
Citation: Andrade, J.L.; Valencia, J.L.

A Fuzzy Random Survival Forest for

Predicting Lapses in Insurance

Portfolios Containing Imprecise Data.

Mathematics 2023, 11, 198. https://

doi.org/10.3390/math11010198

Academic Editor: David Zapletal

Received: 24 November 2022

Revised: 25 December 2022

Accepted: 28 December 2022

Published: 30 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Fuzzy Random Survival Forest for Predicting Lapses in
Insurance Portfolios Containing Imprecise Data
Jorge Luis Andrade * and José Luis Valencia

Faculty of Statistics, Complutense University, Puerta de Hierro, 28040 Madrid, Spain
* Correspondence: jorandra@ucm.es; Tel.: +346-5320-7234

Abstract: We propose a fuzzy random survival forest (FRSF) to model lapse rates in a life insurance
portfolio containing imprecise or incomplete data such as missing, outlier, or noisy values. Following
the random forest methodology, the FRSF is proposed as a new machine learning technique for
solving time-to-event data using an ensemble of multiple fuzzy survival trees. In the learning process,
the combination of methods such as the c-index, fuzzy sets theory, and the ensemble of multiple trees
enable the automatic handling of imprecise data. We analyse the results of several experiments and
test them statistically; they show the FRSF’s robustness, verifying that its generalisation capacity is
not reduced when modelling imprecise data. Furthermore, the results obtained using a real portfolio
of a life insurance company demonstrate that the FRSF has a better performance in comparison with
other state-of-the-art algorithms such as the traditional Cox model and other tree-based machine
learning techniques such as the random survival forest.

Keywords: survival analysis; fuzzy logic; lapse rates; imprecise data

MSC: 62N86

1. Introduction

The interest of survival analysis is modelling time-to-event datasets in which the
response variable is composed of two vectors: the time, which is an interval variable, and
the binary variable of the censoring status to indicate the occurrence of the event.

In the insurance industry, lapse rates information occurs as time-to-event datasets, so
they are predicted using survival analysis.

Lapse rates modelling is required for commercial product design and regulatory
reasons, as well as to measure the underlying lapse risk. Insurance companies under the
regulatory framework of IFRS 17 [1] and the European Solvency II standard are required
to estimate future lapse rates to calculate their best estimate liabilities and the solvency
capital required. Moreover, according to [2], the lapse risk in a life insurance portfolio is
the most important risk, accounting for almost 40% of the capital requirement within the
life underwriting risk module, which includes risk factors such as longevity, mortality,
disability, catastrophe, and expenses.

Time-to-event data have been commonly analysed using the Cox regression model [3]
under the proportional hazards assumption. The random survival forest (RSF) algorithm
has been proposed as an extension of the random forest algorithm [4] for the survival
problem. In the learning process at each tree, the maximisation of the log-rank statistical
test [5] is used for node splitting, [6] demonstrates that the RSF’s performance is higher than
that of the Cox model, and its use is recommended when the assumptions of proportional
risks are not met [7] or when the effect of the explanatory variables is nonlinear.

The RSF algorithm has been used in numerous medical, financial, and economic
studies [8,9]. It demonstrates a lower generalisation error than other right-censored data
techniques; the log-rank test and the c-index [10] are used as splitting rules at each node.

Mathematics 2023, 11, 198. https://doi.org/10.3390/math11010198 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11010198
https://doi.org/10.3390/math11010198
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2705-3730
https://doi.org/10.3390/math11010198
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11010198?type=check_update&version=1

Mathematics 2023, 11, 198 2 of 16

Recently, fuzzy set theory has been included in learning decision trees [11–15] because
datasets contain imprecise data such as missing values and noise in the class or outlier
examples. In insurance datasets, incomplete and imprecise data are present for many
reasons, such as the expense of obtaining the information, differences in the underwriting
process among insureds, changes in data storage, or errors in obtaining and processing the
insureds’ data. Fuzzy logic and fuzzy sets provide the flexibility to deal with these types of
datasets without affecting the performance of the algorithm.

Previously, in [16], we proposed the fuzzy survival tree (FST) algorithm as a fuzzy tree-
based algorithm for survival analysis in clinical datasets. It presented the inclusion of fuzzy
logic in combination with the c-index in the learning process as a rule for splitting a node.
The obtained results validated FST as a robust algorithm for solving time-to-event data.

In the present article, we introduce the fuzzy random survival forest (FRSF), which
uses multiple trees for the survival estimation, as an extension of the RSF and FST. FRSF
uses the robustness of the randomness of RSF and the flexibility for handling imprecise
data of FST. The algorithm steps and ensemble strategy are presented, as well as a large
variety of experiments for modelling imprecise data.

This article presents a new FRSF algorithm that improves the results obtained with
only one tree-based learner. Moreover, FRSF has the capacity to handle incomplete and
imprecise data such as missing values, outliers, and noisy values properly. Additionally,
the results show the application of FRSF and FST to an insurance portfolio and, finally,
FRSF’s robustness in comparison with other tree-based algorithms and Cox’s model.

This paper is presented as follows: Section 2 is dedicated to explaining the FRSF
algorithm as an ensemble of multiple FSTs, and Section 3 presents the protocol, the dataset
description, and the results of the experiments. In all experiments, the dataset used comes
from a life insurance company.

The proposed algorithm was developed in Python code, and this implementation
takes as its starting point the RSF algorithm developed by [17].

2. FRSF Algorithm for Survival Analysis
2.1. FRSF: The Survival Analysis and Fuzzy Logic Basis

The survival datasets are organised by rows and columns i × j; i represents a policy-
holder in the insurance portfolio, and j is one explanatory or response variable. Survival
datasets are represented by ([Ti, αi], Xi), where, for a policyholder i, the response variable
is composed by time variable Ti and binary censoring status variable αi indicates whether
the event has occurred or not; and Xi is the explanatory variables vector.

In this case, for lapse rates prediction, the time variable is the permanence of the policy
in the portfolio from the effective date, and the binary variable indicates lapse or no lapse.
The policy can be censored because it reaches maturity, because at the end of the study,
it has not experienced an event, or due to premature termination for reasons other than
lapses.

In survival analysis, the cumulative hazard function (CHF) is a risk measure for the
portfolio in the study; it is computed as Λt = ∑m

αtm
|Etm |

, where αtm is the lapses produced
and |Etm | is the policyholders in force at time tm. The times are discretised and can only
take the values tεt1, t2, t3, . . . , te.

The fuzzy system implementation in this study comprises the fuzzification, inference
system, and defuzzification processes.

• Fuzzification translates crisp inputs to fuzzy values. In the fuzzy sets representation,
let |E| denote the universe of all policyholders in a dataset. A fuzzy set M ⊂ |E| is
characterised by a membership function µM : |E| → [0, 1] that associates each poli-
cyholder i of |E| with a number µM(i) in the interval [0, 1] representing the degree
of membership of policyholder i to data subset M. The fuzzy sets and partitions are
defined at each test node in a tree. A linear membership function is used.

