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Abstract: The work proposes an original method for modeling and simulating the triggering of
110 kV interconnection power lines in case of common faults, such as transient or persistent faults.
Urban and industrial areas, surrounding urban areas, require a high energy consumption that is
being supplied through 110 kV overhead power lines, responsible for distributing power to the
industrial and domestic consumers. High voltage distribution power lines are most prone to failure,
due to their exposure, affecting a large number of consumers if a fault occurs. Faults of power
lines in service certify that currently there is no perfectly controllable operation mode in terms of
load rating, environmental factors, insulation resistance, or mechanical resistance, which would
allow total avoidance of faults, it is only possible to reduce the impact they have on the network
as a whole. Mathematical models have been developed to determine the experimental voltage and
current responses describing the fault propagation, expressed as a 7th-degree polynomial curve, as
a second-order transfer function or as the Gaussian model type. By comparing these mathematical
models, the most probable answers that can lead to the development of a control structure for rapid
identification of a fault were obtained, with the possibility of triggering the line protection relay. In
the final part of the manuscript, the viability of applying artificial intelligence techniques, for the
approached fault management application, is proven. The developed control structure evaluates the
nature of the fault and determines a faster reaction of the line protection causing an increase in the
performance of the distribution service.

Keywords: fault propagation modelling; interconnection power lines; high voltage power lines;
power line fault; transient fault; persistent fault; rapid identification; protection system; fault control
structure; artificial intelligence; neural networks

MSC: 37M05

1. Introduction

Nowadays the electrical network is continuously evolving due to consumers demand,
to increase the deployment of system information technologies and due to the diversity of
available energy resources, facts that directly affect the quality of the electricity distribution
service, respectively, have a direct impact on the energy supplied to large consumers,
regarding quality and amount of delivered energy [1–3]. For this reason, the quality of
distributed electricity is an important concern, and ensuring the quality of delivered elec-
tricity causes the power grid to evolve into a smart grid [4–7]. Power quality is defined and
simplified, by three important aspects: availability, wave quality, and commercial quality.
From the distribution network operator point of view, availability is a very important point
in order to maintain a high level of reliability. For this reason, the detection of a fault is a
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priority for the electric network operator, in order to provide a high level of reliability in
supplying energy to consumers [2].

Monitoring the electrical parameters of the network allows to distinguish between
the normal operating regime and the appearance of a fault or abnormal operation of the
network, whereby they undergo substantial changes such as:

• Increasing current and decreasing phase voltage, and as a consequence the reducing
of the impedance between the measurement point and the fault location;

• Increase or decrease voltage as a result of switching;
• Frequency oscillations;
• Increase temperature of current paths.

Protection and fault detection functions are performed by supervising the deviations
of the system parameters [8–12].

The paper [13] mentions the need to improve the protection of power lines and
analyzes the function of overhead power lines, in front of a fault, from the point of view
of external factor influence on distance protection. In order to develop an intelligent
system for distance protection with adaptive algorithms the work takes into account
changes in climatic factors to increase the protection sensitivity. The work seeks ways to
increase the stability of OPL operation by developing new algorithms for determining fault
detection based not only on measuring operating parameters but also based on external
environmental parameters such as ambient temperature, air humidity, wind speed, and
soil moisture under the studied overhead power line. In case of a fault on the protected
line, data are received from current and voltage transformers. Fault values are compared
with the protection setpoints and the protection is activated, this being the standard mode
of operation described in our manuscript. Compared to our work this proposed algorithm
proves useful in determining the fault location but does not speed up protection timing
resulting in the same exposure to fault values, without the added benefits of using a
control structure for rapid identification of a fault and triggering of the line protection relay.
Today’s relays are predominantly based on phasors, and as such, they encounter a delay
associated with the full cycle observation window required for accurate fault detection,
thus, [14] reviews a number of protection techniques that have the potential to significantly
speed up line protection.

The automatic protection systems of the 110 kV power line, analyzed in this document,
allowed the recording of events that occurred over time, providing the basic knowledge for
fault analysis and a clear view of the event in time. These protection systems are located in
110/20 kV substations, at both ends of the interconnection lines. Instrumentation of the
fault values was carried out using dedicated software, which allowed the connection to
data recorded by the perturbograph of a protection system, namely a digital terminal. The
causes, magnitude, and consequences of the fault on the power network were estimated
using this software.

Distance protection is currently the basic element used in protection systems for
110 kV power lines.

The main advantages of distance protection are:

• Reduced dependence of sensitivity on the operating regime of the network;
• Disconnection of faults with a shorter delay, the closer they occur to the place of

installation of the relay;
• Delimitation of protected areas with sufficient precision.

As a working principle, in the event of a fault, the distance protection measures the
impedance between the installation location and the short circuit location. The distance
module successively compares the measured values with the impedances set on the relay.
The impedances set as the operating parameters of the protection reflect the length of the
protected zones, usually divided into four steps. Impedance is the ratio of the amplitudes
of voltage and current flowing, along the power line [13,14].
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However, conventional distance protection faces several drawbacks that might lead to
maloperation, according to [15], and thus new methods to estimate the distance to the fault
in the presence of infeed from alternative power sources such as solar, wind, and batteries
are proposed. The aim is to improve line protection based on local measurements and
offline calculations, but such work does not use mathematical models or neural network
models to evaluate the nature of the fault and to obtain a faster reaction of the line protection,
as the problem is going to be approached in the current paper, thus the obtained results
indicate just the potential of avoiding maloperation of distance relays in power systems.

One must be able to precisely forecast how various components of the grid, such as
transformers, transmission power lines, cables, substations, etc., will operate to effectively
simulate the behavior of the overall grid. This often indicates that there are two options
available: the first is to have a holistic model that properly explains the observed data,
and the second is to have a physical model of that specific network piece [15,16]. This
work focused on holistic modeling, and to obtain such a model the primary categories
of mathematical approaches include empirical, analytical, numerical, or a mix of them.
Experimental values are described, and then frequently used mathematical equations
are modified to match the experimental data, as is the case with empirical approaches.
Mathematical formulations are utilized in analytical approaches to completely explain
the simulations, but when this is not feasible, numerical estimations are used [17–19].
Tools can be used in the context of model-based systems engineering to be able to control
data by suitable systems so that the processing of these data can be accomplished by
many developers in a distributed development environment [20]. Model-based system
engineering supports a variety of practical modeling techniques including experimental
identification, and deals with the design of complex systems and mostly generates point
solutions. The objectives are to incorporate the outcomes of many development efforts into
a central model of the system [21,22].

Understanding the precise causes of power line failures enables more effective control
of the whole network since the high dependability of power transmission lines is one of the
key factors that ensures network stability over time [23]. Given these details, it is desirable
to model the transmission power lines, which, in addition to offering the chance to confirm
any fault occurrence, offer extra significant advantages. The obtained model is appropriate
for testing the actual likelihood of a transient or persistent fault occurring [24].

Faults are divided according to their nature into transient and persistent faults. The
main difference between the two types of faults presented as case studies is the duration of
the fault or event in the network. Transient faults are cleared by the automatic system in a
very short time, compared to persistent faults that require an intervention for the physical
repair of the network. Transient faults usually involve momentary vegetation contact, bird
or animal contact and are referred to as temporary events, while persistent faults, also
referred to as permanent events, are caused by insulation failure of live conductors, broken
conductors, or some sort of mechanical damage.

