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Abstract: The present paper proposes a mathematical development of the plasticity and damage
approaches to simulate sheet metal forming processes. It focuses on the numerical prediction of the
deformation of the sheet metal during the deep drawing process when a crack appears. Anisotropic
plasticity constitutive equations are proposed. A fully implicit integration of the coupling constitutive
equations is used and leads to two nonlinear local scalar equations that are solved by Newton’s
method. The developed model allows predicting the onset of cracks in sheet metals during cold
forming operations. The numerical model is implemented in ABAQUS software using user-defined
subroutines, which are VUMAT and UMAT. The accuracy of the anisotropic elastoplastic model fully
coupled with ductile damage is evaluated using numerical examples.

Keywords: mathematical formulation; anisotropic plasticity; coupled plastic damage; Lemaitre
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1. Introduction

Cold forming processes are widely used in industrial engineering. They allow for the
production of principally sheet workpieces of various domains such as automotive and
aeronautic parts. These processes are generally characterized by a high degree of permanent
deformation of the blank under the action of the punch and die. Many approaches have
been developed to predict the mechanical behavior of sheet materials [1,2]. In addition,
several numerical approaches have been developed and applied in the simulations of sheet
metal forming processes such as deep drawing and stamping operations. The study of
any sheet forming process requires a knowledge of mechanical behavior evolution until
the damage of the blank [3,4]—the large irreversible deformation leading to high strain
localization zones and then cracks due to the ductile damage. Indeed, the sheets present
anisotropy, which must be considered in the simulations of sheet shaping [5,6]. However,
one of the most used plasticity models is the classical Hill 1948 yield criterion. This criterion
represents a generalized plasticity yield function for anisotropic materials when compared
to J2 plasticity. In sheet metal forming, the workpiece tends to have discontinuities due
to the large plastic deformations causing nucleation and the void’s growth. Then, cracks
propagate until failure.

A wide variety of models for the failure mechanism is discussed in the literature [7,8].
They are divided principally into two types. The first type of models are developed in the
context of fracture mechanics [9]. The second type are defined by Continuum Damage
Mechanics (CDM) formulation, in which the damage field is characterized by an internal
variable [10]. Recently, models incorporating damage and anisotropic yield functions have
attracted the attention of many authors due to the high demand of accurate numerical
models in metal forming industries. Damage models are mainly based either on the Gurson
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approach [11], or on CDM [10,12], among others. These approaches were developed to
accurately simulate forming processes and predict damage in sheet workpieces. For the
uncoupled approach, the damage field is calculated without considering its effect on the
mechanical behavior model. However, in the coupled approach, the damage affects the
overall constitutive equations of mechanical fields.

The Gurson model [11] is based on the localization of deformation in a specific necking
zone. The constitutive relation related to the Gurson theory consists of micro structural
criterion in porous materials. The variation of the void’s volume during failure evolution is
considered and added to the yield function expression by using the void density parameter.
In the same context, the Gurson, Needleman, and Tvergaard (GNT) model [13,14] takes
into account the effect of the void’s coalescence on the acceleration of the failure process. In
the literature, many researchers are interested in the analysis of the growth and coalescence
of voids during ductile damage [15–18].

Furthermore, CDM describes the evolution of the damage variable from a contin-
uum mechanics approach. The implementation of the CDM model combined with the
anisotropic elastoplastic constitutive equations require the use of advanced resolution
schemes. Moreover, the elastoplastic models fully coupled with CDM include the effects
of isotropic/kinematic hardening. The nonlinear isotropic/kinematic hardening and the
consistent elastoplastic tangent modulus were acquired by [19]. In this work, the nonlinear
material behavior is the result of the plasticity and the ductile damage phenomena. Indeed,
numerical integration leads to four equations, which are two scalars and two tensors.
De Souza et al. [20,21] used the finite strain extensions of this model. Nonlinear kinematic
hardening is taken into account; however, the resulting return mapping schemes demand
the same number of equations [22]. The backward Euler scheme is used to integrate the
rate of constitutive relations. The consistent tangent operator was derived using the exact
linearization of the algorithm.