• The inference system process comprises the fuzzy rule base (FRB) and the inference
mechanism:

Mathematics 2023, 11, 198 3 of 16

- FRB is the set of fuzzy rules and the fuzzy database with the fuzzy sets information.
The fuzzy rule can be expressed by [18]:

I f (x1 b is A1 b) and (x2 b is A2 b) and . . . and
(
xj b is Aj b

)
then (CHF b is Λ b)

where A is the explanatory variable value and b represents the number of rules.
- The inference mechanism generates the output from the system using fuzzy rea-

soning, using the FRB to map the input to the output. It is implemented through
the node daughters’ definition and in the estimation process before defuzzifica-
tion. This point deploys that one policyholder activates several terminal nodes at
the same tree.

• Defuzzification is the final step: the trees outputs are combined to obtain a crisp output.
This step is detailed in Section 2.2.2.

2.2. FRSF Is an Ensemble Based on Fuzzy Survival Trees

We propose an FRSF algorithm to generate a fuzzy random forest whose trees are fuzzy
survival trees. FRSF follows the Breiman’s methodology, and randomisation is introduced
in two forms. (1) For growing a tree, bagging is used, so only 67% of the data are used for
training; (2) for the node splitting, only a random subset of the explanatory variables is used,
meaning that if an important variable is excluded in a node split, it might be considered in
other nodes splits in the same tree. The fuzzy logic is introduced in the learning process.
At each test node, fuzzy sets are defined, and its flexibility allows handling incomplete
and imprecise data in training and test stages. The combination of random forest and
fuzzy logic increases the diversity of the trees and improves the performance when they
are ensembled; this algorithm is presented in Table 1.

Table 1. FRSF Algorithm.

1. Generate s bootstrap samples with replacement.

2. Apply FST algorithm to each sample obtained in the previous step to build a fuzzy
survival tree.

3. Repeat steps 1 and 2 until multiple FSTs are constructed.

4. Estimate the Λt for unknown policyholders applying the FRSF ensemble algorithm
detailed in Section 2.2.2.

Each tree in the FRSF is constructed as a fuzzy survival tree; we proposed this tree by
the FST algorithm presented in [16].

2.2.1. In FRSF the Base Learner Is a Fuzzy Survival Tree

FST is a tree-based survival algorithm; the splitting criterion is a combination of
c-index and fuzzy sets. In the learning process, at each new node, the policyholder’s
membership degree is considered for c-index maximisation, then a genetic algorithm works
to create the fuzzy nodes. Table 2 shows the main steps of the algorithm.

Table 2. FST Algorithm.

1. At root node, start with all policyholders with µnroot(i) = 1.
2. Define the discriminator function to do the split

a. Select a temporary crisp split at each node, θn.
b. Determine the overlap region by βn.

3. Repeat steps a and b until the scoring functions are minimised.
4. Grow the FST until the stopping criteria are met.

Mathematics 2023, 11, 198 4 of 16

A tree is grown starting at the root node, which comprises all the data. At the root node
are all the training policyholders |E| with a membership degree equal to 1; µnroot(i) = 1.

The root node is divided into two daughter nodes. Left and right {nL, nR} nodes are
created thanks to an iterative search for the most discriminant explanatory variable among
a subset of them; this is a variant of the original FST algorithm that we proposed in [16],
where all explanatory variables were candidates at each node split. The selection from
a random subset of explanatory variables is important under a forest vision instead of a
single tree to avoid correlation among trees in the forest.

The process is repeated in a binary and recursive fashion at each node until the
stopping criteria are met. Finally, a label is attached to every terminal node.

A discriminator function is attached to each node; we use a linear membership as a dis-
criminator. It determines the split of the test node and its fuzziness by

(
Xij, θn, βn

)
→ [0, 1] ;

the parameters defining it are as follows: Xij is the value for a policyholder i for the selected
explanatory variable j, θn is the value of the split, and βn is the parameter that determines
the overlap region.

In crisp trees, a policyholder goes only to one of the daughter nodes created in the
split, so a unique path is followed, and then a unique terminal node is reached. In fuzzy
or soft trees, if the policyholder’s value is within the overlap region determined by the
discriminator function, it goes to both daughter nodes following multiple paths in parallel;
as a consequence, a policyholder can activate multiple terminal nodes.

In Figure 1, the FST has three test nodes and five terminal nodes or leaves. Each test
node is marked with the parameters of its discriminator function f

(
Xj, θn, βn

)
. In the FST

learning, some policyholders go only to the right daughter node, others go only to the
left, and those in the overlap region go to both successors. As an example, for survival
prediction of a policyholder i and explanatory variables Xj= [X0 = 0.08, X1= 0.31], the path
starts at the root node Root, and passes through both test nodes [l and r] because the X1
value is within the overlap region; then, in nodes l and r, it is evaluated on variables X0
and X1, respectively. Finally, it activates two leaves [1.l.r and r.r].

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 17

Table 2. FST Algorithm.

1. At root node, start with all policyholders with 𝜇 (𝑖) = 1.
2. Define the discriminator function to do the split

a. Select a temporary crisp split at each node, 𝜃 .
b. Determine the overlap region by 𝛽 .

3. Repeat steps a and b until the scoring functions are minimised.
4. Grow the FST until the stopping criteria are met.

The root node is divided into two daughter nodes. Left and right {𝑛 , 𝑛 } nodes are
created thanks to an iterative search for the most discriminant explanatory variable among
a subset of them; this is a variant of the original FST algorithm that we proposed in [16],
where all explanatory variables were candidates at each node split. The selection from a
random subset of explanatory variables is important under a forest vision instead of a
single tree to avoid correlation among trees in the forest.

The process is repeated in a binary and recursive fashion at each node until the stop-
ping criteria are met. Finally, a label is attached to every terminal node.

A discriminator function is attached to each node; we use a linear membership as a
discriminator. It determines the split of the test node and its fuzziness by 𝑋 , 𝜃 , 𝛽 →[0,1]; the parameters defining it are as follows: 𝑋 is the value for a policyholder i for the
selected explanatory variable 𝑗, 𝜃 is the value of the split, and 𝛽 is the parameter that
determines the overlap region.

In crisp trees, a policyholder goes only to one of the daughter nodes created in the
split, so a unique path is followed, and then a unique terminal node is reached. In fuzzy
or soft trees, if the policyholder’s value is within the overlap region determined by the
discriminator function, it goes to both daughter nodes following multiple paths in paral-
lel; as a consequence, a policyholder can activate multiple terminal nodes.

In Figure 1, the FST has three test nodes and five terminal nodes or leaves. Each test
node is marked with the parameters of its discriminator function 𝑓 𝑋 , 𝜃 , 𝛽 . In the FST
learning, some policyholders go only to the right daughter node, others go only to the left,
and those in the overlap region go to both successors. As an example, for survival predic-
tion of a policyholder i and explanatory variables 𝑿𝒋= [𝑋 = 0.08, 𝑋 = 0.31], the path starts
at the root node Root, and passes through both test nodes [l and r] because the 𝑋 value
is within the overlap region; then, in nodes l and r, it is evaluated on variables 𝑋 and 𝑋 ,
respectively. Finally, it activates two leaves [1.l.r and r.r].

Figure 1. Example of a fuzzy survival tree (FST).

