
Citation: Zhang, Y.; Huang, Y.; Wang,

K.; Qi, G.; Zhu, J. Single Image

Super-Resolution Reconstruction

with Preservation of Structure and

Texture Details. Mathematics 2023, 11,

216. https://doi.org/10.3390/

math11010216

Academic Editor: Konstantin Kozlov

Received: 29 November 2022

Revised: 23 December 2022

Accepted: 27 December 2022

Published: 1 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Single Image Super-Resolution Reconstruction with
Preservation of Structure and Texture Details
Yafei Zhang 1 , Yuqing Huang 1, Kaizheng Wang 2,*, Guanqiu Qi 3 , Jinting Zhu 4

1 Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming 650500, China

2 Faculty of Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
3 Department of Computer Information Systems, State University of New York at Buffalo State,

Buffalo, NY 14222, USA
4 School of Natural and Computational Sciences, Massey University at Auckland,

Auckland 0632, New Zealand
* Correspondence: kz.wang@foxmail.com or kz.wang@kust.edu.cn

Abstract: In recent years, deep-learning-based single image super-resolution reconstruction has
achieved good performance. However, most existing methods pursue a high peak signal-to-noise
ratio (PSNR), while ignoring the quality of the structure and texture details, resulting in unsatisfactory
performance of the reconstruction results in terms of human subjective perception. To solve this
issue, this paper proposes a structure- and texture-preserving image super-resolution reconstruction
method. Specifically, two different network branches are used to extract features for image struc-
ture and texture details. A dual-coordinate direction perception attention (DCDPA) mechanism is
designed to highlight structure and texture features. The attention mechanism fully considers the
complementarity and directionality of multi-scale image features and effectively avoids information
loss and possible distortion of image structure and texture details during image reconstruction.
Additionally, a cross-fusion mechanism is designed to comprehensively utilize structure and texture
information for super-resolution image reconstruction, which effectively integrates the structure and
texture details extracted by the two branch networks. Extensive experiments verify the effectiveness
of the proposed method and its superiority over existing methods.

Keywords: deep neural networks; super-resolution image reconstruction; structure and texture
details; attention mechanism

MSC: 68U10

1. Introduction

Image super-resolution (SR) focuses on recovering the corresponding high-resolution
images from degraded low-resolution images. Image SR techniques can be used in face
recognition [1], medical imaging [2,3], satellite imagery [4] and so on. As an important
image-processing method, image SR has received extensive attention from researchers.
Existing SR methods can be roughly divided into four categories: interpolation-based
methods [5–8], inverse reconstruction-based methods [9–12], traditional machine-learning-
based methods [13–22], and deep-learning-based methods [23–31].

Interpolation-based methods use known adjacent pixel information to generate un-
known pixels. This type of method is simple to implement, but its detail recovery ability
is poor, and the reconstruction results are prone to blur and aliasing. Assuming that the
low-resolution image is obtained by a series of degradations of the high-resolution image, in-
verse reconstruction-based methods use the reverse reconstruction algorithm to restore the
high-resolution image. Based on the degradation model of the image, this kind of method
is often developed in combination with prior knowledge of the image [9,11] and obtains a

Mathematics 2023, 11, 216. https://doi.org/10.3390/math11010216 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010216
https://doi.org/10.3390/math11010216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2347-5642
https://orcid.org/0000-0001-9562-3865
https://orcid.org/0000-0002-0682-1796
https://doi.org/10.3390/math11010216
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010216?type=check_update&version=2


Mathematics 2023, 11, 216 2 of 17

high-resolution image by optimizing the model. Although this kind of method preserves
more image details, the reconstruction performance is susceptible to image degradation and
regularization performance. Additionally, when the resolution is improved by more than
four times, the reconstruction performance is usually not good. Traditional learning-based
methods use the training data to learn the non-linear mapping relationship between a low-
resolution image and its high-resolution version. Then, the learned mapping relationship
is used to guide high-resolution image reconstruction. Freeman et al. [32] first proposed
the learning of this relationship in Markov neural networks, but this method requires a
lot of time to construct a training set and image reconstruction is also time-consuming.
Chang et al. [33] assumed that both high- and low-resolution image patches have manifolds
with the same geometric structure and proposed a super-resolution reconstruction method
based on neighborhood embedding. Since dictionary learning has shown excellent perfor-
mance in computer vision [14,34] and medical imaging [35,36], Yang et al. [37] proposed
a super-resolution reconstruction method based on sparse representation. This method
assumes that the high- and low-resolution images have the same coding coefficients un-
der the respective dictionary, and reconstructs the high-resolution image by applying the
coding coefficients of the low-resolution image under the low-resolution dictionary to the
high-resolution dictionary. In view of the effectiveness of sparse representation and its
superiority for image processing [38–41] and recognition [42–44], image super-resolution
reconstruction based on sparse representation became a very popular method at that time.
Although this type of method has achieved breakthroughs in performance, the optimization
process of the model is too complicated, time-consuming and memory-intensive.

