fact, it is possible to increase by more than an
order of magnitude (from 30 to 500 vertices, approximately in 500/30 ≈ 17 times) the
number of the terrain graph vertices while keeping unchanged the real-time nature of
the search procedure. Thus, in comparison with the standard brute-force algorithm, the
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use of the proposed modified algorithm makes it possible to significantly increase the
number of graph vertices which are used for search of the Hamiltonian circuit in real-time
(0.1–100 s) regime.

5. Conclusions

In the frame of the present work the method for the construction of the optimal
path for arbitrary terrain map patrolling is developed. The method is based on the use
of the modified algorithm for the search of Hamiltonian circuit on the terrain graph.
It is demonstrated that the proposed method is effective both in the coverage of the
monitoring zone, since it provides almost total coverage of the terrain area, and in the
search of the Hamiltonian circuit over the terrain graph, since it ensures the increase of the
search rate in comparison with the standard brute-force method. Moreover, in comparison
with the brute-force method the proposed algorithm for the Hamiltonian circuit search
allows more than an order of magnitude increase of the number of graph vertices (from
30 to 500 vertices, in 500/30 ≈ 17 times), which are used for the real-time (0.1–100 seconds)
search of Hamiltonian circuit. The proposed approach of the vertices clustering that is used
in the frame of the developed Hamiltonian circuit search procedure can be scaled to the
graphs with the higher number of vertices by the recursive multi-level clustering of the
terrain graph vertices.

The implementation of the proposed method in practical cases could be as follows. A
user uploads the 2D terrain map to the computer program, which uses described algorithm
for the patrolling path construction. The constructed path (i.e., the sequential set of 2D
coordinates) is uploaded to the automated moving device which carries a sensor. Finally,
moving device starts to patrol the terrain according to the uploaded path while the current
position of device is monitored via, for example, GPS.

Thus, the discussed method can be applied both in the frame of the terrain patrolling
problems and in the common area of tasks which require the use of the fast algorithm for
the Hamiltonian circuit search on the large graphs.
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