In the literature, many formulations of the damage dissipation potential are proposed
For ductile damage [10,12]. The continuum ductile damage model of Lemaitre [23] was
usually used [19,22,24]. In the same context, a damage model was proposed [25] and used
as a function of the accumulated plastic strain. In this model, a general nonlinear law of
damage evolution is applied. In addition, Badreddine et al. [26] and Saanouni et al. [27]
have proposed a modified Lemaitre damage model. They defined a threshold on the rate
of release of the strain energy density. Khelifa et al. [28] evaluated a coupling between
anisotropic elastoplastic behavior with mixed nonlinear isotropic and kinematic hardening
and an isotropic ductile damage. A deep drawing test shows the efficiency of this model.

This paper discusses an improved elastoplastic model that is strongly coupled to the
effect of damage in the yield function and plastic potential. The plastic flow anisotropy
was enhanced by using quadratic Hill 1948 criterion based on plastic strain evolution. A
mathematical formulation of the plasticity fully coupled with the damage model is devel-
oped in order to study stress changes and damage during forming operations. Moreover,
the fully coupled anisotropic elastoplastic/damage model presented in this paper leads to
only two nonlinear local scalar equations that are solved by the using Newton method. The
constitutive equations are related to anisotropic plastic formulation, taking into account
the isotropic/kinematic hardening and coupled to ductile damage model. After that, a
numerical simulation of the forming process is presented. The developed model is applied
in the context of the deep drawing operation using ABAQUS software via VUMAT and
UMAT subroutines.

2. Plasticity Coupled with Damage

In this section, a thermodynamic model is developed to correctly describe the perfor-
mances of the materials in forming processes and to develop the consistent user-friendly
numerical tools. In addition, numerical models are able to capture numerous phenomena
that arise through plastic deformation such as anisotropic yielding, nonlinear isotropic
hardening, kinematic hardening, and damage. In this context, the elastoplastic equations de-
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fined below take into account the anisotropic plasticity and the mixed isotropic/kinematic
hardening and damage.

2.1. State Variables

The simplest practice used to define the thermodynamic state of the material is the use
of measured variables capable at a given point to describe the state of the material and to
expect its evolution. These variables are the effective state variables that define the fictitious
undamaged state of the material. From a phenomenological point of view, the concept
underlying the present model is related to the subsequent pairs of effective state variables:

- The effective stress tensors and elastic strain (σ̃, ε̃e);

- The effective isotropic hardening parameters
(

r̃, R̃
)

;

- The effective kinematics hardening parameters
(

α̃, X̃
)

.

These variables can be expressed as follows

ε̃e =
√

1− d εe, σ̃ = σ/
√

1− d (1)

r̃ =
√

1− d r, R̃ = R/
√

1− d (2)

α̃ =
√

1− d α, X̃ = X/
√

1− d (3)

where d is the isotropic ductile damage variable, R is the drag stress in isotropic hardening, α
and r are internal variables corresponding to kinematic and isotropic hardening, respectively.

2.2. Fundamental Equations

In the incremental plasticity theory, the strain tensor can be expressed in the additive
form of the elastic-damage εe and the plastic-damage εp

ε = εe + εp (4)

The Helmholtz free energy is obtained using the following form

ψ(εe, αk, r, d) = ψe(εe, d) + ψp(αk, r, d) (5)

In which the elastic and plastic parts are defined by

ψe(εe, d) = 1−d
2 εe : D : εe,

ψp(αk, rk, d) = 1−d
2

(
N
∑

k=1
Qk r2

k +
M
∑

k=1
ak αk : αk

) (6)

where N and M are the number of variables corresponding to isotropic and kinematic
hardening, respectively, Qk and ak are material parameters, and D is the general elastic
operator of the undamaged material. The associated thermodynamic variables can be
formulated from the following relationships

σ =
∂ψe

∂εe , Xk =
∂ψp

∂αk
, R =

∂ψp

∂r
, Y = −∂ψ

∂d
(7)

where Y is the associated damage variable. Using Equations (6) and (7), the variables of
type stress are expressed as