In 2014, Dong et al. [17] first applied deep learning to image super-resolution recon-
struction and proposed super-resolution convolutional neural networks (SRCNN). Since
then, deep-learning-based methods have become the mainstream methods for image super-
resolution reconstruction [23–31,45,46]. This kind of method usually uses a single-branch
network under the constraint of loss function so that the network can extract the texture
details required to restore the low-resolution image to the high-resolution image, thereby ef-
fectively improving the visual effect of the reconstructed image. However, texture features
are easily lost in the process of image convolution in real cases. This is extremely disadvan-
tageous for recovering texture details in high-resolution images. In order to improve the
visual performance of reconstructed images, Ledig et al. [13] proposed super-resolution
generative adversarial networks (SRGAN), which use the generative adversarial loss to
constrain the generator and discriminator. Hence, the generator obtains texture details that
are closer to the real world. Since then, Wang et al. [47] further improved the detail recovery
ability of SRGAN by introducing dense residual blocks. However, the discriminator may
introduce instability in the optimization process during the adversarial process, causing
structure inconsistency in the reconstructed image, resulting in unnatural artifacts and
geometric distortions in the recovered super-resolution image. Therefore, Ma et al. [24]
proposed a structure-preserving super-resolution (SPSR) method to alleviate the above
problem, which uses the gradient information of the image to guide the low-resolution
image restoration, while maintaining the advantages of GAN-based methods to generate
results that achieve satisfactory performance in terms of human subjective perception.

In order to reconstruct the structure and texture details of images with high quality,
this paper proposes a structure- and texture-preserving image super-resolution method.
In the proposed method, the structure and texture details of the image are extracted
by different network branches. In this process, a dual-coordinate direction perception
attention (DCDPA) mechanism is designed to highlight structure and texture features.
This mechanism not only makes full use of the complementarity of multi-scale image
features, but also considers the directionality of image features in the horizontal and vertical
coordinates. Therefore, both information loss and possible distortion of the image structure
and texture details are effectively avoided during image reconstruction. To comprehensively
utilize the structure and texture information to reconstruct high-resolution images, this
paper proposes a cross-fusion mechanism to integrate structure and texture features.
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In the network structure, the proposed network framework is mainly composed of
a structure feature extraction module (SFEM), a texture detail feature extraction module
(TDFEM), and feature highlight and aggregation modules (FHAM). The SFEM and TDFEM
are responsible for the learning of image structure features and texture detail features,
respectively. The FHAM enhances the structure and texture detail features in different
directions in the image through the designed DCDPA mechanism and promotes informa-
tion interaction between them through the cross fusion of the structure and texture detail
features to improve the feature representation ability. The network is optimized by recon-
struction loss, texture loss, and gradient loss. This paper makes three main contributions
as follows:

• An image super-resolution reconstruction network for structure and texture restoration
is designed. This network uses the dual-stream structure to extract the structure and
texture details of the image, respectively, and enhances these two features layer-by-
layer through the FHAM to improve the network’s ability to extract features.

• The FHAM is designed to highlight the structure and texture features in the image.
In order to enable the network to capture the salient structure and texture features in
the image, this paper proposes a DCDPA mechanism in this module. This mechanism
makes full use of the directionality of image features to highlight the features of
different directions in the image. Moreover, a cross-fusion block (CFB) is proposed to
promote the interactive fusion of structure and texture features.

• A large number of experimental results show that the proposed method contains
salient structure and texture details in its super-resolution reconstruction results, which
outperform state-of-the-art methods in visual quality and performance evaluation.