Ref. [25] describes the function of a protective relay for fast and reliable transmission
line protection that responds to transient and permanent conditions or transient and
persistent faults. A concept of the dual filter scheme developed based on the principle
of multiple data-window filters, combining voltage and current data from half-cycle and
one-cycle windows to obtain distance element detection and achieve fast tripping times
was also presented. Using mathematical calculations and relay voltage and current phasors
particular to an impedance loop six impedance loops were necessary to detect all faults.
An algorithm that calculates three incremental torques of voltages and currents, between
phases, to determine the fault was required to support the selectivity of tripping due to the
instability of the phasors. However, the gain in time due to the application of the concept
was not specified, only the compared results from using different detection methods
were mentioned.

If one needs to identify the transfer function based on observed values of transient and
persistent faults, that destabilize a known distribution system, an experimentally identified
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model can prove very useful. The fact that all pertinent system data are gathered in a
comprehensive system model makes experimental identification significantly superior to a
document-based method [20].

Therefore, the first goal of this document is to develop a mathematical model that
establishes the occurrence of a fault, with high precision, by analyzing the voltage and
current waves that make up the impedance of the power line, with the purpose of enhancing
the stability of the electrical distribution networks, and in a second term to establish a
procedure that allows for a quicker response regarding fault clearing time in order to
obtain improved triggering properties in protective devices. A graphical comparison of
the developed model’s predictions with the experimental data intends to demonstrate the
model’s correctness.

Other methods of fault clearing involve overcurrent protection with minimum voltage
blocking or low-voltage protection conditioned by overcurrent protection. These methods
do not offer sufficient selective high-speed clearance of faults on high voltage power lines
and therefore are not taken into consideration, as faults must be triggered faster than a
critical fault clearing time or else power line damage might occur, and the system could
lose stability and possibly even blackout [24,25].

Due to actual consumer demand, the use of new smart technologies present in house-
hold electrical appliances, and every industrial process, interruptions in electricity supply
pose significant economic and social impact. Power line protection technology has to suit
this new way of life, power lines being the main arteries of the distribution system and
every short circuit that occurs here impacts the whole system affecting a large number
of consumers.

Speed is one of the most important conditions that must be met by protection systems,
especially those mounted on high voltages, which are complex systems with a wide
coverage area and high powers.

In front of this scenario, it is very important to introduce a new kind of method which
aims to rapidly clear a fault and then create the path to establish a fast network restoration.
There is a need to reduce the time of exposure to the fault effects, by increasing the reaction
speed of the protection systems, providing the necessary selectivity, in order to increase the
continuity and stability of electricity delivered to consumers.

2. Experimental Data

The experimental data are obtained by using the monitoring system of 110 kV OPL
Fântânele-Târnăveni, Romania (Overhead Power Line). During the monitoring, more
events (of fault types) were identified. From these events, two relevant cases of different
types (a transient fault and a persistent fault) were considered. The experimental data
measured during the propagation of these two types of faults were used in order to apply
the proposed modeling techniques. The two types of faults are described in detail in the
next section of the manuscript (Section 3). The obtained experimental data are centralized
in Table 1.

In both fault types presented in Table 1, the dynamic of the VR(t) and IR(t) signals (in
relation to time (t)) was measured. Moreover, the signs of these signals in relation to the
abscissae are shown. The explanations of the time interval [−20; 20] ms are given, also, in
the next section of the manuscript (Section 3) (obviously the negative values of time are not
absolute ones, they being relative to the moment t = 0 ms).
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Table 1. The centralizer of the experimental data.

Time (ms) The Case of the Transient Fault The Case of the Persistent Fault

The Current
Associated to

R phase–IR
(A)

The Voltage
Associated to
R phase–VR

(V)

The Current
Sign

(In Relation
with the

Abscissa)

The Voltage
Sign

(In Relation
with the

Abscissa)

The Current
Associated to

R phase–IR
(A)

The Voltage
Associated to
R phase–VR

(V)

The Current
Sign

(In Relation
with the

Abscissa)

The Voltage
Sign

(In Relation
with the

Abscissa)

−20 2.953 58.63 − − 2.098 53.35 − +
−19 3.326 58.24 − − 2.801 51.23 × +
−18 3.643 58.20 − + 3.885 49.35 + +
−17 3.792 58.12 − + 5.124 48.11 + +
−16 3.815 57.61 × + 6.341 47.63 + +
−15 3.829 56.50 + + 7.370 47.60 + -
−14 4.007 54.82 + + 8.204 47.48 + -
−13 4.504 52.76 + + 8.742 46.81 + −
−12 5.324 50.63 + + 9.027 45.35 + −
−11 6.315 48.89 + + 9.119 43.20 + −
−10 7.362 47.86 + + 9.120 40.37 + −
−9 8.249 37.52 + + 9.144 37.38 × −
−8 8.937 37.52 + − 9.302 34.63 − −
−7 9.388 37.36 + − 9.598 32.73 − −
−6 9.617 36.58 × − 9.990 31.96 − −
−5 9.680 34.95 − − 10.40 31.90 − +
−4 9.676 32.40 − − 10.73 31.76 − +
−3 9.704 28.93 − − 10.95 30.80 − +
−2 9.811 25.22 − − 11.00 28.07 − +
−1 10.02 23.92 − − 11.05 27.73 × +
0 10.23 23.75 − − 11.08 28.18 + +
1 10.41 23.75 − − 11.04 26.98 + +
2 10.54 23.76 − + 10.94 26.86 + +
3 10.64 23.72 − + 10.79 27.75 + +
4 10.69 23.58 + + 10.62 27.68 + +
5 10.69 23.24 + + 10.43 27.63 + +
6 10.63 22.73 + + 10.25 20.62 + −
7 10.50 22.22 + + 10.06 19.63 + −
8 10.28 21.73 + + 9.914 19.65 + −
9 9.999 21.30 + + 9.805 17.66 + −

10 9.639 21.04 + + 9.748 17.60 + −
11 9.303 20.90 + + 9.742 17.67 − −
12 9.001 20.88 + − 9.773 17.66 − −
13 8.770 20.87 + − 9.814 17.68 − −
14 8.628 20.78 + − 9.869 16.69 − −
15 8.576 20.58 × − 9.928 15.69 − ×
16 8.582 20.26 − − 9.984 15.69 − +
17 8.612 20.32 − − 10.03 15.68 − +
18 8.667 20.36 − − 10.05 15.68 − +
19 8.703 20.42 − − 10.05 15.52 − +
20 8.743 20.45 − − 10.06 15.52 × +

3. Mathematical Models for Experimental Response Determination in Voltage and
Current for Transient and Permanent Faults

To accurately determine the experimental response of the propagation of a single-
phase earth fault, several real situations were analyzed, including the transient fault that is
the subject of the case study, which appeared on the 110 kV line.

The case study was carried out for:

• Installation: 110 kV OPL Fântânele-Târnăveni, Romania (overhead power line);
• Event: Transient fault, on phase R, triggered by distance protection, cleared by auto-

matic reclosing.

The oscillogram of events shows the appearance and evolution of the fault, until the
tripping of the power line by the distance protection and is presented in Figure 1. With the
help of the perturbograph, the values sampled every millisecond were analyzed, with the
observation of the single-phase fault propagation tendency every 5 ms to determine the
experimental response of the process in case of the presented event.