<0.18 >0.28
<0.035

<0.09 >0.15

>0.34 [ɵ + β/2]

Root𝑋 (ɵ =0.32, β =0.04)

Node l𝑋 (ɵ =0.04, β =0.01)

Leaf 1.l.l Leaf 1.l.r

Node r𝑋 (ɵ =0.23, β =0.10)

Node r.l𝑋 (ɵ =0.12, β =0.06)

Leaf r.l.l Leaf r.r.r

Leaf r.r

>0.045

<0.30 [ɵ − β/2]

Figure 1. Example of a fuzzy survival tree (FST).

A piecewise linear membership function is used to calculate the degree of membership
µ of a policyholder i to the daughter node {nL, nR}:

µnL(i) =

1 Xi ≤ θn − βn/2

(θn+βn/2)−Xi
βn

θn − βn
2 < Xi ≤ θn +

βn
2

0 Xi > θn + βn/2
µnR = 1− µnL

Mathematics 2023, 11, 198 5 of 16

Following the formula above, the outputs for the membership degree are not singleton.
If the policyholder’s value Xi is equal to the split θn, its membership degree is 50%.
To handle a missing value in the explanatory variable selected for the split Xj, policy-

holder i continues to both daughter nodes, and the degree of membership in both daughter
nodes is:

µnL = µnR(i) =
1
2

This feature of the algorithm makes it possible to automatically handle missing data
in the learning process of the algorithm without making a priori imputations of the value
to be taken by an explanatory variable in the case of missing data.

At each node, a class label is represented by Λ, the CHF value. The degree of mem-
bership of a policyholder i in a defined class label Λ is µΛ(i) and is computed taking into
account the CHF value in both daughter nodes:

µΛ(i) = ∑
k∈{nL ,nR}

µk(i)Λk

The calculated CHF is common for all policyholders of node n; then, the following
applies to the policyholders that conform to a specific node: Λn(t | Xi) = Λn(t), if i ε n.

For the FST learning process, we describe the two steps presented in the study [16]. The
objective is to compute the discriminator function at each node. The first step searches the
most discriminant Xj explanatory variable and its value θn among a subset of explanatory
variables. In a second step, the overlap region is determined by βn, and the tree grows until
one of the stop criteria is met.

Searching for the Explanatory Variable and Splitting (Crisp)

As in the RSF algorithm, the cut-off value θn is chosen among a random subset of
explanatory variables X with the particularity that its values are modified to consider the
node membership degree; in this step, the target is to maximise the c-index statistic.

The RSF iterative algorithm [6] for trees construction is adapted to consider the fuzzy
sets dynamics. The degree of membership of every policyholder’s value Xi in the node is
set as follows: at each node, the Xi value is adapted to consider the cumulative membership
degree and is renamed Xi(n). The cumulative membership degree is calculated recursively
from the root to the parent node µp(i). The policyholder’s renamed value Xi(n) is computed
as Xi(nL) = XiµnL(i)µp(i) and Xi(nR) = XiµnR(i)µp(i) for the left and right daughter
nodes, respectively.

To determine θn, the iterative search uses the Harrell’s c-index statistics. It is designed
to estimate the concordance probability P

(
Λi
〈
Λj
∣∣ Ti > Tj

)
; its inclusion as a splitting

criterion is to maximise the P
(

i ∈ nl , j ∈ nr
∣∣ Ti < Tj

)
in the partition of policyholders into

daughter nodes by θn. In addition, in this way, the discrepancy between splitting and
evaluation criteria is overcome in survival trees. Ref. [10] justifies and recommends c-index
as the splitting criterion because it improves RSF in small-scale clinical studies.

The c-index is calculated as follows [19]:
Let Λn(t | Xi) be the CHF of a policyholder i that belongs to node n; policyholder i has

a worse prediction than the individual j if Λn(t |i) > Λn(t |j).
1. Form all possible pairs of observations from the dataset.
2. Omit those pairs where the shorter event time is censored. Pairs (i, j) are also omit-

ted if Ti = Tj unless
(
δi = 1, δj = 0

)
or
(
δi = 0, δj = 1

)
or
(
δi = 1, δj = 1

)
. This last

restriction means that the pair is computed when its times are equal if at least one of
the observations is an event.

3. Let the resulting pairs be denoted by Y. Permissible = |Y|.
4. Then, evaluate the computation of all the permissible pairs. The sum is called Concordance.

(a) If Ti 6= Tj, count 1 for each y ∈ Y in which the individual with the shorter time
has a worse predicted result.

Mathematics 2023, 11, 198 6 of 16

(b) If Ti 6= Tj, count 0.5 for each y ∈ Y in which Λn(t |j) = Λn(t |i).
(c) If Ti = Tj, count 1 for each y ∈ Y in which Λ(t |j) = Λn(t |i).
(d) If Ti = Tj, count 0.5 for each y ∈ Y in which Λn(t |j) 6= Λn(t |i).

5. The c-index is defined by: c− index = Concordance/Permissible
6. The error rate is Error = 1− c− index. If c− index = 0.5 = Error, this means that the

algorithm is doing no better than random guessing.

The daughter nodes defined by the cut-off value θn are temporary because the param-
eter for defining the overlap region βn is equal to zero (crisp split). In the following step,
βn and the fuzzy sets configuration are computed to determine the sets of policyholders for
each daughter node.

Fuzzification and Labelling

The fuzzification is determined at each node by the algorithm learning process and is
represented by the overlap region and the fuzzy sets dynamic. The labelling is represented
by the cumulative hazard attached to each node Λn.

In this step, the cut-off point determined by the most discriminant explanatory variable
Xj and its value θn obtained in the previous step are kept frozen.

There are several methods for defining the overlap region, such as genetic algorithms,
artificial neural networks, and fuzzy clustering algorithms [20–22]; our proposition is to
use a genetic algorithm.

The best overlap region is determined by the genetic algorithm proposed in [23]; the
βn width defines the overlap region, and it is found by minimising the fitness function:

∑
i ∈ n

µp(i)
[
µΛ(i)− µ′Λ(i)

]2
where µ′Λ(i) = µ′nL(i)ΛnL + µ′nR(i)ΛnR is the membership function to the left and right
daughter nodes defined in the previous subsection, but in this case, it is updated with every
candidate value of βn that comes from every iteration of the genetic algorithm. A new CHF
is proposed in each genetic algorithm’s iteration; this is the labelling.

As the overlap region is necessary for each node, the genetic algorithm runs at each
node splitting in every tree.

The range of possible values for the βn parameter is delimited by the range of variation
of the explanatory variable Xj of the policyholders belonging to the node n, and it is defined
by the interval:

max
{

0, min
[(

max
(
Xj(·)n

)
− θn

)
,
(
θn −min

(
Xj(·)n

))]}
The parameters for genetic algorithm are implemented through empirical testing

due to the high complexity of the existing methods and the flexibility of the fuzzy logic
in adjusting the parameters [24]. The genetic algorithm was run with the following
recommended parameters:

max_num_iteration:10, population_size:10, mutation_probability:0.01,
elit_ratio: 0.20, crossover_probability: 0.7, parents_portion: 0.3,
crossover_type:’uniform’.
This configuration of the genetic algorithm provided satisfactory solutions in a feasible

amount of time.
At the end of this step a discriminator function is fitted and represented by

(
Xj, θn, βn

)
for each node, and the fuzzy sets dynamic works through a piecewise linear membership
function using the discriminator function. Finally, the new daughter nodes are configured.