2. Relate Work
2.1. Deep-Learning-Based Super-Resolution Reconstruction Methods

In recent years, deep learning has been widely used in single-image super-resolution
reconstruction. Dong et al. [17] proposed the SRCNN. Compared with traditional methods,
SRCNN achieves better super-resolution reconstruction results. Since simply stacking
convolutional layers can lead to gradient explosion, Kim et al. [22] proposed an accurate
image super-resolution using very deep convolutional networks (VDSR). The networks
avoid the problem of gradient explosion and speed up the network training by adding
jump connections. DRRN [48] and Memnet [49] proposed by Tai et al. introduced recursive
blocks and memory blocks, respectively, to stack more convolutional layers. However,
the above-mentioned networks all use predefined upsampling. Due to resolution changes
using traditional methods, the network complexity increases. In addition, since the tradi-
tional upsampling methods do not involve network parameter training, the image cannot
be reconstructed by convolution, activation function, etc. Therefore, the upsampling pro-
cess magnifies the defects in low-resolution images. To solve this problem, Dong et al. [25]
proposed a fast convolutional neural-network-based super-resolution reconstruction (FS-
RCNN) method, which performs feature extraction on low-resolution images, reduces
the complexity of the network, and applies deconvolution to upsampling and image re-
construction. Shi et al. [26] proposed an efficient sub-pixel convolutional layer to achieve
upsampling. In recent years, Zhu et al. [27] proposed a lightweight feature separation
and fusion network, adopting a block-processing structural framework, which enables
the network to fully utilize and enrich features at different levels. Liu et al. [28] proposed
a multi-scale skip-connection network (MSN) to improve the visual quality of super-
resolution images, utilizing convolution kernels of different sizes to capture multi-scale
features of low-resolution images. Huang et al. [29] proposed an attention network with
detail fidelity, which achieves super-resolution image reconstruction while obtaining detail
fidelity. Mehri et al. [30] proposed the multi-path residual network (MPRNet), which adap-
tively learns the most valuable features to learn more high-frequency information about
the image. Tan et al. [31] proposed an image super-resolution method via a self-calibrated
feature fusion network (SCFFN) to achieve a better balance between network performance
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and applicability. However, the above methods all consider the texture feature information
and structure feature information of the image as a whole. In reality, the texture features
are easily lost during the image convolution process. This is extremely disadvantageous
for reconstructing high-resolution images rich in texture feature information.

2.2. Visual-Perception-Based Super-Resolution Reconstruction Methods

To improve the perceptual quality of images, in recent years, a large number of super-
resolution reconstruction models that benefit the perceptual performance of human eyes
have been proposed [13,47,50]. These methods use a variety of information compensation
methods to compensate the texture features of the super-resolution reconstruction results.
While reconstructing the structure information, they prevent the loss of texture details dur-
ing the super-resolution reconstruction process and improve the perceptual performance
of images. A photo-realistic single image super-resolution using a generative adversarial
network (SRGAN) proposed by Ledig et al. [13] uses the discriminator and the generator
for adversarial learning and enables the generator to generate texture details that are close
to the real world. In order to reduce the artifacts caused by generative confrontation in
SRGAN, Wang et al. [47] proposed an enhanced super-resolution generative adversarial
network (ESRGAN), which introduced dense residual blocks into the basic network frame-
work and abandoned the batch normalization operation to generate more realistic and
natural images. Wu et al. [51] proposed a perceptual generative adversarial network for
single-image super-resolution (SRPGAN), in which a robust perceptual loss based on the
model’s discriminator was proposed to recover texture details. Wang et al. [50] proposed an
image super-resolution reconstruction method for texture recovery by deep spatial feature
transform, which integrates a semantic prior into low-resolution images and uses a spatial
feature transform (SFT) layer to further improve texture recovery. A new dense block
proposed by Chen et al. [52] uses complex connections between each layer to build a more
powerful generator and applies new feature maps to compute the perceptual loss to make
the output image more realistic and natural. Ma et al. [24] proposed a structure-preserving
image super-resolution method, which uses the gradient information of the image to guide
image recovery. Fu et al. [53] proposed a method to guide the image super-resolution
reconstruction by weak texture information. This network consists of a main network
and two auxiliary prediction networks. The main network extracts and combines the
main distinct depth features to assist the prediction network in extracting weak texture
information. Cai et al. [54] proposed a texture and detail preservation network (TDPN),
which not only focuses on local region feature recovery, but also texture and detail preser-
vation. Meng et al. [55] proposed a gradient information distillation network that not only
maintains the advantage of fast and lightweight, but also improves the model performance
through information distillation. All of the above-mentioned methods have made great
contributions to improving the visual perception of the reconstructed images. However,
unnatural artefacts still appear in the recovered super-resolution images. Therefore, this
paper proposes a super-resolution reconstruction network that fuses structure and texture
information. By enhancing the structure and texture features in the image and cross-fusion,
the extraction ability of the network for structure and texture features is improved, thereby
reducing artefacts in the reconstructed image and improving the perceptual quality of the
reconstructed image.