In normal operation mode, the amplitude of the voltage signal in Figure 1 is 58.63 V,
corresponding to approximately 110 kV line voltage measured in the primary of the voltage
transformer, an amplitude that decreases progressively during fault propagation, until the
tripping of the line at 120 ms. It then reaches 1.33 V in failure mode. The time of 0 ms
marks the activation of the distance protection, the moment when the fault is detected.
The phenomenon of occurrence of the fault is visible in the time interval [−20; 20] ms, a
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time interval of 40 ms that will be later taken into consideration. Amplitude for the current
signal, in normal operation mode, shown in Figure 1 is 2.95 A, an amplitude that increases
progressively when the fault appears until it stabilizes (in the fault regime) at around 10 A
secondary current, corresponding to 1200 A primary current, a value that endangers the
structure of the power line. The phenomenon that takes place during the appearance of the
fault is visible in a 40 ms time interval [−20; 20] ms, which is relevant for the experimental
response and therefore referred to in the next figures.
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Figure 1. Fault oscillogram on R phase of the 110 kV power line.

In Figure 2 the experimental response for a transient fault is presented, namely the
variation of the effective value of the VR voltage with respect to time VR(t). The exper-
imental values were taken using the ∆t = 1 ms sample and captured the appearance of
the fault.
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The slightly “deformed” shape of the experimental curve is due to the relatively high
value, in the context of the present application, of the experimental data sampling step. In
order to obtain the possibility of applying the identification methods of the mathematical
model that describes the propagation of the fault, it is necessary to approximate, based
on the experimental response the most probable response [26–28]. In this context, the
experimental response is approximated by using a polynomial curve of the 7th degree.
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The relation of the approximating polynomial of the 7th degree is:

PA(x) =
0

∑
i=7

pi·x
i , (1)

where the coefficients are: p7 = −2.367 × 10−8, p6 = 3.5323 × 10−6, p5 = −0.00020297,
p4 = 0.0054602, p3 = −0.062797, p2 = 0.1242, p1 = −0.036693, and p0 = 58.431.

The comparative graph between the experimental response and the response of the
determined polynomial model is presented in Figure 3. The figure shows a faithful super-
position of the two curves, the response of the approximating polynomial model accurately
reproducing the dynamics of the experimental response. Practically, the response of the
approximating polynomial model has the appearance of the filtered experimental response.
This aspect demonstrates the high quality of the identified polynomial model.
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The presence of the inflection point, in the case of the approximating polynomial
model response shown in Figure 3 implies higher-order dynamics for fault propagation.
In order to identify the time constants of the propagation process, the tangent method is
applied based on the approximate polynomial response. Application of the tangent method
to identify the dynamics of fault propagation is presented in Figure 4 [29,30].

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 30 
 

 

The presence of the inflection point, in the case of the approximating polynomial 
model response shown in Figure 3 implies higher-order dynamics for fault propagation. 
In order to identify the time constants of the propagation process, the tangent method is 
applied based on the approximate polynomial response. Application of the tangent 
method to identify the dynamics of fault propagation is presented in Figure 4 [29,30]. 

 
Figure 4. Graphical application of the tangent method using the approximating polynomial model. 

A tangent line is applied at the inflection point i. The intersection of the tangent with the 
time axis parallel that passes through the initial value of the response (yi = 58.63 V) occurs at t1 
= 5.9 ms, and the intersection of the tangent with the time axis parallel that passes through the 
final value (the steady state) of the response (yf = 20.45 V) occurs at t2 = 17.9 ms. 

The mathematical model that describes the defect propagation can be expressed in 
the form of a second-order transfer function (representing the simplest form of a higher-
order model) [31–34]. The input signal that produces the variations of the output signal 
presented in previous figures is considered to be a unitary step (u(t) = 1; U(s) = L{u(t)} = 
1/s) having the physical meaning of the event that triggered the fault. The proportionality 
constant of the process is given by the mathematical expression of this index: K = y − yu ,  (2)

where u0 = 1 represents the variation of the input signal (from the initial value 0 to the 
value associated with the occurrence of the event that triggered the fault, value quantified 
as 1). The result is the value of the proportionality constant of the process K = −38.18 V. 

The sum of the two time constants T1 and T2 of the second-order transfer function, 
representing the mathematical model of the process, is given by: T + T = t − t ,  (3)

resulting in: T + T = 12 ms. 
By expressing the output signal y(t) = V (t), this will be given by the equation: y(t) = �−1{y ∙ U(s) + H(s) ∙ U(s)}, where: H(s) = K(T ∙ s + 1) ∙ (T ∙ s + 1) (4)

The optimal solution for the values of the two time constants of the addressed process is 
examined in the context of considering only non-zero integer values for the two and taking 
into account that T + T = 12 ms. The answers of some of the models obtained by consider-
ing a few of the possible pairs of values for T1 and T2 are depicted in Figure 5. 

0 5 10 15 20 25 30 35 4020

25

30

35

40

45

50

55

60

TIME [ms]

V
R

 [V
] -

 A
PP

R
O

X
IM

A
TE

D

 

 

Approximated polynomial response
i

t2=17.9 ms

t1=5.9 ms
yi

yf

Figure 4. Graphical application of the tangent method using the approximating polynomial model.



Mathematics 2023, 11, 21 8 of 28

A tangent line is applied at the inflection point i. The intersection of the tangent with
the time axis parallel that passes through the initial value of the response (yi = 58.63 V)
occurs at t1 = 5.9 ms, and the intersection of the tangent with the time axis parallel that
passes through the final value (the steady state) of the response (yf = 20.45 V) occurs at
t2 = 17.9 ms.

The mathematical model that describes the defect propagation can be expressed in the
form of a second-order transfer function (representing the simplest form of a higher-order
model) [31–34]. The input signal that produces the variations of the output signal presented
in previous figures is considered to be a unitary step (u(t) = 1; U(s) = L{u(t)} = 1/s) having
the physical meaning of the event that triggered the fault. The proportionality constant of
the process is given by the mathematical expression of this index:

K =
yf − yi

u0
, (2)

where u0 = 1 represents the variation of the input signal (from the initial value 0 to the
value associated with the occurrence of the event that triggered the fault, value quantified
as 1). The result is the value of the proportionality constant of the process K = −38.18 V.

The sum of the two time constants T1 and T2 of the second-order transfer function,
representing the mathematical model of the process, is given by:

T1 + T2 = t2 − t1, (3)

resulting in: T1 + T2 = 12 ms.
By expressing the output signal y(t) = VR(t), this will be given by the equation:

y(t) = L−1{yi·U(s) + H(s)·U(s)}, where:

H(s) =
K

(T1·s + 1)·(T2·s + 1)
(4)

The optimal solution for the values of the two time constants of the addressed process
is examined in the context of considering only non-zero integer values for the two and
taking into account that T1 + T2 = 12 ms. The answers of some of the models obtained by
considering a few of the possible pairs of values for T1 and T2 are depicted in Figure 5.
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From Figure 5, it turns out that the response that most faithfully reproduces the
experimental response of the process is obtained for T1 = T2 = 6 ms. This conclusion results
from the analysis of every possible combination of values of T1 and T2. Consequently, the
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final form of the identified transfer function H(s) based on the relation of the proposed
second-order mathematical model is:

H(s) =
−38.18

(6·s + 1)·(6·s + 1)
=

−38.18
36·s2 + 12·s + 1

(5)

Due to the high accuracy provided by the identified model, its refinement by consid-
ering some rational values for the two time constants of the fault propagation process is
not justified.

Another possibility for identifying the fault propagation process is based on the use
of Gaussian models. The relation of the Gaussian function, usable for identifying the
dynamics of fault propagation, is:

yG(t) = yi + K·
(

1− e−
t2

T2

)
(6)

where T is the time constant of the process. Moreover, yG(t) represents the notation of the
output signal VR(t) in the variant of using the Gaussian model and K and yi have the same
meaning and value as in the case of using the second-order model. An iterative procedure
is applied to determine the time constant T of the defect propagation process.