σ = (1− d)D : εe, X =
M

∑
k=1

Xk = (1− d)
M

∑
k=1

ak αk (8)
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R =
N
∑

k=1
Rk = (1− d)

N
∑

k=1
Qkrk,

Y = 1
2 εe : D : εe + 1

2

(
N
∑

k=1
Qk r2

k +
M
∑

k=1
ak αk : αk

) (9)

2.3. Hill Anisotropy Criterion

The Hill 1948 model is specially suggested for anisotropic sheet metal produced using
the rolling process [29]. Numerous other criteria exist in the literature [3,30] to describe
the anisotropic performance of sheet metal using either quadratic or non-quadratic yield
functions. The Hill criterion is the most useful in the literature due to its reduced number
of parameters to be determined experimentally. The quadratic Hill 1948 criterion expresses
the equivalent stress with an anisotropy operator of six parameters (F, G, H, N, M and L) as

σH
eq(ξ) =

[
H(ξ1 − ξ2)

2 + F(ξ2 − ξ3)
2 + G(ξ3 − ξ1)

2 + 2Nξ2
12 + 2Lξ2

23 + 2Mξ2
31

]1/2
(10)

where F, G, H, N, M and L are material constants obtained by tests of the material in
different orientations and ξ is the effective stress tensor, given by

ξ = σ −X (11)

The quadratic criterion of Hill 1948 is integrated into the model using the fourth rank
tensor P defined by:

σH
eq(ξ) = ϕ f (ξ) = ‖ξ‖P =

√
ξt P ξ (12)

P =



H + G −H −G 0 0 0
H + F −F 0 0 0

F + G 0 0 0
2N 0 0

Sym 2M 0
2L

 (13)

The yield and the plastic potential functions, f and F, are given in terms of the
associated thermodynamic variables, as follows

f =
ϕ f (ξ)− R
√

1− d
− σY (14)

F = f +
1

2(1− d)

[
N

∑
k=1

βk
Qk

R2
k +

M

∑
k=1

bk
ak

Xk : Xk

]
+ Fd(Y, d) (15)

where σY is the initial yield stress, βk and bk denote the isotropic and kinematic hardening
material parameters, respectively, and Fd(Y, d) can be any damage model. The evolution
equations can be obtained using the generalized normal rule as follows

.
ε

p
=

.
γ

∂F
∂σ

=

.
γ√

1− d
n, n =

1
ϕ f

P ξ (16)

.
αk = −

.
γ

∂F
∂Xk

=
.
ε

p −
.
γ

(1− d)
bk
ak

Xk =
.
ε

p − .
γbkαk (17)

.
rk = −

.
γ

∂F
∂Rk

=
.
γ

[
1√

1− d
− βkRk

Qk(1− d)

]
=

.
γ hk, hk =

1√
1− d

− βkrk (18)

.
d =

.
γ

∂F
∂Y

=
.
γ Y, Y =

∂Fd
∂Y

(19)
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where
.
γ designates the plastic multiplier which is consistent with the Kuhn–Tucker condi-

tions for loading and unloading

.
γ ≥ 0, f ≤ 0,

.
γ f = 0 (20)

Using Equations (8) and (17)–(19), the evolution equation of the back stress Xk is given
as below:

.
Xk = (1− d)ak

.
αk − akαk

.
d = (1− d)ak

[
.
ε

p −
.
γ

(1− d)
bk
ak

Xk

]
−

.
d

1− d
Xk (21)

.
Xk = ak

.
γ
√

1− d n− .
γ

(
bk +

Y
1− d

)
Xk (22)

.
X =

M

∑
k=1

.
Xk =

.
γHX , HX = a

√
1− d n− Y

1− d
X−

M

∑
k=1

bkXk, a =
M

∑
k=1

ak (23)

3. Numerical Integration Schema

An algorithm is developed to simulate the present plasticity model. It is based on the
fully implicit backward Euler integration. Indeed, for elastoplastic numerical problems,
this integration scheme is usually used because of its unconditional stability. With this
numerical integration procedure, it is crucial to develop the algorithmic tangent module.
The main objective of using this module is to preserve the quadratic rate of the asymptotic
convergence of the Newton method.