3. The Proposed Network Framework

The framework of the proposed image super-resolution reconstruction network for
structure and texture detail recovery is shown in Figure 1. The model mainly comprises
three modules: SFEM, TDFEM, and FHAM. The network structure of both SFEM and
TDFEM is the same, but the parameters are not shared. They both consist of a 5 × 5
convolutional layer and five sets of residual blocks (RBs). Convolutional layers and RBs
extract shallow and deep features of the input image, respectively. The input of the SFEM
is the original low-resolution image. Additionally, the texture map of the original low-
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resolution image is obtained by the local binary pattern (LBP) method [56]; the texture
map and the original image are concatenated as the input of the TDFEM. The FHAM
consists of five gated fusion blocks (GFBs). The GFB enhances the structure and texture
information of the image, respectively, by introducing a DCDPA mechanism and fusing the
enhanced structure and texture information through cross-fusion. Finally, the reconstructed
super-resolution image is obtained by deconvolution.

Figure 1. The framework of the proposed network.

3.1. Structural Feature Extraction Module and Texture Detail Feature Extraction Module

The network structure of both SFEM and TDFEM is the same, including shallow-
feature extraction and deep-feature extraction. The network adopts a 5× 5 convolution
layer and five RBs to extract the shallow and deep features of the image, respectively.
Assuming that I represents the input of the 5× 5 convolutional layer, the shallow feature
Fs obtained by convolution is:

Fs = sconv(I, k = 5) (1)

where sconv represents equal-sized convolution operations, and k represents the size of the
convolution kernel.

Let ILR denote the input original low-resolution image. For the SFEM I = ILR, the ob-
tained shallow structure feature is Fs

s . In order to prevent the subjective image quality
degradation caused by loss of texture detail information during the super-resolution re-
construction process, the LBP method is used to obtain the texture map It of the original
image ILR and to concatenate them with the input of the TDFEM. Therefore, for the TD-
FEM, I = concat(ILR, It), where concat denotes the concatenation operation. The obtained
shallow texture detail feature is Fs

t . The RB is used to extract the deep features of the
image. The relationship between the input and output of the i-th (i = 1, 2, . . . , 5) RB can be
expressed as:

F i
r = sconvg(F i−1

r ) + F i−1
r (2)

where sconvg represents a convolution group, which consists of six 3× 3 convolutional
layers. F i−1

r and F i
r represent the input and output of the i-th RB, respectively.

3.2. Feature Highlight and Aggregation Module and Feature Reconstruction

To ensure that the network can realize the fusion of image structure and texture
features and prevent the loss of structure and texture details, this paper proposes the
FHAM. The module consists of five GFBs, as shown in Figure 1. The GFB is composed of
DCDPA and CFB.
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3.2.1. Dual-Coordinate Direction Perception Attention

To enable the network to capture structure and texture details in different directions
from the image, a DCDPA mechanism is used, which includes direction perception coordi-
nate attention (DPCA) and global perception coordinate attention (GPCA), as shown in
Figure 2.

Figure 2. Dual-coordinate direction perception attention.

The input FGin of the DCDPA module contains the texture detail and structure features
of the image. Specifically, for the first GFB, its input is obtained by concatenating the
shallow structure feature Fs

s and the shallow texture detail feature Fs
t . For other GFBs,

the corresponding input is the output of the previous GFB. FGin passes through 3× 3 and
5× 5 convolutions, respectively, to obtain the features Fl (l = 3, 5) of different scales. Fl
obtains the horizontal feature Fh

l and the vertical feature Fv
l through global average pooling

(GAP) in the horizontal and vertical directions, respectively:

Fh
l = Ph(Fl)

Fv
l = Pv(Fl)

(3)

where l = 3, 5, and Ph and Pv represent the GAP in the horizontal and vertical directions,
respectively. Set Fl ∈ R3×H×W , then Fv

l ∈ R3×1×W , Fh
l ∈ R3×H×1. To concatenate features

in different directions, it is necessary to reshape Fh
l into 3× 1× H dimensions. The features

in different directions are concatenated along the horizontal direction to obtain four sets of
joint features as follows:

Fhv
3,3 = concat(Fh

3 , Fv
3 )

Fhv
3,5 = concat(Fh

3 , Fv
5 )

Fhv
5,3 = concat(Fh

5 , Fv
3 )

Fhv
5,5 = concat(Fh

5 , Fv
5 )

(4)

where concat represents the concatenation operation. To obtain the perceptual coordinate
attention weights in different directions, 1× 1 convolution and sigmoid are applied to
process the joint features to obtain attention maps in different directions. Taking Fhv

3,3 as an
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example, the attention maps in the horizontal and vertical directions obtained after Fhv
3,3 is

processed are Mh
3,3 ∈ R3×1×W and Mv

3,3 ∈ R3×1×W :[
Mh

3,3, Mv
3,3

]
= split(sigmoid(BN(sconv(Fhv

3,3, k = 1)))) (5)

where split represents the segmentation operation, sigmoid represents the sigmoid acti-
vation function, and BN represents the batch normalization layer. After applying 1× 1
convolution and dimension expansion in the horizontal and vertical directions to Mh

3,3 and
Mv

3,3, the perceptual coordinate attention maps M̃h
3,3 ∈ R3×W×H and M̃v

3,3 ∈ R3×W×H in

different directions are obtained, respectively. Similarly, other attention maps
[

M̃h
3,5, M̃v

3,5

]
,[

M̃h
5,3, M̃v

5,3

]
, and

[
M̃h

5,5, M̃v
5,5

]
, can be obtained.