2.2.2. FRSF Defuzzification and Ensemble

The FRSF is an ensemble of multiple FSTs; in this section, we describe how the
defuzzification and ensemble process is carried out to estimate a unique Λ(t | Xi) of an

Mathematics 2023, 11, 198 7 of 16

unknown policyholder in the forest. Table 3 shows the part of the FRSF algorithm for
the ensemble.

Table 3. Algorithm FRSF—Ensemble.

1. Estimation of Λ(t | Xi) at each tree
2. Apply the Aggregation 1 function over Λ(t | Xi)
3. The FRSF computes the Λ(t | Xi) as an average over the aggregator obtained in the previous

step (Aggregation 2).

The FRSF stops when the number of trees is reached, and at each tree, the growing
process stops when one of the following criteria are met:

• The node contains the minimum number of policyholders with true events;
• The set of explanatory variables for the split is empty;
• Or the minimum number of policyholders allowed in a node has been reached.

The defuzzification and ensemble strategy is represented in Figure 2; first, the CHF is
estimated at each tree, the results of the terminal nodes for an unknown policyholder are
aggregated with the Aggregation 1 function, then a Λ(t | Xi) for each tree is computed. To
combine the information of every tree, the Aggregation 2 function is used, and, finally, a
unique CHF for a policyholder is estimated. In [25], multiple strategies are presented as
aggregation functions.

Mathematics 2023, 11, x FOR PEER REVIEW 8 of 17

Figure 2. FRSF defuzzification and ensemble strategy.

In the following sections, the average is used as an aggregator operator for the Ag-
gregation 1 and 2 functions.

3. Results
3.1. Protocol

This section presents the set of experiments carried out; the comparative results show
the better performance of the FRSF. All experiments are conducted on a life insurance
portfolio, which is described below. We form two groups of experiments:
• FRSF behaviour in processing imprecise data.

- Missing values.
- Noisy data and outliers examples.

• Application of fuzzy survival models on a real insurance portfolio and comparison
with other survival models.
- FST in comparison with RST_log, RST_cind, and the Cox model.
- FRSF in comparison with RSF_log, RSF_cind, and the Cox model.
Each tree of the forest is built to its maximum size; therefore, until one of the param-

eters indicated below is met, pruning is not working.
In these experiments, the FRSF is compared with other state-of-the-art methods such

as RSF, when the rule to split is the log-rank test (RSF_log) or the c-index (RSF_cind), and
the Cox model. The Python libraries used are randomsurvivalforest [17], Skranger [26],
and scikit-survival [27].

For comparison of the tree-based survival algorithms, the following parameters are
set. The number of trees is 10, the maximum number of policyholders in a terminal node
is 100, and the number of lapse events in a terminal node is 50. The number of explanatory
variables for node splitting is sqrt(a), where a is the number of explanatory variables avail-
able at the node.

Prior to algorithm training, the numerical explanatory variables are normalised [0,
1]. Other variables are not transformed or entered into the fuzzification process.

To replicate the results shown below, the seed is fixed in all the randomness compo-
nents of the algorithm, such as bagging, bootstrapping, and the selection of explanatory
variables for the split, and in the genetic algorithm, the seed is chosen randomly but then
is fixed to be able to replicate its outputs.

3.2. Validating the Experiments by Statistical Tests
In these experiments, a fivefold cross-validation non-stratified technique was per-

formed 10 or 5 times independently. This is a statistical method that uses different

Figure 2. FRSF defuzzification and ensemble strategy.

Once the growing forest learning process has finished, the defuzzification process
starts at each tree; the objective is to compute a unique Λ for every unknown policyholder in
the test dataset. In every tree, the new policyholder is dropped from the root to the terminal
nodes. At each test node, policyholder i is evaluated according to the discriminatory
function

(
Xj, θn, βn

)
and follows one or multiple paths simultaneously. If there are missing

data, as in the training process, the policyholder continues through the two daughter nodes,
creating at least two simultaneous paths in the tree.

In every terminal node nt, a different Λnt is calculated, which represents the node and
is common for all policyholders that belong to nt. As mentioned before, it is possible for a
policyholder to reach multiple terminal nodes in the same tree, so for the tree prediction
of a unique CHF of an unknown policyholder, one can follow some basic aggregation
operators as the maximum, minimum, or average; this is represented as the Aggregation 1
function in Figure 2.

The FRSF ensemble for the forest consists of aggregating the different tree results; it
follows the basic strategy represented in Table 3. The information from the different trees is
combined to obtain a unique Λ of each policyholder of the test dataset.

Mathematics 2023, 11, 198 8 of 16

In the following sections, the average is used as an aggregator operator for the Aggre-
gation 1 and 2 functions.

3. Results
3.1. Protocol

This section presents the set of experiments carried out; the comparative results show
the better performance of the FRSF. All experiments are conducted on a life insurance
portfolio, which is described below. We form two groups of experiments:

• FRSF behaviour in processing imprecise data.

- Missing values.
- Noisy data and outliers examples.

• Application of fuzzy survival models on a real insurance portfolio and comparison
with other survival models.

- FST in comparison with RST_log, RST_cind, and the Cox model.
- FRSF in comparison with RSF_log, RSF_cind, and the Cox model.

Each tree of the forest is built to its maximum size; therefore, until one of the parameters
indicated below is met, pruning is not working.

In these experiments, the FRSF is compared with other state-of-the-art methods such
as RSF, when the rule to split is the log-rank test (RSF_log) or the c-index (RSF_cind), and
the Cox model. The Python libraries used are randomsurvivalforest [17], Skranger [26],
and scikit-survival [27].

For comparison of the tree-based survival algorithms, the following parameters are
set. The number of trees is 10, the maximum number of policyholders in a terminal node is
100, and the number of lapse events in a terminal node is 50. The number of explanatory
variables for node splitting is sqrt(a), where a is the number of explanatory variables
available at the node.

Prior to algorithm training, the numerical explanatory variables are normalised [0, 1].
Other variables are not transformed or entered into the fuzzification process.

To replicate the results shown below, the seed is fixed in all the randomness compo-
nents of the algorithm, such as bagging, bootstrapping, and the selection of explanatory
variables for the split, and in the genetic algorithm, the seed is chosen randomly but then is
fixed to be able to replicate its outputs.

3.2. Validating the Experiments by Statistical Tests

In these experiments, a fivefold cross-validation non-stratified technique was per-
formed 10 or 5 times independently. This is a statistical method that uses different partitions
of the dataset. Five random subsets of equal size are created; four subsets are used for
training, and the fifth is used for testing.

To compare the algorithms’ performance in the experiments below, the nonparametric
Friedman aligned test is used. Under the null hypothesis, it states that the algorithms are
equivalent, a rejection of which implies significant differences in the performance of all
algorithms. Finally, a post hoc Holm test [28] is performed to find statistically significant
differences between the control algorithm FRSF and the other algorithms.

The Wilcoxon signed-rank test [29] is used to compare the results of two algorithms.
The objective of this test is to detect differences in the performance of the two methods
when the null hypothesis is rejected.