It can be followed that the enforcement of the consistency condition and the damage
equation is reduced to two scalar equations. The unknowns of this system of equations
are the plastic multiplier ∆γ and the damage variable dn+1 = d . The Newton–Raphson
method is used to solve this system of equations. Appendix A summarizes the one-step to
answer the couple (∆γ, dn+1 = d) .

The derivation of the consistent tangent modulus follows only the standard application
of consistent linearization concepts. In Appendix B, we illustrate its final expression.
The tangents modulus for the present coupled anisotropic plasticity-ductile damage is
appropriate for plane strain, plane stress, and axisymmetric and 3D problems. Only two
terms are modified, which are D and P.

Finally, the complete and fully implicit integration scheme of the coupled plastic-
damage with nonlinear isotropic/kinematic hardening is shown in Table 1.

Table 1. Integration scheme of the coupled plastic-damage (UMAT).

Compute trial elastic stress (Elastic predictor)
∆γ = 0

σtrial = σn + (1− dn)D∆ε, Xk,n = Xk,n ξ = σtrial −
M
∑

k=1
Xk,n

(i) Check plastic condition
IF 1

(1−d)0.5 [ϕn+1 − R] − σY ≤ 0 THEN (Elastic)

Set ( )n+1 = ( )n, Dep = D and RETURN
ELSE (Plastic correction)
(ii) Find (∆γ, d) by local iteration (Appendix A)
(iii) Update variables

ξn+1 = I−1
c .ξ, nn+1 = 1

ϕn+1
H ξn+1

Xk,n+1 = 1−dn+1
1−dn

Xk,n + ωknn+1, Xn+1 =
M
∑

k=1
Xk,n+1, σn+1 = ξn+1 + Xn+1

(iv) Consistent elastoplastic modulus (Appendix B)

Dep = (1− dn+1)
[
D∗ − 1

q V1 ⊗ V2

]
ENDIF
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Damage Model

For the coupled anisotropic plasticity damage models, the damage potential, Fd should
be considered in the derivation of the diverse equations. In this present work, the modified
Lemaitre damage model is adopted and written as follows

Fd =
S

(s + 1)(1− d)β

〈
Y−Y0

S

〉s+1
, Y =

1

(1− d)β

〈
Y−Y0

S

〉s
(24)

where β, s, S and Y0 are material parameters. The strain density release rate Y, defined in
Equation (14), can be derived using

Y = Y(σ̃n+1, rk, αk) =
q̃2

6G
+

p̃2

2K
+

1
2

(
N

∑
k=1

Qk r2
k +

M

∑
k=1

ak αk : αk

)
(25)

where K and G are the bulk and shear modulus, respectively, and p̃ and q̃ are expressed as

p̃ =
1
3

tr(σ̃n+1), q̃ =
√

3J2(σ̃n+1) (26)

4. Numerical Results of Coupled Anisotropic Plasticity and Damage Models

The main objective of this section is to develop a numerical analysis in order to validate
the coupled anisotropic plasticity and damage models. The isotropic hardening describes
the sheet material’s behavior during a cold forming operation. It determines the size of the
yield surface. The isotropic hardening law depends on the initial value of yield stress σy
and material constants Q and β, which represent the isotropic hardening parameters. This
law is given in Equation (27).

σ = σy + Q(1− e−β.εp
) (27)

Previous sections describe the developed numerical models, which are implemented
in the finite element software Abaqus/Explicit through UMAT and VUMAT subroutines.
Four numerical examples are analyzed in the next parts.

4.1. Perforated Square Plate under Biaxial Extension

As shown in Figure 1a, the square plate has as a thickness of t = 1.0 mm and a central
circular hole. The damage field is illustrated with different values of anisotropic parameter α.
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The material properties are given in Table 2. Only isotropic hardening is considered in
this example. α is a parameter that controls the anisotropy.

Table 2. Material properties of perforated square steel plate.

Elasticity E = 210 GPa, ν = 0.3

Isotropic Hardening (MPa) Q = 3300 MPa; σy = 620 MPa; β = 0.4
Damage δ = 1, β = 1, s = 1, S = 3.5 MPa, Y0 = 0 MPa

Anisotropic Hill criterion is considered with the following material properties.