The features in different directions in an image are enhanced using DPCA in both the
vertical and horizontal directions. F3 is enhanced with attention maps

[
M̃h

3,3, M̃v
3,3

]
and[

M̃h
3,5, M̃v

3,5

]
, respectively, and the enhanced features are F̃3,3 and F̃3,5:

F̃3,3 = F3 � M̃h
3,3 � M̃v

3,3

F̃3,5 = F3 � M̃h
3,5 � M̃v

3,5

(6)

where � denotes point-wise multiplication.
Similarly, F5 is enhanced with attention maps

[
M̃h

5,3, M̃v
5,3

]
and

[
M̃h

5,5, M̃v
5,5

]
, respec-

tively, and the enhanced features are F̃5,3 and F̃5,5, respectively. The GPCA map Matt is
generated through the concatenation, convolution and sigmoid activation function of the
features F̃3,3, F̃3,5, F̃5,3 and F̃5,5:

Matt = sigmoid(sconv(concat(F̃3,3, F̃3,5, F̃5,3, F̃5,5))) (7)

The output F i
s of the i-th RB of the structure feature extraction module is enhanced

by the GPCA map Mi
att (i = 1, 2, . . . , 5) in the i-th GFB, and the output F i

t of the i-th RB
of the TDFEM is enhanced by the complementary attention map 1−Mi

att. The enhanced
structure feature and texture feature are F i

se and F i
te, respectively, as follows:

F i
se = F i

s �Mi
att

F i
te = F i

t � (1−Mi
att)

(8)

3.2.2. Cross-Fusion Block

To make full use of the structure and texture detail information enhanced by the
DCDPA mechanism, a cross-fusion block (CFB) is proposed, as shown in Figure 3. Specifi-
cally, the structural feature Fse and texture feature Fte generate the spatial attention map Ms
through concatenation, convolution and the sigmoid:

Ms = sigmoid(sconv(concat(Fse, Fte), k = 3)) (9)

Using Ms to further enhance the structure features, Fst is obtained by the cross-fusion
of the enhanced structure features and texture features. Similarly, Fts is obtained by the
cross-fusion of the structure features and the enhanced texture results by Ms:

Fst = Fse �Ms + Fte

Fts = Fte �Ms + Fse
(10)

The final fusion result is obtained by the concatenation of Fst and Fts:

FGout = concat(Fst, Fts) (11)
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The fusion result F i
Gout of the i-th GFB is used as the input of the i + 1-th GFB,

i.e., F i+1
Gin = F i

Gout .

Figure 3. Cross-fusion block.

3.2.3. Feature Reconstruction

To obtain the reconstructed image, the output Fd
Gout of the last layer in the FHAM

and the output Fd
t of the last layer in the TDFEM are upsampled by deconvolution to

obtain Fh and Fh
t , respectively. The texture detail feature map Fh

t is concatenated with Fh

to obtain features with further enhanced details; the high-resolution image ISR is finally
reconstructed by 3× 3 convolution:

Fh = Deconv(Fd
Gout)

Fh
t = Deconv(Fd

t )

ISR = sconv(concat(Fh, Fh
t ), k = 3)

(12)

where Deconv stands for deconvolution.

3.3. Loss Function

The model is trained by a joint loss including reconstruction loss, gradient loss, and
texture loss to achieve good visual performance.

Reconstruction loss: In this paper, the labeled high-resolution image, and the high-
resolution image after super-resolution reconstruction, are constrained by the reconstruc-
tion loss as follows:

Lre = ‖IHR − ISR‖1 (13)

where IHR and ISR are the labeled high-resolution image and reconstructed super-resolution
image, respectively.

Gradient loss: To ensure that the reconstruction result has the same gradient infor-
mation as the labeled image, the following gradient loss function to further optimize the
reconstructed image is used.

Lgrad =
1

H ×W
‖∇IHR −∇ISR‖1 (14)

where∇ is the gradient operator and H and W represent the height and width of the image,
respectively.