3.3. Datasets Description

All experiments are applied on a real portfolio of a life insurance company; the
dataset is provided by one of the largest insurers in the Ecuadorian market. This dataset
is available at the following link: https://github.com/Jorandra/FRSF_survival_fuzzy_
prediction (accessed on 23 November 2022). A previous study used a similar but older
dataset from the same insurance company, which was presented and described in [30].

https://github.com/Jorandra/FRSF_survival_fuzzy_prediction
https://github.com/Jorandra/FRSF_survival_fuzzy_prediction

Mathematics 2023, 11, 198 9 of 16

The number of policyholders is 7914, and the study period is from 2007 to 2021; Table 4
describes the 11 explanatory variables.

Table 4. Description of Explanatory Variables.

Variable Data Description

Age Min 18, Mean 38.12, Max 73
Premium-Product Mean 209.12, std 618.25 main coverage
Premium–Complementaries Mean 39.05, std 582.95 complementaries coverages
Smoker-condition Yes: 6.42%, No: 93.58%
Sex F: 43.20%, M: 56.8%

Point of sales Q 36.25%, G 47.18%, C 8.45%,
M 7.28%, A 0.83%

The letters represent different
cities

Product type Term life 54.12%, Universal
life 45.88%

There are 11 sub-categories of
products

Distribution channel

Tied Agents 80.19%,
Corporate Agents 11.57%,
Individual Agents 8.21%,
Others 0.03%

Payment frequency Monthly 77.69%, Annual
18.81%, Others 3.50%

Others include four-monthly,
quarterly, and biannual

Payment method Bank debit 83.03%, Credit
card 16.94%, Payroll 0.03%

Profession A 78.09%, B 18.09%, C 3.82% Variable not detailed

The response variable is composed of two variables; the time variable measures
the policyholder’s time in the portfolio since the effective date, and the binary variable
censoring status indicates whether or not a lapse occurs in the study window. Table 5
describes the response variable.

Table 5. Description of the Response Variable.

Variable Data Description

Time Min 0, Mean 964, Max 5280 Data in days
Censoring Status Yes: 63%, No: 37% Yes: Lapse, No: others

Figure 3a shows the percentage of policyholders for which an event did or did not oc-
cur, and Figure 3b shows the number of policyholders at each time differentiated according
to their status of lapse or no lapse.

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 17

(a) (b)

Figure 3. Response variable (a) event status and (b) policies survival time by event type.

For the following experiments, we also create several sub-datasets to demonstrate
and validate the FRSF results.

The new sub-datasets are random samples from the original dataset (n_100). Their
sizes are 50%, 30%, and 10% (n_50, n_30, n_10) of the original. Sub-datasets have 11 ex-
planatory variables, as with the original one. To obtain the algorithm parameters for the
sub-datasets training, the indicated percentages are multiplied by the parameters of the
original dataset.

3.4. FRSF Results Processing Imperfect Data
The following experiments have material importance for datasets with imprecise,

vague, imperfect, or incomplete data. This situation is frequent in insurance business port-
folios. This experiment measures the behaviour and stability of the FRSF ensemble in da-
tasets with missing values, noise in the time, and outlier examples in the explanatory var-
iables.

As we mentioned in Section 2, in FRSF, one advantage is that missing values are not
excluded in the learning process, and they are handled automatically. No a priori assump-
tion on imputation to a missing value is necessary.

This experiment is divided into two, one for processing missing data and another for
noisy data.

The results of this subsection are shown as a comparison between FRSF performance
before and after introducing imperfect data. It measures how much the FRSF c-index de-
creases in the presence of imperfect data.

The decrease in the percentage of the c-index is computed, in accordance with [25],
as: %𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑐 − 𝑖𝑛𝑑𝑒𝑥 = 100 · 𝑐 − 𝑖𝑛𝑑𝑒𝑥(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) − 𝑐 − 𝑖𝑛𝑑𝑒𝑥(𝑖𝑚𝑝𝑒𝑟𝑓𝑒𝑐𝑡)𝑐 − 𝑖𝑛𝑑𝑒𝑥(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)

where c − index(original) is the c − index average for the original data and c-index(imperfect)
is the average for the dataset with imprecise data.

3.4.1. Results of the FST Processing Missing Data
In this experiment, missing data are introduced in the training and test datasets, both

in categorical and numerical variables.
A percentage m% of missing data are introduced in a dataset of |E| policyholders.

We randomly select 𝑚% · |𝐸| policyholders of the dataset that will be uniformly distrib-
uted; at each 𝑋 selected, a missing value is introduced.

This is a simulation study where different percentages of missing values are inserted
in each dataset as shown in Table 6. The percentages of missing values introduced are
10%, 15%, and 20%.

Figure 3. Response variable (a) event status and (b) policies survival time by event type.

For the following experiments, we also create several sub-datasets to demonstrate and
validate the FRSF results.

The new sub-datasets are random samples from the original dataset (n_100). Their sizes
are 50%, 30%, and 10% (n_50, n_30, n_10) of the original. Sub-datasets have 11 explanatory

Mathematics 2023, 11, 198 10 of 16

variables, as with the original one. To obtain the algorithm parameters for the sub-datasets
training, the indicated percentages are multiplied by the parameters of the original dataset.

3.4. FRSF Results Processing Imperfect Data

The following experiments have material importance for datasets with imprecise,
vague, imperfect, or incomplete data. This situation is frequent in insurance business portfo-
lios. This experiment measures the behaviour and stability of the FRSF ensemble in datasets
with missing values, noise in the time, and outlier examples in the explanatory variables.

As we mentioned in Section 2, in FRSF, one advantage is that missing values are
not excluded in the learning process, and they are handled automatically. No a priori
assumption on imputation to a missing value is necessary.

This experiment is divided into two, one for processing missing data and another for
noisy data.

The results of this subsection are shown as a comparison between FRSF performance
before and after introducing imperfect data. It measures how much the FRSF c-index
decreases in the presence of imperfect data.

The decrease in the percentage of the c-index is computed, in accordance with [25], as:

%decrease c− index = 100· c− index(original)− c− index(imper f ect)
c− index(original)

where c− index(original) is the c− index average for the original data and c-index(imperfect)
is the average for the dataset with imprecise data.

3.4.1. Results of the FST Processing Missing Data

In this experiment, missing data are introduced in the training and test datasets, both
in categorical and numerical variables.

A percentage m% of missing data are introduced in a dataset of |E| policyholders.
We randomly select m%·|E| policyholders of the dataset that will be uniformly distributed;
at each Xi selected, a missing value is introduced.

This is a simulation study where different percentages of missing values are inserted
in each dataset as shown in Table 6. The percentages of missing values introduced are 10%,
15%, and 20%.

Table 6. FRSF Performance for Different Percentages of Missing Values.

Datasets Introduction of Missing Values

Without 10% 15% 20%

% Decrease in C-Index

n_100 0.5583 0.614 0.573 0.945
n_50 0.5479 −0.162 −0.072 −0.038
n_30 0.5438 −0.054 −0.128 −0.254
n_10 0.5392 −0.058 0.726 0.698

In this experiment, for each dataset, a fivefold cross-validation is performed five times.
The Friedman aligned test accepts the null hypothesis of equality of the FRSF results before
and after introducing missing values with a confidence level of 99%. This confirms the
robustness of the algorithm in datasets with missing data.