R11 = 1, R22 = α R11, R33 = R12 = R13 = R23 = 1 (28)

Subsequently, the classical Hill 1948 coefficients are obtained using Equation (29). F
G
H

 =
1
2

−1 1 1

1 −1 1

1 1 −1


1/R2

11

1/R2
22

1/R2
33

, N = M = L = 1.5 (29)

By noting the symmetry, only a quarter part of the plate is considered in the simula-
tion. In this example, a biaxial extension is considered and applied on the top and right
boundaries of the quarter plate. This plate is discretized using 4-node quadrilateral plane
stress element. The finite element mesh employed is shown in Figure 1. Appropriate
symmetry boundary conditions are applied. Loading is performed by controlling the same
displacement on the top and right boundaries of the square plate, u1 = u2 = u. Depending
on the choice of anisotropic parameter α, different values of the prescribed displacement u
are to be interpreted as ensuring that the damage does not reach an excessive value. The
damage at point A (dA) and maximum damage in the plate (dmax) are listed in Table 3 for
different values of the parameter α.

Table 3. Specified displacement and damage for different value of α.

α = R22/R11 u (mm) dA dmax

0.5 0.115 0.00278 0.667
1 1.415 0.397 0.397

1.5 0.38 0.464 0.464

Damage contour plots at the final state for each value of parameter α are illustrated in
Figure 1. The isotropic J2 elastoplasticity corresponds to α = 1.0. The damage contours
obtained using numerical analysis are in agreement with those expected. As the parameters
α increase, the damage at point A increase. For the three values of the parameter α, damage
evolution at point A (dA) versus displacement u are illustrated in Figure 2.

4.2. Numerical Simulations of Bulge Test

As a second numerical test, a sheet metal forming process is analyzed in this part. In
fact, the bulge test is considered. It is usually used to characterize the formability of thin
sheets. This process is schematized in Figure 3.

During the bulge test, the blank lies on a rigid die and its edged is clamped. Only one
quarter is modeled due to symmetry. The fully coupled anisotropic plasticity/damage model
is implemented using ABAQUS/Explicit software by using the user interface subroutine
VUMAT. The sheet has a thickness of 1 mm. It is meshed using 588 thin shell elements with
a reduced integration of type S4R. The matrix is considered as a rigid body. It is discretized
with the rigid elements of type R3D4. A hydraulic pressure is applied on the bottom surface
of the circular blank sheet. The maximum value of the ramped pressure evolution is 7.2 MPa.
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The material properties are listed in Table 4, according to [31]. Simulations were carried out
considering an isotropic material model (r0 = r45 = r90 = 1).
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Figure 3. Geometry tool of the bulge test.

Table 4. Material properties considered in bulge test.

Elasticity E = 210 GPa, ν = 0.3

Isotropic Hardening (MPa) σp = 488.35(0.001 + εp)0.2427

Initial yield stress, σy0 (MPa) 175
Damage δ = 1, β = 1, s = 1, S = 1.25 MPa, Y0 = 0 MPa

The damage distribution in the studied bulge test is presented in Figure 4. Based on
the numerical results (Figure 4), the isotropic model shows that the maximum value of
damage (SDV4) is located in the bulge center. The damaged element deletion method is
activated in the simulation of bulge test using ABAQUS/Explicit. Figure 4 shows that, if the
ductile damage reaches a critical value (0.98), then elements are supposed fully damaged
and detached from the structure. In the same context, Figure 5 illustrates the damage
evolution for the isotropic case.
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The numerical damage evolutions are examined by using the nodes situated in the
middle layer. Therefore, and as shown is Figure 5, the result obtained by the present model
was compared with that developed by [31]. A good agreement between both results is showed.