The step responses of the models obtained by considering different values for the time
constant T are presented in Figure 6. The values of the time constant used to determine
the curves in Figure 6 were: T = 13.035 ms (T2 = 170 [ms]2); T = 13.784 ms (T2 = 190 [ms]2);
T = 14.491 ms (T2 = 210 [ms]2). The three determined models generate similar performances,
of which the mathematical model in which T2 = 190 [ms]2 is considered to generate the
highest accuracy. Since the performance improvement generated by the Gaussian model
when T2 varies around 190 [ms]2 is not significant, refining the model by fine-tuning T2 is
not justified.
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Figure 6. Different responses of the proposed Gaussian model.

An important stage of the research consists in comparing the performances generated
by the two types of mathematical models identified. In this context, in Figure 7, the
comparative graph is presented between the experimental response and the responses
of the two types of mathematical models proposed in the variants that generated the
best performances, respectively, the variant in which T1 = T2 = 6 ms in the case of the
second-order mathematical model and the variant in which T2 = 190 [ms]2 in the case of
the Gaussian mathematical model.
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Figure 7. Comparison between the two types of proposed models.

From Figure 7, it follows that the proposed Gaussian mathematical model ensures a
higher accuracy than the mathematical model of the second order, the related response
being closer to the dynamics of the experimental response.

Another important problem is represented by the need for mathematical modeling of
the intensity of the electric current IR(t) associated with phase R. The dynamics of the IR(t)
signal, obtained experimentally, are presented in Figure 8.
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Figure 8. Dynamics of the IR(t) signal.

As in the case of VR(t) voltage, the experimental response is approximated by using a
polynomial curve of the 4th degree. The equation of the approximating polynomial of the
4th degree is as follows:

PA(x) =
0

∑
i=4

pi·x
i, (7)

where the coefficients are: p4 = 4.033 × 10−5, p3 = −0.0031575, p2 = 0.06485, p1 = 0.028559
and p0 = 2.9577.

The comparative graph between the experimental response IR(t) and the response of
the approximating polynomial model is presented in Figure 9.
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Figure 9. Comparative graph between the experimental response IR(t) and the response of the
approximate polynomial model.

Results presented in Figure 9 show that the dynamics of the approximate polynomial
response follow with high accuracy the dynamics of the experimental response, an aspect
that demonstrates a good quality of the performed identification. Moreover, the data from
Figures 8 and 9 result from the fact that the dynamics of the IR(t) signal in the regime of the
appearance of the defect show overshoot.

The mathematical modeling of the dynamics of the IR(t) signal in the fault propagation
regime is performed using the same principle as in the case of the voltage VR(t), with the
difference that H(s) takes the form [30,31]:

H(s) =
ω2

n
s2 + 2·ζ·ωn·s +ω2

n
, (8)

where ζ represents the damping factor, andωn represents the natural pulsation.
The following experimental values (associated with the experimental response) are

considered: the initial value of the experimental response −y0 = 2.953 A; the maximum
value of the experimental response −ymax = 10.69 A; the steady state value of the experi-
mental response −yst = 8.66 A. Using these experimental values, the overshoot of the IR(t)
signal can be computed, using the mathematical expression:

σ =

(
ymax − y0

)
−
(
yst − y0

)(
yst − y0

) =
yst − yst
yst − y0

= 0.3558 . (9)

From (9), it results that the overregulation expressed in percentage is equal to 35.58%.
Knowing the value of the overshoot, the damping factor can be computed using
the expression:

ζ =

√√√√ (ln(σ))2

π2 + (ln(σ))2 = 0.3125 . (10)

Analyzing the experimental data, it follows that the response time of the IR(t) signal
in the fault propagation regime is approximately tr = 80 ms. In this context, the following
expression can be written:

tr =
4

3 ·ωn
, (11)

from which the initial value of the natural pulse can be deduced:

ωn =
4
3 ·tr

= 0.16
1

ms
= 0.0255

rad
ms

= 25.5
rad

s
. (12)



Mathematics 2023, 11, 21 12 of 28

Moreover, to obtain a slightly higher precision, the value of the natural pulsation
obtained in relation (12) was slightly adjusted, its final value identified being:

ωn = 0.1508
1

ms
. (13)

In conclusion, the transfer function representing the mathematical model of the
fault propagation phenomenon associated with the IR(t) signal, can be extracted from the
Equation (8) by specifying the structure parameters of the initial transfer function:

H(s) =
0.0227

s2 + 0.0943·s + 0.0227
. (14)

In Figure 10, the comparative graph is presented between the experimental response,
respectively, the approximating polynomial model response and the proposed second-order
mathematical model response, related to the dynamics of the IR(t) signal. Figure 10 presents
the validity of the mathematical model proposed in relation (14), where the dynamics of its
response follow with high accuracy the dynamics of the other two responses.
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Figure 10. Comparative graph between the experimental response IR(t), the approximate polynomial
model response, and the mathematical model of the second-order response.

The advantage of the second-order model proposed in relation to the polynomial
model is its generality in the sense that it retains its validity outside the considered time
domain. The approximating polynomial model is valid only in the considered time domain
and is useful for the application of identification procedures.

The second case study was carried out for:

• Installation: 110 kV OPL Fântânele-Târnăveni, Romania;
• Event: Persistent fault, broken line conductor, on phase R, triggered by distance

protection, automatic reclosing failed.

By analyzing the fault values and the mode of operation of the protection, we identified
the particularities of the event caused by the breaking of the conductor, a serious defect
that led to the unavailability of the line. The oscillogram of the event is shown in Figure 11.
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Figure 11. The oscillogram of the monitored parameters when the fault occurs.

In Figure 11, the oscillogram of the event presents the appearance of the fault. In
normal operation, t = −150 ms, 150 ms before the fault the recorded currents and voltages
are of normal values, on all three phases referred to as R, S, T, there is virtually no homopolar
current (IH) meaning there is no earth fault. At the point marked with 0 ms, the fault is
recorded with the values presented in the right column of the oscillogram, at the moment
t = 0 ms. At the moment of the appearance of the fault on the R phase, we found a dangerous
increase in the current recorded on the R phase (IR) and a sharp decrease in the UR voltage,
which tends to zero, as the fault progresses. Healthy phases S and T experience increases in
currents and voltages a fact that constitutes an additional danger for the integrity of the
installations and consumers. The break of the active conductor and its fall to the ground
causes the appearance of the homopolar current and the voltage (IH and UH) recorded
with high values, at the time the fault is detected. The line circuit breaker is closed, a
fact marked by the red line next to the INTR_CLO row and disconnects the line at time
t = 130 ms, a fact marked with the INTR_OPE entry, thus further damage is stopped, by
triggering the line through the distance protection.

In this case, the fault values are more pronounced than in the case of the transient
defect presented previously.

The phenomenon of the appearance of the fault, on phase R, is also visible, here in a
40 ms time interval which will be taken into account below.

The experimental response for a persistent fault is shown in Figure 12, respectively, the
variation of the effective value of the VR voltage (UR on the oscillogram) in relation to time
VR(t). Identical to the previous case of the transient fault presented earlier, the experimental
values were taken using the sample of ∆t = 1 ms and captured the appearance of the fault.
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Figure 12. Experimental time response (persistent fault).

The mathematical model determined for this event has the same form as in the
previous case, with the only difference that the transfer function is of order III, having
the structure:

H(s) =
K

(T3·s + 1)3 , (15)

where T3 is the time constant of the fault propagation phenomenon. The proportionality
constant K was determined using the relation (2), but using the experimental data related
to the current case (the resulting value being K = −37.83 V), and the time constant T3
was determined by applying an iterative procedure to minimize the quality indicator
(mean square error) between the experimental response and the response of the proposed
mathematical model (the resulting value being T3 = 5.15 ms).