3.4.2. Results of the FRSF Processing Data Noise

This experiment studies how noise can modify the FRSF performance. The experiment
is divided into two tests. In the first, noise is inserted in the response variable, and in the
second test, outlier values are inserted into the explanatory variables.

Mathematics 2023, 11, 198 11 of 16

Introducing Noisy Data into the FRSF

Noise is introduced into the response variable, Ti. Using a uniform distribution, 10%
of the observations are altered with a value that is chosen randomly among all the possible
time values. Noise data are introduced only in the training dataset.

Figure 4 shows the c-index differences of the FRSF with original data and the FRSF
after introducing noise in the time variable. In the displayed results, the worst scenario is a
3.7% decrease in the c-index for the n_30 size dataset. On the other hand, the differences in
the median are close to 0% across all datasets.

Mathematics 2023, 11, x FOR PEER REVIEW 11 of 17

Table 6. FRSF Performance for Different Percentages of Missing Values.

Datasets Introduction of Missing Values

 Without 10% 15% 20%
 % Decrease in C-Index

n_100 0.5583 0.614 0.573 0.945
n_50 0.5479 −0.162 −0.072 −0.038
n_30 0.5438 −0.054 −0.128 −0.254
n_10 0.5392 −0.058 0.726 0.698

In this experiment, for each dataset, a fivefold cross-validation is performed five
times. The Friedman aligned test accepts the null hypothesis of equality of the FRSF re-
sults before and after introducing missing values with a confidence level of 99%. This con-
firms the robustness of the algorithm in datasets with missing data.

3.4.2. Results of the FRSF Processing Data Noise
This experiment studies how noise can modify the FRSF performance. The experi-

ment is divided into two tests. In the first, noise is inserted in the response variable, and
in the second test, outlier values are inserted into the explanatory variables.

Introducing Noisy Data into the FRSF
Noise is introduced into the response variable, 𝑇 . Using a uniform distribution, 10%

of the observations are altered with a value that is chosen randomly among all the possible
time values. Noise data are introduced only in the training dataset.

Figure 4 shows the c-index differences of the FRSF with original data and the FRSF
after introducing noise in the time variable. In the displayed results, the worst scenario is
a 3.7% decrease in the c-index for the n_30 size dataset. On the other hand, the differences
in the median are close to 0% across all datasets.

Figure 4. FRSF performance with noisy data in different datasets.

For each dataset, a fivefold cross-validation is performed five times. The Wilcoxon
ranked test is applied to the FRFS results; it does not show significant differences with a
confidence level of 90%. These results validate that the FRSF has good performance in
insurance datasets with noisy data.

Figure 4. FRSF performance with noisy data in different datasets.

For each dataset, a fivefold cross-validation is performed five times. The Wilcoxon
ranked test is applied to the FRFS results; it does not show significant differences with a
confidence level of 90%. These results validate that the FRSF has good performance in
insurance datasets with noisy data.

Effect of Outliers

In this experiment, outlier values are inserted in the explanatory variables of the
training dataset. The interquartile method for calculating outliers is used. The lower q1,
median q2, and upper q3 quartiles of each numerical attribute are used; additionally, min is
the lowest value and max is the highest one.

1. Select a numerical explanatory variable Xnum_i at each dataset.
2. For the selected explanatory variable, calculate v∗ = min{v/q3 + (v− 0.5)

iq ≤ max (Xnumi) ≤ q3 + v.iq}, where iq = q3 − q1 (inter-quartile range for Xnum_i).
3. Select 1% of Xnum_i values.
4. Define v1 = v∗ + 0.5 , v2 = v∗ + 1, and v3 = v∗ + 1.5.
5. For each selected value, Xnum_i is altered by a randomly selected value in the interval

[q3 + vi.iq; q3 + (vi + 0.5).iq] for i = 1, 2, 3. At each experiment, a different value is
obtained depending on v1, v2 , and v3.

Then, three new datasets with outliers are obtained for each original dataset according
to v1, v2, and v3. The results are shown in Table 7.

In this experiment, for each dataset, a fivefold cross-validation is performed five times.
The Friedman aligned test accepts the null hypothesis of equality of the results of the
FRSF results before and after introducing outliers with a 95% confidence level. The results
confirm the good performance of the algorithm in the presence of outliers.

Mathematics 2023, 11, 198 12 of 16

Table 7. FRSF Performance with Outlier Examples.

Datasets Outliers

Without v1 v2 v3

% Decrease in C-Index

n_100 0.5583 −0.058 0.007 −0.071
n_50 0.5479 −0.888 −0.922 −0.855
n_30 0.5438 −0.498 −0.558 −0.603
n_10 0.5392 −0.323 −0.382 −0.572

3.5. Application of the FST to an Insurance Dataset and Comparison of the FST with Other
Survival Models

In this experiment, the FST is applied to a life insurance portfolio for lapses prediction.
In Figure 5, the results validated the findings of [16], where FST performance is better

than those of RST_logrank and RST_cind (RST means an RSF algorithm in which the
number of trees is 1).

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 17

Figure 5. FST performance compared with other survival models using the original dataset
(n_100).

3.6. Application of the FRSF in Insurance and Comparing the FRSF with other Survival Models
In this experiment, the application of the FRSF to an insurance portfolio to predict

lapses is presented. Additionally, we compare FRSF’s performance with other state-of-
the-art methods constructed using survival trees to measure FRSF’s effectiveness. We also
compare it against Cox’s traditional model.

Figure 6 shows the better results of FRSF among the state-of-the-art methods. The
median of all differences is greater than zero, which means that FRSF’s c-index is higher
than that of each other technique compared.

Compared to the results of the previous experiment, it is clearly demonstrated how
the multi-FST ensemble in the FRSF provides better performance than a single base
learner.

Figure 5. FST performance compared with other survival models using the original dataset (n_100).

However, it was also observed that a single fuzzy survival learner is not enough to
overcome the performance of the Cox proportional model. For this reason, the following
section shows the behaviour of FRSF, which is a multi-tree ensemble that outperforms the
traditional Cox model.

3.6. Application of the FRSF in Insurance and Comparing the FRSF with Other Survival Models

In this experiment, the application of the FRSF to an insurance portfolio to predict
lapses is presented. Additionally, we compare FRSF’s performance with other state-of-
the-art methods constructed using survival trees to measure FRSF’s effectiveness. We also
compare it against Cox’s traditional model.

Figure 6 shows the better results of FRSF among the state-of-the-art methods. The
median of all differences is greater than zero, which means that FRSF’s c-index is higher
than that of each other technique compared.

Mathematics 2023, 11, 198 13 of 16Mathematics 2023, 11, x FOR PEER REVIEW 14 of 17

Figure 6. C-index difference between FRSF and each survival model using the original dataset
(n_100).

In this experiment, the original dataset (n_100) is used. To validate the results in this
experiment, a fivefold cross-validation is performed 10 times. The Friedman aligned test
rejects the null hypothesis of equality of the algorithms’ results with a confidence level of
99.9%, placing the FRSF in the top of the ranking. Following a post hoc Holm test for each
pair of comparisons between the control algorithm FRSF and the other survival tech-
niques, the null hypothesis is rejected with a 99%, 99%, and 93% confidence level for the
RSF_log, Cox, and RSF_cind models, respectively.