4.3. Model Evaluation Using Uniaxial Tensile Test

In this section, the predictive model capability is examined by comparing the nu-
merical and experimental results obtained from the uniaxial tensile test. The anisotropic
elastoplastic mechanical model of DD13 sheet steel is considered in the simulation of the
tensile test. The DD13 steel material is hot rolled sheet metal. This sheet metal has a ferritic
microstructure. The chemical composition of the blank is presented in Table 5. The material
properties of the blank sheet are provided in Tables 6 and 7. A double exponential law is
adopted for the anisotropic elastoplastic mechanical model. The expression of the stress
evolution is written as

σ(p) = σY + A1

(
1− eβ1 εp

)
+ A2

(
1− eβ2 εp

)
(30)

where εp represents the equivalent plastic strain, σY is the yield stress, and Ak = Qk
βk

,
βk , k = 1, 2 are the material parameters.
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Table 5. Chemical composition of the DD13 sheet material.

C Smax Mnmax Pmax

0.08 0.03 0.4 0.03

Table 6. Mechanical properties of the DD13 material [32].

Elastic Prop. Hill 1948 Coefficients

E(GPa) ν σY (MPa) F G H N
220 0.3 278 0.43 0.47 0.53 1.49

Table 7. Hardening and damage parameters for DD13 [32].

Isotropic hardening parameters Q1
(MPa)

Q2
(MPa)

β1 β2

490 50 1.35 30

Damage parameters β s S
(MPa)

Y0
(MPa)

5 1.5 200 15

The eight nodes hexahedral elements (C3D8) mesh is adopted for the simulation of the
tensile test, the results of which is illustrated in Figure 6a. An imposed displacement was
applied in the axial direction. Numerical and experimental results of the force–displacement
curves of the tensile test along the rolling direction (RD) are obtained using the VUMAT
subroutine and are illustrated in Figure 7.
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Figure 6b presents the specimen damage for 21 mm displacement in the RD using
the present model. The experimental specimen final fracture in the RD is given in Fig-
ure 6c. As depicted experimentally, the numerical damage takes place at the central zone,
and the rupture facies are not perpendicular to the loading axis. Results in terms of the
load–displacement curves are presented in Figure 7. By using the presented anisotropic
plasticity/damage model, Figure 7 shows an acceptable fit of the numerical result when
compared to experimental one. Next, the efficiency of the presented model will be evaluated
in the case of the cross-die deep drawing test.

4.4. Numerical Simulation of Cross-Die Deep Drawing Test

Cross-die deep drawing simulation is carried out in this section. This test is used to
cover a wide range of stress states and to reproduce most significant strain paths that can
be found in deep drawing, i.e., tensile, shear, plane strain, and biaxial loading modes. An
improved elastoplastic model strongly coupled with damage effect in the yield function
and plastic potential is used. The developed model is implemented in ABAQUS software
via the VUMAT subroutine. For the simulation, a 3D finite element model is performed in
Abaqus software to analyze the cross-die test. The die, punch, and blank holder are defined
as discrete rigid parts, and the sheet was assigned as a deformable homogenous shell. The
initial dimensions of the square blank sheet were equal to 260 × 260 × 1 mm3. A four
nodes quadrilateral shell element S4R with a size of 5 × 5 mm2 and with five integration
points through the thickness was employed for meshing the sheet. Penalty contact is used
in forming simulations. The Coulomb friction coefficient of 0.05 was considered between
sheet and tools surfaces. The blank holding force during forming was 450 kN. The punch
stroke of 60 mm was considered in the simulation. Figure 8 shows the main geometrical
parameters of the tools. The die and punch radii are 20 mm and 14 mm, respectively. In
all cases, the blank sheet orientation with respect to the tools is shown in Figure 8. In the
simulation of cross-die deep drawing, the blank is made of DD13 sheet metal.

After the simulation, the blank sheet thinning was determined along three directions
(i.e., rolling direction (RD), transverse direction (TD), and diagonal direction (DD)) as
illustrated in Figure 9. From this figure, it is noticed that the thinning of the simulated
workpiece is more important in DD (0.49 mm-thickness) compared to RD and TD (≈0.7 mm-
thickness).
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Figures 10 and 11 show the simulation results of the cross-die test. The damage
location and the force–displacement response were predicted precisely, as presented in the
work of [33,34].