Texture loss: To make the texture features in the reconstructed image and the labeled
image consistent, a texture loss is introduced as follows:

Ltex = ‖It
HR − It

SR‖1 (15)
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where It
HR and It

SR are the texture image extracted from the labeled high-resolution image
by the LBP operator and the texture image reconstructed by the texture detail feature
extraction module, respectively. So, the joint loss is summarized as follows:

Ljoint = Lre + λgradLgrad + λtexLtex (16)

where λgrad and λtex represent the weight parameters.

4. Experiment and Result Analysis
4.1. Experimental Setup

The Pytorch 1.7 framework and NVIDIA GeForce RTX 2080ti 12 GB GPU were used in
the experiments. The training images were from the DIV2K dataset [57], which includes
800 training images, 100 validation images, and 100 test images. Four benchmark datasets,
Set5 [58], Set14 [59], B100 [60], Urban100 [61], were used to evaluate the performance
of the different methods. The Set5, Set14, and B100 datasets contained 5, 10, and 100
natural images, respectively. There were 100 urban building images in the Urban100
dataset. The high-resolution testing images in the testing set were downsampled by 2×, 3×
and 4× bicubic interpolation to obtain the corresponding low-resolution images for super-
resolution reconstruction testing. When training the network model with a 2× upsampling
factor, to reduce memory usage and save running time, the size of the high-resolution
image was 256× 256 and the size of the low-resolution image was 128× 128. When training
the network model with a 3× upsampling factor, the size of the high-resolution image
was 192× 192, and the size of the low-resolution image was 64× 64. When training the
network model with a 4× upsampling factor, the size of the high-resolution image was
180× 180 and the size of the low-resolution image was 45× 45. In the training process,
the Adam optimizer [62] was selected to train all modules. Following [54], the learning
rate of the model training was set to 10−4. The convergence curves of the training loss
during the training for scale 2 magnification on the DIV2K dataset are shown in Figure 4. It
can be seen from Figure 4 that the training loss gradually decreased as the training epochs
increased. When it reached 1800 epochs, the loss curve converged. Allowing for some
margin, the epoch for the model training was set to 2000. The parameters of the entire
network were trained through back propagation.

Figure 4. Training loss curve.

Two objective evaluation indicators, the peak signal-to-noise ratio (PSNR) and a
structural similarity index measure (SSIM) were used to evaluate the quality of the super-
resolution reconstruction results. The PSNR was used to measure the mean-square error
between the reconstructed image and the original image; its unit is dB. The larger the value
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of PSNR, the less the image distortion, that is, the higher the image reconstruction quality.
The SSIM was used to measure the structural similarity between the reconstructed image
and the original image. A higher value of SSIM indicates that the reconstructed image is
closer to the original image, that is, it shows better image reconstruction performance.

Given two images, one being the ground truth (GT) X, the other the super-resolution
reconstruction result Y , the PSNR [63] can be defined as:

PSNR = 10 log10(
(2n − 1)2

MSE
) (17)

where MSE is the mean square error of the GT image X and the reconstructed image Y .
MSE = 1

H×W ∑H
i=1 ∑W

j=1(X(i, j)− Y(i, j))2. H and W are the height and width of the image,
respectively. n is the bits of a pixel which is generally set to 8 (i.e., a gray level of 256).
The unit of the PSNR is the decibel (dB).

The SSIM [64] is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(18)

where µx and µy are the mean values of X and Y , respectively. σx and σy are the standard
deviations of X and Y , respectively. σxy is the covariance of X and Y . c1 and c2 are set to
constants to avoid system error caused by a zero denominator. The value of the SSIM is
between 0 and 1.

4.2. Quantitative Comparison

To verify the effectiveness of the proposed method, it was compared with state-of-
the-art super-resolution methods, such as SRCNN [65], FSRCNN [25], VDSR [22], Lap-
SRN [66], CDC [67], and SREFBN [68]. SRCNN and FSRCNN were trained on the 91-image
dataset [17]. VDSR, LapSRN, CDC and SREFBN were trained on the DIV2K dataset.
The above methods were all validated on the Set5, Set14, B100, and Urban100 datasets.
The quantitative evaluation results are shown in Tables 1–3 with the best results marked
in bold. According to Tables 1–3, the proposed method achieved most of the best evalua-
tion results.

Table 1. Quantitative comparison of 2× super-resolution results obtained by different methods.

Method Scale Set5 Set14 B100 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN 2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946
FSRCNN 2 37.05 0.9560 32.66 0.9090 31.53 0.8920 29.88 0.9020
VDSR 2 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140
LapSRN 2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101
CDC 2 32.35 0.8766 29.20 0.7932 28.58 0.7856 26.06 0.7766
SREFBN 2 37.92 0.9593 33.59 0.9175 32.17 0.8991 32.13 0.9279
Proposed 2 38.07 0.9713 33.60 0.9442 32.20 0.9036 32.19 0.8549

Table 2. Quantitative comparison of 3× super-resolution results obtained by different methods.