3.7. Computational Time
This experiment is a comparison of the computational time among the tree-based

survival algorithms used in this study.
Table 8 shows the CPU times in minutes of RSF_log, RSF_cind, and FRSF. They come

from an average of 50 runs of each algorithm; we use a computer with Intel(R) Core(TM)
i7-1065G7 1.50 GHz, 16 GB RAM, Windows 10.

Table 8. Computational Time for Different Datasets and Number of Trees.

Datasets nº_Trees FRSF RSF_log RSF_cind
n_100 10 186.2 2.2 2.1
n_50 10 47.3 0.9 0.8
n_30 10 15.9 0.4 0.3
n_10 10 12.8 0.3 0.2
n_100 1 4.5 0.1 0.1
n_50 1 5.6 0.1 0.1
n_30 1 4.4 0.1 0.1
n_10 1 3.2 0.1 0.1

Figure 6. C-index difference between FRSF and each survival model using the original dataset (n_100).

Compared to the results of the previous experiment, it is clearly demonstrated how
the multi-FST ensemble in the FRSF provides better performance than a single base learner.

In this experiment, the original dataset (n_100) is used. To validate the results in this
experiment, a fivefold cross-validation is performed 10 times. The Friedman aligned test
rejects the null hypothesis of equality of the algorithms’ results with a confidence level of
99.9%, placing the FRSF in the top of the ranking. Following a post hoc Holm test for each
pair of comparisons between the control algorithm FRSF and the other survival techniques,
the null hypothesis is rejected with a 99%, 99%, and 93% confidence level for the RSF_log,
Cox, and RSF_cind models, respectively.

3.7. Computational Time

This experiment is a comparison of the computational time among the tree-based
survival algorithms used in this study.

Table 8 shows the CPU times in minutes of RSF_log, RSF_cind, and FRSF. They come
from an average of 50 runs of each algorithm; we use a computer with Intel(R) Core(TM)
i7-1065G7 1.50 GHz, 16 GB RAM, Windows 10.

Table 8. Computational Time for Different Datasets and Number of Trees.

Datasets nº_Trees FRSF RSF_log RSF_cind

n_100 10 186.2 2.2 2.1
n_50 10 47.3 0.9 0.8
n_30 10 15.9 0.4 0.3
n_10 10 12.8 0.3 0.2

n_100 1 4.5 0.1 0.1
n_50 1 5.6 0.1 0.1
n_30 1 4.4 0.1 0.1
n_10 1 3.2 0.1 0.1

Mathematics 2023, 11, 198 14 of 16

4. Discussion

The FRSF, thanks to the introduction of the fuzzy sets, makes it possible to process
missing data both in the learning and prediction stages.

The FRSF’s performance is robust to the presence of imprecise data such as noise in
the response variable and missing values or outliers in the explanatory variables. The
performed statistical tests validate the generalisation error that is not lower when original
and imperfect c-index results are compared.

Furthermore, when we work with the FRSF algorithm, the performance with imperfect
data is better than those of the FST, Cox, and RSF algorithms by definition, as FRSF improves
these algorithms’ performance using original data as it is demonstrated in Section 3.6.

In the results shown in the previous section, it is verified that a single tree, as in the
FST algorithm, does not show better performance compared to the traditional Cox model.
Thus, it is necessary to propose an algorithm that ensembles multiple trees.

In FRSF, the computational time is much higher than those of the RSF_log or RSF_cind,
whereas it is expected between RSF log and RSF_cind that there are no important differences;
however, the FRSF performs better than the Cox model with a relatively small number of
ensembles, and this behaviour is not observed in the RSF algorithm.

In all experiments, a piecewise linear membership function is used; for future work,
other membership functions may be proposed. Additionally, the average operator is used
as the aggregation function for the FRSF ensemble; in the future, it may be proposed to
move to other functions, such as maximum, minimum, or even other aggregation methods
or aggregation strategies in the defuzzification step, as proposed in [25].

5. Conclusions

In this article, we propose the new FRSF algorithm as an ensemble of multiple fuzzy
survival trees to solve the time-to-event problem.

The introduction of fuzzy logic in the FRSF algorithm makes it possible to work with
imprecise data without lower generalisation capacity. Specifically, insurance datasets can
present missing, outliers, or noisy data, and the generalisation capacity does not decrease.

One of the main advantages of FRSF is that no a priori assumption of the value
imputed to a missing value is necessary. In practical terms, the FRSF can process missing
data automatically.

The FRSF algorithm shows an improvement in performance compared to other tree-
based algorithms and the Cox proportional model when insurance datasets are used.

The FRSF and FST algorithms are applied to a real portfolio of a life insurance company
for predicting lapses rates.

The computational time for FRSF is higher than for other right-censored machine
learning algorithms such as RSF. This is the price paid for having better performance and
the possibility of processing missing data.

Additionally, all the comparative results of the experiments are validated by
statistical methods.

More accurate lapses rates could yield a significant variation in the determination of
the best estimate and solvency capital requirement for insurance companies. In commercial
terms, new competitive products could be designed, as well as a differentiated treatment
for policyholders regarding their lapse probability.

The FRSF is in Python code, which facilitates its manipulation and future extension;
the code is available at https://github.com/Jorandra/FRSF_survival_fuzzy_prediction
(accessed on 23 November 2022).

Future work on this topic may focus on alternative membership functions for elements
at each node or different aggregation functions for the ensemble. In order to overcome the
FRSF’s limitation in computational time consumption, it could be implemented in other
computer languages to increase the processing speed.

https://github.com/Jorandra/FRSF_survival_fuzzy_prediction

Mathematics 2023, 11, 198 15 of 16

Author Contributions: Conceptualization, J.L.A. and J.L.V.; data curation, J.L.A.; formal analysis,
J.L.V.; investigation, J.L.A.; supervision, J.L.V.; visualization, J.L.A.; writing—original draft, J.L.A.;
writing—review and editing, J.L.A. and J.L.V. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: https://github.com/Jorandra/FRSF_survival_fuzzy_prediction (ac-
cessed on 23 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. International Accounting Standards Board. IFRS17:Insurance Contracts. 2017. Available online: https://www.ifrs.org/supporting-

implementation/supporting-materials-by-ifrs-standards/ifrs-17/ (accessed on 23 November 2022).
2. EIOPA. EIOPA Report on the Fifth Quantitative Impact Study (QIS5) for Solvency II; EIOPA: Frankfurt, Germany, 2011.
3. Cox, D.R. Regression Models and Life-tables. J. R. Stat. Soc. Ser. B 1972, 34, 187–202. [CrossRef]
4. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
5. Peto, R.; Peto, J. Asymptotically Efficient Rank Invariant Test Procedures. J. R. Stat. Soc. Ser. A 1972, 135, 185. [CrossRef]
6. Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random Survival Forests. Ann. Appl. Stat. 2008, 2, 841–860. [CrossRef]
7. Kurt Omurlu, I.; Ture, M.; Tokatli, F. The Comparisons of Random Survival Forests and Cox Regression Analysis with Simulation

and an Application Related to Breast Cancer. Expert Syst. Appl. 2009, 36, 8582–8588. [CrossRef]
8. Aleandri, M.; Eletti, A. Modelling Dynamic Lapse with Survival Analysis and Machine Learning in CPI. Decis. Econ. Financ. 2021,