By applying the experimental identification procedure, the transfer function presented
in the following equation was obtained:

H(s) =
−37.83

(5.15·s + 1)3 =
−37.83

136.6·s3 + 79.57·s2 + 15.45·s + 1
. (16)

The comparative graph between the experimental response and the response of the
proposed third-order model, presented in Figure 13, demonstrates a high quality of identi-
fication (the determined curve related to the response of the mathematical model follows
the dynamics of the experimental curve with high accuracy).

Same as before, in the case addressed, the Gaussian mathematical model that describes
the defect propagation phenomenon was identified. The Gaussian mathematical model
preserves the structure presented in the previous case, the only difference being the re-
identification of the structure parameters based on the new experimental data related to
the experimental curve presented in Figure 12. In this context, the proportionality constant
K has the same meaning and value as in the case of relation (16), and the identified value
for the time constant of the model is TG = 17.32 ms (TG

2 = 300 [ms]2).
The comparative graph between the experimental response and the response of the

proposed Gaussian model is presented in Figure 14, the conclusion regarding the quality of
the identification being the same as that deduced in the case of Figure 13.
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Figure 13. Comparative graph between the experimental response and the response of the third-
order model.
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Figure 14. Comparative graph between the experimental response and the response of the
Gaussian model.

In the following figure, Figure 15, the comparative graph between the experimental
response and the responses of the two types of determined mathematical models that
describe the propagation of the fault occurring phenomenon (the third-order mathematical
model, respectively, the Gaussian mathematical model) is presented.
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By analyzing Figure 15, the conclusion is that the two proposed mathematical models
present approximately the same degree of accuracy.

For the addressed case, the dynamics of the IR(t) experimentally obtained signal is
presented in Figure 16.

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 30 
 

 

Figure 15. Comparative graph between the experimental response and the responses of the two 
identified mathematical models. 

By analyzing Figure 15, the conclusion is that the two proposed mathematical models 
present approximately the same degree of accuracy. 

For the addressed case, the dynamics of the IR(t) experimentally obtained signal is 
presented in Figure 16. 

 
Figure 16. Dynamics of the IR(t) signal (experimentally obtained). 

Keeping the same structure of the mathematical model as in the previous case (the 
case of the mathematical modeling of the intensity of the electric current IR(t) associated 
with the phase R) and applying a similar identification procedure, a new form of the trans-
fer function H(s) was determined, presented in (17): H(s) = 0.04545s + 0.2345 ∙ s + 0.04545. (17)

The mathematical expression of the approximating polynomial that approximates the 
curve in Figure 16 is identical to the one in (7), and the coefficients determined for the current 
case are: p4 = −5.82 ∙ 10−6, p3 = 0.0010599, p2 = −0.058861, p1 = 1.2345, respectively, p0 = 2.0231. 

The experimental response in relation to the approximating polynomial model re-
sponse and the proposed second-order mathematical model response, related to the dy-
namics of the IR(t) signal are presented in Figure 17 through a comparative graph. Figure 
17 certifies the validity of the mathematical model proposed in relation (17) since the dynamics 
of its response follows the dynamics of the other two responses with high accuracy. 

0 5 10 15 20 25 30 35 40
TIME [ms]

2

3

4

5

6

7

8

9

10

11

12
I R

(t)
 [A

]
Experimental data (experimental time response)

Figure 16. Dynamics of the IR(t) signal (experimentally obtained).

Keeping the same structure of the mathematical model as in the previous case (the case
of the mathematical modeling of the intensity of the electric current IR(t) associated with
the phase R) and applying a similar identification procedure, a new form of the transfer
function H(s) was determined, presented in (17):

H(s) =
0.04545

s2 + 0.2345·s + 0.04545
. (17)

The mathematical expression of the approximating polynomial that approximates
the curve in Figure 16 is identical to the one in (7), and the coefficients determined for
the current case are: p4 = −5.82 × 10−6, p3 = 0.0010599, p2 = −0.058861, p1 = 1.2345,
respectively, p0 = 2.0231.

The experimental response in relation to the approximating polynomial model re-
sponse and the proposed second-order mathematical model response, related to the dy-
namics of the IR(t) signal are presented in Figure 17 through a comparative graph. Figure 17
certifies the validity of the mathematical model proposed in relation (17) since the dynamics
of its response follows the dynamics of the other two responses with high accuracy.
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Mathematics 2023, 11, 21 17 of 28

4. Structure for Rapid Fault Identification and Protection Relay Triggering

The structure of the automatic control structure proposed for the rapid identification of
the fault occurrence and for triggering the protection relay [26,32], is presented in Figure 18.

Mathematics 2022, 10, x FOR PEER REVIEW 18 of 30 
 

 

 
Figure 17. Comparative graph between the experimental response IR(t), the response of the approx-
imate polynomial model and the response of the mathematical model of the second order. 

4. Structure for Rapid Fault Identification and Protection Relay Triggering 
The structure of the automatic control structure proposed for the rapid identification of 

the fault occurrence and for triggering the protection relay [26,32], is presented in Figure 18. 

 
Figure 18. Automatic structure for rapid identification of fault occurrence and protection relay trig-
gering. 

Figure 18 “Electric Power Distribution Process” refers to the power distribution lines 
acknowledged as the case study of this analysis. “Measuring equipment” is used to meas-
ure signals of interest for various applications. In the present approach, the measured sig-
nals of interest are the voltage VR(t) and the current IR(t).  

The actual mechanism for rapid identification of the defect and command of the pro-
tection relay contains the following elements in its structure: “Signal Processing and Cal-
culation Element”, “Reference Voltage Generator”, “Decision Element”, respectively, an 
Adder block that performs the subtraction of two derivatives of voltages in relation to 
time (VDRV(t) and VREF(t)) since the voltage derived in relation to time VREF(t) is applied to 
its input with the minus sign. 

Either VR(t) or IR(t) can be considered as the main signal processed by the fast fault 
identification algorithm. This aspect is due to the fact that the two signals show strong 

0 5 10 15 20 25 30 35 40
TIME [ms]

2

3

4

5

6

7

8

9

10

11

I R
(t)

 [A
]

Experimental time response
Approximated polynomial model time response
Proposed model time response

Electric Power
Distribution Process

Measuring
equipment

Protection
Relay

Protection trigger signal

Signal Processing
and

Calculation Element

VR(t)

IR(t)

Reference Voltage
Generator

VDRV(t)

VREF(t)

+

-
Decision ElementVD(t)

Relay command
signal

Mechanism for identifying the fault and
commanding the protection relay

Signals of
interest
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Figure 18 “Electric Power Distribution Process” refers to the power distribution lines
acknowledged as the case study of this analysis. “Measuring equipment” is used to measure
signals of interest for various applications. In the present approach, the measured signals
of interest are the voltage VR(t) and the current IR(t).

The actual mechanism for rapid identification of the defect and command of the
protection relay contains the following elements in its structure: “Signal Processing and
Calculation Element”, “Reference Voltage Generator”, “Decision Element”, respectively, an
Adder block that performs the subtraction of two derivatives of voltages in relation to time
(VDRV(t) and VREF(t)) since the voltage derived in relation to time VREF(t) is applied to its
input with the minus sign.