The minor and major strains of the 60 mm-height of the cross-die are illustrated in
Figure 12. The strain path analysis of the cross-die simulation reveals the complex forming
process. In the simulated part, the strain distributions of some points are near or above
the experimental forming limit diagram (FLD) curve. The location of the damage is the
same as that presented in the experimental work of [33]. In other words, the figure can
illustrate the capability of the proposed model in the damage prediction of a cross-die deep
drawing test.
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5. Conclusions

In this paper, a coupled model of anisotropic plasticity and continuous ductile damage
is proposed. A generalized quadratic yield function is considered to exhibit isotropic and
nonlinear kinematic hardening. According to the literature, more than two local equations
are required in coupled elastoplastic damage models. However, in our work, only two
scalar equations are required to solve the developed numerical algorithm. The unknowns
in this system of equations are the plastic multiplier and the damage variables. Using the
implicit solver, and in order to preserve the quadratic rate of asymptotic convergence of
Newton’s method, the algorithmic tangent modulus is developed. It is given in closed
form using exact linearization. The mathematical models are implemented using the
ABAQUS/ Explicit software and the UMAT and VUMAT subroutines of the user interface.
The results of DD13 sheet metal in cross-die deep drawing show the effect of anisotropic
coefficients and hardening and damage parameters on the distribution of thickness and
damage in the obtained workpiece. Numerical examples are developed which show the
efficiency and ability of the proposed model to predict ductile damage growth in the sheet
forming process.
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Appendix A. Local Iteration: Resolve of (∆γ,dn+1=d) by Newton’s Method

Set: ∆γ = 0, d = dn, σtrial = σn + (1− dn)D∆ε

(i) Check convergence

Ri =

[
f1
f2

]
i
=

[
ϕ−R

(1−d)0.5 − σY

d− dn − ∆γ Y

]
i

, ϕ =
[
ξ

T
. I−T

c .H .I−1
c .ξ

]1/2

ξ = 1−d
1−dn

(
σtrial −

M
∑

k=1
exp(−bk∆γ)Xk,n

)
Ic = I + 1

ϕn+1(1−d)−0.5 [∆γD + aωI]H, aω =
M
∑

k=1

ak
bk
[1− exp(−bk∆γ)]

IF |Ri| < Tol THEN End Loop
(ii) Compute Jacobian

Ji =

[
f1,1 f1,2
f2,1 f2,2

]
i

(iii) Evaluate solution[
∆γ

d

]
i+1

=

[
∆γ

d

]
i
− J−1

i Ri

(iv) Set i = i + 1 go to (i)
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Appendix B. Consistent Tangent Modulus (d = dn+1, ϕ = ϕn+1)

Qa = QH, Q = 1
ϕn+1

M
∑

k=1
ωk, IX = I + Qa

ID = IXI−1
c , D∗ = IDD, V1 = IDx

x = DH x1 +
Z

(1−d)σn+1, x1 = 1
(1−d)−0.5

[
T ξn+1 − u I−1

X h
]

Z = − ∂ f2/∂(∆γ)
∂ f2/∂d , T = u,1 + δu Z

1−d , u = ∆γ
ϕ

h =
M
∑

k=1
hk, hk = −1

1−dn
(Z + bk(1− dn+1))Xk,n +

[
dωk +

ωk
u

(
u,1 + Zu,2 − 1

ϕn+1

)]
nn+1

u,1 =
ϕ−ϕ,1∆γ

ϕ2 , ϕ,1 = ∂R/∂(∆γ), u,2 = −u ϕ,2
ϕ , ϕ,2 = ∂R

∂d − δσY(1− d)δ−1

dωk = ak

(1−dn+1)
−0.5

[
exp(−bk∆γ) +

1−exp(−bk∆γ)
bk

T1

]
, T1 = (δ−1) Z

1−dn+1

q = α + nT
n+1. z, α = ∂R

∂∆γ + ∂R
∂d Z− δZ(ϕ−R)

1−dn+1
, V2 = Dt

cnn+1

Dc = I−1
X D∗ = I−1

c D, z = V1 + I−1
X y, y = h−QaV1
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