Method Scale Set5 Set14 B100 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN 3 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989
FSRCNN 3 33.18 0.9140 29.37 0.8240 28.53 0.7910 26.43 0.8080
VDSR 3 33.67 0.9210 29.78 0.8320 28.83 0.7990 27.14 0.8290
LapSRN 3 33.82 0.9227 29.87 0.8320 28.82 0.7980 27.07 0.8280
CDC 3 25.29 0.2966 23.97 0.6224 24.74 0.6165 21.96 0.6087
SREFBN 3 34.33 0.9257 30.28 0.8407 29.06 0.8038 28.03 0.8494
Proposed 3 35.12 0.9432 30.37 0.8557 29.13 0.7941 28.27 0.7249
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Table 3. Quantitative comparison of 4× super-resolution results obtained by different methods.

Method Scale Set5 Set14 B100 Urban100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN 4 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221
FSRCNN 4 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280
VDSR 4 31.35 0.8830 28.02 0.7680 27.29 0.7026 25.18 0.7540
LapSRN 4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560
CDC 4 25.41 0.7177 24.01 0.6165 24.19 0.6085 21.50 0.5610
SREFBN 4 32.01 0.8917 28.52 0.7790 27.50 0.7332 25.87 0.7787
Proposed 4 32.27 0.9039 28.59 0.7624 27.60 0.7075 26.13 0.7893

4.3. Qualitative Comparison

To compare the visual quality of the super-resolution reconstruction results obtained
by different methods, images from the Set5, Set14, BSD100, and Urban100 datasets were
selected for the visual display of the 2×, 3×, and 4× super-resolution reconstruction
results and ground truth (GT), as shown in Figures 5–7. In terms of visual performance,
the detailed textures of the reconstructed images obtained by the SRCNN, FSRCNN, VDSR,
and CDC methods were relatively blurred, while the reconstruction results obtained by the
LapSRN, CDC, and SREFBN methods contained detailed features that did not match the
actual texture details. The proposed method could fit real natural images well, enhancing
the brightness of reconstructed high-resolution images, while recovering textures, so that
the reconstructed images had rich texture details. In summary, the proposed method has
certain advantages in terms of visual performance and quantitative evaluation.

Figure 5. Visual comparisons with different methods for 2× super-resolution on the Set5, Set14, B100,
and Urban100 datasets.

Figure 6. Visual comparisons with different methods for 3× super-resolution on the Set5, Set14, B100,
and Urban100 datasets.
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Figure 7. Visual comparisons with different methods for 4× super-resolution on the Set5, Set14, B100,
and Urban100 datasets.

4.4. Ablation Study

To verify the effectiveness of the proposed TDFEM, DCDPA, and CFB methods on the
quality of the reconstructed super-resolution images, ablation experiments were performed.
Taking the network without DCDPA, CFB and TDFEM as the benchmark (Base), the Base
network plus TDFEM was marked as Base + TDFEM, the Base + TDFEM network plus
DCDPA was marked as Base + TDFEM + DCDPA, and the Base+TDFEM+DCDPA network
plus CFB was marked as Base + TDFEM + DCDPA + CFB. Ablation experiments were
performed on the images from the Urban100 dataset at 2× magnification. The quantitative
evaluation results of the ablation experiments are shown in Table 4 and the corresponding
visual performance is shown in Figure 8.

Table 4. Ablation experiment performance.

Method Base TDFEM DCDPA CFB PSNR/SSIM

Base
√

31.38/0.8333
Base + TDFEM

√ √
31.51/0.8456

Base + TDFEM + DCDPA
√ √ √

31.85/0.8509
Base + TDFEM + DCDPA + CFB

√ √ √ √
32.19/0.8549

Figure 8. Comparison of ablation experiment results.
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4.4.1. The Effectiveness of TDFEM

TDFEM was used to extract texture information separately to prevent the loss of
texture detail information in the process of super-resolution reconstruction, which led
to the deterioration in subjective image quality. So, TDFEM was introduced into the
proposed model. In the TDFEM, the LBP operator is used to extract the texture details of
the original image and the obtained texture detail map is concatenated with the original
image, which enhances the network’s ability to extract texture detail information. This
helps to improve the perceptual quality of reconstructed super-resolution images. To
demonstrate its effectiveness, the reconstruction results of the ‘Base’ model were compared
with the reconstruction results of the ‘Base + TDFEM’ model. As shown in Figure 8, the
‘Base + TDFEM’ model achieved good performance in texture detail extraction during the
reconstruction process. Additionally, as shown in Table 4, the utilization of ‘TDFEM’ also
led to a significant improvement in the objective evaluation results, which confirmed the
effectiveness of ‘TDFEM’ in the proposed model.