Either VR(t) or IR(t) can be considered as the main signal processed by the fast fault
identification algorithm. This aspect is due to the fact that the two signals show strong
variations in the fault propagation regime, respectively, the VR(t) signal shows a strong
and monotonous decrease until stabilization, and the IR(t) signal shows a strong and
monotonous increase until stabilization. If one of the two signals is chosen as the main
signal, the other signal is used in the quick fault identification procedure as a support signal.
In the proposed procedure, VR(t) is chosen as the main signal. The fact that the dynamics
of the two signals VR(t) and IR(t) are used in the rapid fault identification procedure
also represents the justification that they were mathematically modeled in the previously
presented sections.

The procedure for quickly identifying the occurrence of the fault, respectively, for
controlling the protection relay, follows the next steps:

1. The first step defines the effective working value of the voltage VR(t), respectively, the
effective working value of the current IR(t);

2. Based on the mathematical models determined by using the three sets of experimental
data associated with the three experimental procedures carried out, the time deriva-
tives of the VR(t) signal are computed (distinct for the three mentioned cases; using
Euler’s approximation);

3. It determines the minimum values of the three derivatives in relation to the corre-
sponding time of the VR(t) signal, derivatives computed in step 2; the two identified
minimum values are marked with V1, V2;
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4. The arithmetical mean of the V1, V2 values previously determined in step 3 is com-
puted, resulting in a mean value (Vmed);

5. The VR(t) signal values and the IR(t) signal values are monitored online;
6. If there are two consecutive increases in the error between the effective working value

and the instantaneous effective value of VR(t), and at the same time two consecutive
decreases in the error between the effective working value and the instantaneous
effective value of IR(t), the derivative of the VR(t) signal with respect to time is
computed using Euler’s approximation and its minimum value is determined;

7. If the minimum value of the derivative with respect to the time of the signal VR(t), com-
puted in step 6 (value associated with the change in the monotony of the derivative)
is less than 1/2 of the arithmetic mean of the values V1 and V2, then the occurrence
of a fault is detected (the reference value for the mentioned comparison depends on
the Hmed computed in step 4, and the weighting coefficient (in this case 1/2) can be
modified according to the particularities and properties of the considered electricity
distribution system.

It is very important to mention that steps 1 to 4 are applied only once for each com-
missioning of the rapid fault identification mechanism. Moreover, steps 5 and 6 apply for
the entire operation of the electricity distribution process, and step 7 only applies if the
constraint mentioned in step 6 is met. If step 7 is applied, and the constraint at this step is
satisfied, basically the fault is detected, and the protection relay will be triggered. If the
constraint from this step is not satisfied, it is considered that the variations in the VR(t) and
IR(t) signals detected in step 6 are not due to a fault, but to other less significant causes that
do not influence the proper functioning of the system. The procedure, in this case, is to
continue applying steps 5 and 6 until step 7 is reached again.

It is also very important to mention that, in the case of the rapid fault identification
mechanism, when referring to the VR(t) and IR(t) signals, the dynamics of their actual
values are considered, not the actual sinusoidal dynamics. The parameters mentioned in
step 1 are defined within the “Signal processing and calculation element”. Step 2 allows
the calculation of the time derivative of the VR(t) signal in the three experimental cases. In
this context, the time derivative of the signal VR(t), in the general case, is computed using
Euler’s method by applying the following expression:

VDRV(ti) ≈
1

Th
·[VR(ti + Th)−VR(ti)], (18)

where VDRV(ti) represents the time derivative of the signal VR(t), (d(VR (t))/dt = VDRV (t)),
at the moment ti belonging to the time domain related to the operation of the electri-
cal energy distribution process and Th represents the approximation step of the deriva-
tive (constant step). For a precise representation of the VDRV(t) derivative, a very small
approximation step (compared to ∆t) was chosen, namely Th = ∆t/10 = 0.1 ms. Al-
though the approximation step is smaller than the experimental data sampling period, the
derivative VDRV(t) can be computed by using the mathematical models determined in the
previous sections.

Using the Gaussian mathematical model and expression (18), it is possible to calculate
the first-order derivative of the VR(t) signal in relation to time, its dynamics (also in relation
to time) being presented in Figure 19 for the case of the transient fault (the first case study),
respectively, in Figure 20 for the case of the persistent fault (the second case study).

Due to the very close accuracy in terms of value (obtained in the presented two cases)
generated by the Gaussian models in relation to those that use transfer functions, in the case
of using the last mentioned for calculating the derivative values, the results obtained are
very close (without significantly modifying the forms of variation, respectively, derivative
values with respect to time).
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Figure 19. Dynamics of the first-order derivative of the VR(t) signal with respect to time in case of a
transient fault.
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persistent fault.

Using the curves from Figures 19 and 20, step 3 of the quick fault identification
procedure can be applied, the minimum values of the two derivations in relation to the
time of the VR(t) signal, being: V1 = −2.5117 V/s (obtained at t1 = 9.2 ms), respectively,
V2 = −1.8734 V/s (obtained at t2 = 12.1 ms).

The fact that the mathematical models proposed for rendering the fault propagation
phenomenon allowed the use of the approximation step Th = ∆t/10 = 0.1 ms, makes
for the high accuracy of the calculation of the derivatives previously presented. If the
approximation step used would have equal ∆t, the accuracy of the representation would
have been much lower since the density of samples used would have been 10 times lower.
Also in this context, the direct use of experimental data regarding the calculation of the
derivative would have generated even weaker results based on the same explanation as the
previous one, but also due to the distorted aspect of the experimental curves. This aspect is
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due both to the large sampling step of the experimental data, as well as of the measurement
errors, respectively, of the fact that the effect of the defect propagates.

In Figures 19 and 20, a scaling with 103 is shown on the ordinate since the approxima-
tion step Th is expressed in ms (thereby making the conversion in seconds). Knowing the
values of V1 and V2, we can proceed to step 4 by calculating the arithmetic mean of the two
values, which is: Vmed = −2.19255 V/s.

Step 6 of the fast fault detection algorithm is implemented by the “Signal Processing
and Computing Element”. The signal processing component manages the detection process,
and it is responsible for the detection of two consecutive increases in the value of the error
between the working voltage (defined in step 1) and the instantaneous effective one VR(t),
at the same time as the detection of two consecutive decreases in the error between the
working value of the current (also defined in step 1) and the instantaneous effective value
of IR(t).

Strictly speaking, this detection is carried out in the case of both signals by calculating
the differences between the current value and the previous value, at each sampling period
(sampling step of the experimental data from the measuring equipment). If the two
conditions are simultaneously satisfied, we will proceed to the stage of calculating the
derivative of the first order with respect to the time of the signal VR(t) by implementing the
Equation (18) in which Th = ∆t = 1 ms, meaning the experimental data sampling step (used
in this case for the calculation of the derivative). Increasing the approximation step implies
a decrease in the accuracy of the representation of the derivative, but this aspect does not
have a significant overall impact on the algorithm for rapid identification of the fault.

The “Reference Voltage Generator” is used in the implementation of step 7 generating
the reference signal VREF(t) (having also the meaning of voltage derived with respect to
time), given by the expression:

VREF(t) = c·Vmed, (19)

where c is a constant defined for the purpose of controlling the method of rapid identifica-
tion of the fault. For this application, the value c = 1/2 has been set, which can be modified
depending on the type of application or the modification in the operating conditions of the
electricity distribution process. In relation (19), the VREF signal is represented as a function
of time (t) precisely to capture the possibility of changing the value of the parameter c in
relation to time, depending on the new operating conditions.

Using the Adder in Figure 18, the difference between the signals VDRV(t) and VREF(t)
is realized, resulting in the signal VD(t):

VD(t) = VDRV(t)−VREF(t). (20)

The VD(t) signal (having the meaning of voltage derived in relation to time) actually
represents the signal directly analyzable by the “Decision Element” in terms of generating
the final decision regarding whether or not the event occurred is a fault. In this context,
the algorithm implemented by the “Decision Element” analyzes if the VD(t) signal drops
to negative values and if it shows a monotony change. If both mentioned constraints are
satisfied, it follows that the minimum value of the derivative with respect to the time of the
signal VR(t) is less than 1/2 of the arithmetic mean of the values V1, V2 and according to
step 7 corresponds with the appearance of a fault. If the VD(t) signal does not decrease to
negative values, the event that occurred is not classified as a fault.

If the “Decision Element” detects a fault, it generates a command pulse to trigger
(engage) the protection relay which in turn trips the circuit breaker of the power line
disconnecting the fault from the system. The pulse may also trigger a protection system
terminal, which in turn takes out of operation the portion of the process affected by the
appearance of the fault.

The defect identification limit is controlled by the value of VREF(t). In the case of
this application, considering as a standard the two experimental situations of failure, it is
considered that any event that generates a decrease in the VDRV(t) signal below the value
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of Vmed/2, respectively, involves a change in its monotony below the mentioned value,
falls into the category fault. Obviously, this limit can be controlled by changing the control
parameter c.

The notion of rapid fault identification refers to the short detection time of its occur-
rence. Analyzing Figures 19 and 20, the average time of appearance of the signal VR(t)
minimum derivative in relation to time is tmed = (t1 + t2)/2 = 10.65 ms. In this context, even
if in the case of the fault detection mechanism shown in Figure 19, the approximation step
of the derivative is Th = ∆t = 1 ms, the highest probability is that the fault is identified after
10 ms from the application of step 7, the application that starts 2 ms after the unexpected
voltage drop VR(t), respectively, the increase in current IR(t). In conclusion, the highest
probability is that the defect will be identified by the proposed solution after 11–12 ms from
its appearance. This performance creates the possibility of a very fast reaction of the line
protection systems, an aspect that confers the advantage of avoiding significant damage.

Next, the operation of the mechanism for rapid fault detection, respectively, for
triggering the protection relay, which in turn trips the line circuit breaker, is presented
in Figure 21. This figure shows the phenomenon of early fault appearance and detection
through the dynamics of the VDRV(t) signal.
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The initial moment considered in Figure 21 is the moment from which the calculation
of the VDRV(t) signal begins with step 6 for the rapid fault identification algorithm (this
initial moment is located in time 2 ms after the detection of the decrease in the voltage
VR(t), respectively, the increase in the current IR(t)). The red circle on the left of the figure
highlights the moment after which the VDRV(t) signal drops below the imposed limit
Vmed/2. Moreover, the red circle on the blue curve located in the time interval 8–9 ms
highlights the reaching of the minimum point of the VDRV(t) signal and the change of its
monotony. Consequently, the event that occurred is classified as a fault, and at t = 9 ms
(because Th = ∆t = 1 ms) the control signal that activates the relay is generated as a spike
impulse (this moment is highlighted with the right vertical interrupted). The pulse has an
amplitude equal to the value 1, highlighting the fact that the control signal that involves
the relay’s switching on is active (takes the logical value 1). This value is a logical one, not
an absolute one.

Figure 22 shows the phenomenon of detecting the appearance of a fault through the
dynamics of the VD(t) signal.
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Figure 22. Highlighting the detection of the fault through the dynamics of the VD(t) signal.

The signal difference in Figure 22 compared to the case depicted in Figure 21 consists
in the fact that the purple circle on the left of the figure shows the decrease in the VD(t)
signal below the value of 0 V/s (practically becoming a negative signal). The rest of the
explanations and resulting conclusions are similar to the case of Figure 21.

The values on the ordinates of Figures 21 and 22 are no longer scaled by 103 since
they are normalized to obtain the possibility of representing on the same graph all the
signals of interest (these having significantly different ranges of variations). The minimum
points of the voltage derivatives in relation to time described in the previously presented
simulations also represent the moment when the inflection point appears in the dynamics
of the corresponding voltages.

Data presented in Figure 21, respectively, Figure 22, state that the fault was detected
after 11 ms from its appearance, in both cases, (2 ms elapsed time due to the detection of
the variation of the VR(t) and IR(t) signals, respectively, 9 ms due to the identification of the
monotony change of the VDRV(t) signals, respectively, VD(t).

The next figure, Figure 23, highlights the phenomenon of detecting the occurrence of
an event that is not classified as a fault.
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Figure 23. Highlighting the detection of an event that is not classified as a fault.

From Figure 23, it results that the VD(t) signal does not fall below the value of 0 V/s
(basically it does not go negative). Thus, even if the change in monotony occurs (highlighted
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by the use of the red circle), the event is not classified as a defect, but as a quick disturbance
with an insignificant effect that does not significantly influence the smooth operation of the
electricity distribution process.

5. Viability of Using Artificial Intelligence Techniques in Fault Identifying Applications

Another type of approach applicable in the modeling domain of the fault propagation
effects, respectively, in the domain of fault identification, is the usage of artificial intelligence
techniques. In this context, mathematical models for the fault propagation effect, based on
neural networks, are proposed. In order to prove the efficiency of using neural networks,
the case of the transient fault is considered.

The two neural models exemplified in this section are used for the approximation
of the VR(t), respectively, IR(t) signals. The general structure of the two neural models
(represented under the “black-box” form) is presented in Figure 24.
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Figure 24. The general structure of the two neural models (represented under the “black-box” form).

The input signal in the two neural models is the time [0; 40] ms, with the associated
step ∆t = 1 ms, resulting in 41 samples. Moreover, the output signal from the two neural
models is the approximated signal (AS) which can be VR(t) (in the case of the voltage
dynamics approximation during the fault propagation) or IR(t) (in the case of the current
dynamics approximation during the fault propagation). For training the two neural models,
the experimental data presented in Table 1, columns 2 and 3, are used (the data from
column 2 for the current dynamics approximation and the data from column 3 for the
voltage dynamics approximation). For modeling the two mentioned signals the used
neural model is a fully connected feed-forward neural network (FCFFNN). In both cases,
the neurons from the hidden layer are nonlinear ones, having bipolar sigmoid (hyperbolic
tangent) transfer functions and the output neuron (in both cases, the output layer contains
only one neuron) is a linear one (having linear activation function). For training, in both
cases, the Levenberg–Marquardt learning algorithm is used and the maximum number of
training epochs is set to 200. Moreover, in the case of the voltage dynamics approximation,
the target mean square error is set to be 0.7 V, respectively, in the case of the current
dynamics approximation, the target mean square error (MSE) is set to be 0.1 A (the target
error is referring to the training stop condition). In the case when AS = VR(t), the hidden
layer contains 14 neurons in its structure and the target MSE is obtained after 142 training
epochs. Moreover, in the case when AS = IR(t), the hidden layer contains 10 neurons in its
structure, and the target MSE is obtained after 77 training epochs. In both cases, the output
signal is given by:

AS(t) = WHL·hp(Wi·t + BHL) + BO. (21)

where Wi represents the input weights vector (which is a column vector containing n elements
(where n is the number of the neurons of the hidden layer; n = 14 when AS = VR(t) and n = 10
when AS = IR(t)), BHL represents the vector which contains the bias values of the neurons from
the hidden layer (BHL is a column vector containing n elements; n is the number of the neurons
of the hidden layer, more exactly n = 14 when AS = VR(t) and n = 10 when AS = IR(t)), hp is the
hyperbolic tangent function (it is applied to all elements of the (Wi·t + BHL) column vector,
WHL is the hidden layer weights vector (which is a line vector containing n elements (where
n is the number of the neurons of the hidden layer; n = 14 when AS = VR(t) and n = 10 when
AS = IR(t)), respectively, BO is the bias value of the output neuron (BO contains only one
element due to the fact that the output layer contains only one neuron). Obviously, after
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training, all the weights and bias values of the presented vectors are obtained as solutions,
but these solutions are different from the case when AS = VR(t) to the case when AS = IR(t).