4.4.2. The Effectiveness of DCDPA

In the proposed model, DCDPA is used to capture the structure and texture feature
regions of interest and to prevent the loss of feature information. This attention mechanism
makes full use of the complementarity and directionality of multi-scale image features and
effectively avoids information loss and the possible distortion of image structure and texture
details during image reconstruction. This is conducive to improving the visual quality of
the reconstructed image. To verify the effectiveness of ‘DCDPA’, the reconstruction results
of the ‘Base + TDFEM + DCDPA’ model were compared with those of the ‘Base + TDFEM’
model. In Figure 8, the structure and texture details of the reconstructed images obtained
by the ‘Base + TDFEM + DCDPA’ are highlighted. Moreover, according to the values
of the objective evaluation metrics shown in Table 4, compared with ‘Base + TDFEM’,
the performance of ‘Base + TDFEM + DCDPA’ was improved. So, the effectiveness of
DCDPA was demonstrated.

4.4.3. The Effectiveness of CFB

To prevent the loss of texture details and ensure that the texture detail information
enhanced by the DCDPA was fully utilized by the later layers, a CFB was proposed. This
module facilitates the information interaction between structure and texture detail features
by cross-fusion of them to enhance the network’s ability to mine structure and texture
features. This contributes to improving the quality of the reconstructed image. To verify
the effectiveness of ‘CFB’, the reconstruction results of ‘Base + TDFEM + DCDPA + CFB’
were compared with those of ‘Base + TDFEM + DCDPA’. As shown in Figure 8, the ‘Base +
TDFEM + DCDPA + CFB’ model more fully integrated structure and texture features in the
reconstruction process and the corresponding evaluation results presented in Table 4 were
also enhanced.

4.5. Parameter Analysis
4.5.1. Influence of the Number of GFBs

This section discusses the influence of the number of GFBs on the performance of the
proposed model. The proposed model with different numbers of GFBs was tested on the
DIV2K dataset. Table 5 shows the performance of the model with different numbers of
GFBs (denoted by n). ’Params’ indicates the number of parameters. As shown in Table 5,
PSNR and SSIM achieved the best performance at n = 5. When n was 7 or 9, the number of
model parameters increased and the model’s performance decreased. Therefore, n was set
to 5.
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Table 5. Performance of the model with different numbers of GFBs.

GFB Modules n = 3 n = 5 n = 7 n = 9

PSNR 37.10 38.07 37.40 37.24
SSIM 0.9674 0.9713 0.9688 0.9676
Params (M) 18.4 21.1 26.1 30.2

4.5.2. Hyper-Parameter Selection

In Equation (16), two hyper-parameters λgrad and λtex need to be set. The impact
of one hyper-parameter is analyzed by fixing another hyper-parameter. For the DIV2K
dataset, the impact of λgrad and λtex on the super-resolution reconstruction results was
analyzed by PSNR and SSIM, respectively; the corresponding experimental results are
shown in Figure 9. As shown in Figure 9, when λgrad = 0.01 and λtex = 0.001, both PSNR
and SSIM achieved the optimal values. Therefore, λgrad = 0.01 and λtex = 0.001 were set
for model training.

Figure 9. Hyper-parameter analysis on the DIV2K dataset.

5. Conclusions

A super-resolution reconstruction network that preserves structure and texture details
was designed. The proposed network uses different network branches for feature extraction
of the image structure and texture details, respectively, and enhances these two features
layer-by-layer through the FHAM to improve the network’s ability to extract features.
To fully extract the information of different directions in the image, a dual-coordinate
direction perception attention mechanism is proposed. The proposed attention mechanism
fully considers the complementarity and directionality of the multi-scale image features,
which can avoid information loss and possible distortion of the image structure and texture
details. Additionally, a cross-fusion mechanism to effectively integrate the structure and
texture features extracted by the network was designed, which can enhance the network’s
ability to mine structure and texture features. This is helpful to improve the quality
of the reconstructed image. The experimental results show that the super-resolution
reconstruction results of the proposed method produced good structure and texture details.
The proposed method outperformed state-of-the-art methods in both visual quality and
performance evaluation. However, the proposed method uses synthetic datasets to train
networks in a supervised way. In the synthetic datasets, a low-resolution image is generated
by bicubic downsampling its high-resolution counterpart. In practical scenarios, the high-
resolution images are unavailable and image degradation models are unknown. Therefore,
how to improve the quality of super-resolution reconstructed images in real scenes will be
the direction of our future research.
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