In Figure 25, the comparative graph between the VR(t) experimental time response
and the response generated by the proposed neural model is presented. The obtained
MSE value is MSE1 = 0.6804 V, which is more than 5 times lower compared with the MSE
obtained by using the other proposed models. Moreover, in Figure 26, the comparative
graph between the IR(t) experimental time response and the response generated by the
proposed neural model is presented. The obtained MSE value is MSE2 = 0.0898 A, which is
more than 10 times lower compared with the MSE obtained by using the other proposed
models. The high accuracy generated by the proposed neural solutions is, also, visible in
Figures 25 and 26 through a high-grade superposition of the figured curves.
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Figure 25. The comparative graph between the VR(t) experimental time response and the response
generated by the proposed neural model.
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Figure 26. The comparative graph between the IR(t) experimental time response and the response
generated by the proposed neural model.

In the case of the persistent fault, similar results, referring to the performances regard-
ing the accuracy, are obtained.

Consequently, the efficiency of artificial intelligence techniques in the case of fault
management applications is proven.
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In the practical usage, for making the comparison between the real evolutions of the
two approached signals and the responses of the corresponding two neural networks, the
two neural models are initialized by applying at their input the first two time values 0 ms
and 1 ms (in order two reject the disturbance generated by analyzing the existence of two
consecutive monotonous variations of the output signal—decreasing variation in the case
of voltage and increasing variation in the case of current). Moreover, in practical usage,
other types of approximations can be made by using neural networks, for example, the
signals derivatives approximation. On the other hand, neural networks can be used for
implementing classification operations. If a more complex form of FCFFNN is used (for
example containing more neurons in the hidden layer or containing more hidden layers),
both AS signals (VR(t) and IR(t)) can be generated by it (in this case, the usage of two
different neural networks is not more necessary). In conclusion, the entire solution for
fault propagation modeling and fault identification can be implemented using artificial
intelligence techniques based on neural networks, an aspect which represents a future
research direction of the presented research.

Neural network usage has two disadvantages: firstly, the neural networks have to be
trained, implying the necessity of a consistent experience of the operators; secondly, the
training of the neural networks implies higher computational resources than the majority
of other techniques.

6. Conclusions

Fault detection and quick response characterize high-efficiency and quality distribu-
tion networks. To achieve such properties, this paper proposes fault detection to be based
on mathematical models and process signal modeling, techniques that allow the detection
of faults in real time.

In order to identify the mathematical model that describes the propagation of the fault,
it is necessary to obtain, based on the experimental response in voltage or current, the most
probable response. In this context, the experimental responses of transient or persistent
faults were approximated using three methods: with the help of a polynomial curve of the
7th degree, with a model described by a second-order or third-order transfer function and
a Gaussian model. The graphs of the most probable answers obtained with the help of
the three methods were compared with each other for the two types of encountered faults,
transient or persistent.

The proposed Gaussian model, even if it generates better performances than the
proposed second-order model in the case of VR(t) signal dynamics during a fault prop-
agation phenomenon, it is limited in performance in comparison to the usage of neural
models. Moreover, the Gaussian models are consistently limited in comparison with the
other two mentioned types of models in modeling the dynamics of IR(t) signal during a
fault propagation phenomenon. The third important limitation of the Gaussian model in
comparison to the second-order model is the fact that it does not present an input signal in
its corresponding equation (the U(s) signal is absent). This aspect implies a lower flexibility
in using the Gaussian models in future event-driven applications.

The mathematical models obtained allowed the design of a structure for rapid identifi-
cation of the occurrence of the fault and triggering of the protection relay. If two consecutive
increases in the error between the effective working value and the instantaneous effective
value of the voltage are observed and at the same time two consecutive decreases in the
error between the effective working value and the instantaneous effective value of the
current are present, the derivative of the voltage signal with respect to time is computed
using Euler’s approximation and its minimum value is determined, which represents the
novelty aspect of the paper. In conclusion, the highest probability is that the defect will be
identified by the proposed solution after 11–12 ms from its initial appearance and 10 ms
earlier than the standard operating version, emphasizing the benefits of using our devel-
oped control structure for rapid identification of a fault and triggering of the line protection
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relay. These values make it possible to identify the type of defect (transient/temporary or
persistent/permanent) from early stages, also illustrated in Figure 27.
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In standard operation mode, the distance protection triggers either to increase the
current or, more often, to decrease the impedance, which is measured by monitoring both
voltage and current. These are preset, non-adaptive values, that have to be higher than
the minimum fault values to make up for voltage drops and overloads in order to ensure
selectivity. Protection timing ensures an actuation in time samples for the selectivity of
the triggers to which a directing element also contributes. The execution of the tripping
command is ensured by the triggering of the protection relay, conditioned by blocking and
automation systems. The operation of distance protection is greatly improved by using
mathematical models since it turns into an adaptive protection, no longer dependent on
strict, preset values, which allows for faster identification of the appearance of a fault,
without jeopardizing its selectivity as shown above.

The proposed solution for rapid fault detection meets all the important requirements
needed for a high-performance automatic protection system, namely: safety in operation,
speed, selectivity, and sensitivity. Moreover, our solution does not require complex solu-
tions in order to be implemented. The use of the proposed structure creates the possibility
of sensitizing the protection for an improved time response, highlighted in Figure 27,
resulting in reduced exposure of installations to high fault currents, avoidance of damage
to power lines at the fault location, and avoidance of additional interruptions in the elec-
tricity distribution system, due to the avoidance of fault generalization, particularly high
short-circuit currents and healthy phase overvoltages.

In conclusion, the fault is detected in the early stage of its manifestation, using the
proposed procedure for rapid identification of the appearance of the fault based on mathe-
matical models, developed in this manuscript, and the notification of the defect coincides
with the start of the protection and takes place after 11 ms, from the start of the proce-
dure, with the registration of the first consecutive manifestations of the defect, when it is
barely perceptible, and 10 ms earlier than the standard operating version, a fact also illus-
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trated in Figure 27. The advantage of 10 ms is preserved until the line is disconnected by
distance protection.

The main advantage of introducing the procedure for quickly identifying the occur-
rence of a fault respectively for controlling the protection relay by using mathematical
models, developed based on real events, consists of high-speed transmission line protection
while ensuring power system damage avoidance and minimized system disturbance (thus,
proving a more reliable control and actual increase in protection speed).

Using the proposed structure creates the possibility of sensitizing the protections for a
much-improved response time, highlighted in Figure 27, resulting in lower disconnected
fault currents, the avoidance of additional damage to power lines at the fault location, and
the avoidance of additional disruptions in the power distribution system.

In addition, in Section 5 of the manuscript, the viability of applying artificial intelli-
gence methods for fault management applications is proven.
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12. Vinţan, M. Scurtcircuitul Monofazat în Reţelele Electrice de Înaltă Tensiune (The Single-Phase Short Circuit in High Voltage Electrical

Networks); Editura Matrix-Rom: Bucureşti, Romania, 2006.
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