44, 37–56. [CrossRef]
9. Ptak-Chmielewska, A.; Matuszyk, A. Application of the Random Survival Forests Method in the Bankruptcy Prediction for Small

and Medium Enterprises. Argum. Oeconomica 2020, 2019, 127–142. [CrossRef]
10. Schmid, M.; Wright, M.N.; Ziegler, A. On the Use of Harrell’s C for Clinical Risk Prediction via Random Survival Forests. Expert

Syst. Appl. 2016, 63, 450–459. [CrossRef]
11. Begenova, S.; Avdeenko, T. The Research of Fuzzy Decision Trees Building Based on Entropy and the Theory of Fuzzy Sets. In Pro-

ceedings of the Collection of Selected Papers of the IV International Conference on Information Technology and Nanotechnology,
Samara, Russia, 24–27 April 2018; pp. 296–303.

12. Begenova, S.B.; Avdeenko, T.V. Building of Fuzzy Decision Trees Using ID3 Algorithm. J. Phys. Conf. Ser. 2018, 1015, 022002.
[CrossRef]

13. Olaru, C.; Wehenkel, L. A Complete Fuzzy Decision Tree Technique. Fuzzy Sets Syst. 2003, 138, 221–254. [CrossRef]
14. Cintra, M.; Monard, M.; Camargo, H. A Fuzzy Decision Tree Algorithm Based on C4.5. Mathw. Soft Comput. 2013, 20, 56–62.
15. Idris, N.F.; Ismail, M.A. Breast Cancer Disease Classification Using Fuzzy-ID3 Algorithm with FUZZYDBD Method: Automatic

Fuzzy Database Definition. PeerJ Comput. Sci. 2021, 7, e427. [CrossRef] [PubMed]
16. Andrade, J.L.; Valencia, J.L. A Fuzzy Survival Tree (FST). In Building Bridges between Soft and Statistical Methodologies for Data

Science. SMPS 2022. Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2023; Volume 1433, pp. 16–23.
17. Julian, S. Random-Survival-Forest 2021. Available online: https://github.com/julianspaeth/random-survival-forest (accessed on

20 November 2022).
18. Pena-Reyes, C.A.; Sipper, M. Fuzzy CoCo: A Cooperative-Coevolutionary Approach to Fuzzy Modeling. IEEE Trans. Fuzzy Syst.

2001, 9, 727–737. [CrossRef]
19. Harrell, F.E. Evaluating the Yield of Medical Tests. JAMA J. Am. Med. Assoc. 1982, 247, 2543–2546. [CrossRef]
20. Liao, T.W.; Celmins, A.K.; Hammell, R.J. A Fuzzy C-Means Variant for the Generation of Fuzzy Term Sets. Fuzzy Sets Syst. 2003,

135, 241–257. [CrossRef]
21. Aliev, R.A.; Pedrycz, W.; Guirimov, B.G.; Aliev, R.R.; Ilhan, U.; Babagil, M.; Mammadli, S. Type-2 Fuzzy Neural Networks with

Fuzzy Clustering and Differential Evolution Optimization. Inf. Sci. 2011, 181, 1591–1608. [CrossRef]
22. Cintra, M.; Monard, M.; Cherman, E.; de Arruda, C.H. On the Estimation of the Number of Fuzzy Sets for Fuzzy Rule-Based

Classification Systems. In Proceedings of the 2011 11th International Conference on Hybrid Intelligent Systems, HIS, Melacca,
Malaysia, 5–8 December 2011; pp. 211–216.

23. Bozorg-Haddad, O.; Solgi, M.; Loáiciga, H.A. Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization; Wiley:
Hoboken, NJ, USA, 2017.

24. Cintra, M.; Camargo, H.; Martin, T. Optimising the Fuzzy Granulation of Attribute Domains. In Proceedings of the 2009
International Fuzzy Systems Association World Congress and 2009 European Society for Fuzzy Logic and Technology Conference,
IFSA-EUSFLAT 2009—Proceedings, Lisbon, Portugal, 20–20 July 2014; pp. 742–747.

https://github.com/Jorandra/FRSF_survival_fuzzy_prediction
https://www.ifrs.org/supporting-implementation/supporting-materials-by-ifrs-standards/ifrs-17/
https://www.ifrs.org/supporting-implementation/supporting-materials-by-ifrs-standards/ifrs-17/
http://doi.org/10.1111/j.2517-6161.1972.tb00899.x
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.2307/2344317
http://doi.org/10.1214/08-AOAS169
http://doi.org/10.1016/j.eswa.2008.10.023
http://doi.org/10.1007/s10203-020-00285-9
http://doi.org/10.15611/aoe.2020.1.06
http://doi.org/10.1016/j.eswa.2016.07.018
http://doi.org/10.1088/1742-6596/1015/2/022002
http://doi.org/10.1016/S0165-0114(03)00089-7
http://doi.org/10.7717/peerj-cs.427
http://www.ncbi.nlm.nih.gov/pubmed/34013024
https://github.com/julianspaeth/random-survival-forest
http://doi.org/10.1109/91.963759
http://doi.org/10.1001/jama.1982.03320430047030
http://doi.org/10.1016/S0165-0114(02)00136-7
http://doi.org/10.1016/j.ins.2010.12.014

Mathematics 2023, 11, 198 16 of 16

25. Bonissone, P.; Cadenas, J.M.; Carmen Garrido, M.; Andrés Díaz-Valladares, R. A Fuzzy Random Forest. Int. J. Approx. Reason.
2010, 51, 729–747. [CrossRef]

26. Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat.
Softw. 2017, 77, i01. [CrossRef]

27. Poelsterl, S. Scikit-Survival: A Library for Time-to-Event Analysis Built on Top of Scikit-Learn. J. Mach. Learn. Res. 2020, 21, 1–6.
28. Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70.
29. Wilcoxon, F. Individual Comparisons by Ranking Methods. Biometrics 1945, 1, 80–83. [CrossRef]
30. Andrade, J.L.; Valencia, J.L. Modeling Lapse Rates Using Machine Learning: A Comparison between Survival Forests and Cox

Proportional Hazards Techniques. An. Inst. Actuar. Esp. 2021, 27, 161–183. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.ijar.2010.02.003
http://doi.org/10.18637/jss.v077.i01
http://doi.org/10.2307/3001968
http://doi.org/10.26360/2021_7
http://www.ncbi.nlm.nih.gov/pubmed/36484079

	Introduction
	FRSF Algorithm for Survival Analysis
	FRSF: The Survival Analysis and Fuzzy Logic Basis
	FRSF Is an Ensemble Based on Fuzzy Survival Trees
	In FRSF the Base Learner Is a Fuzzy Survival Tree
	FRSF Defuzzification and Ensemble

	Results
	Protocol
	Validating the Experiments by Statistical Tests
	Datasets Description
	FRSF Results Processing Imperfect Data
	Results of the FST Processing Missing Data
	Results of the FRSF Processing Data Noise

	Application of the FST to an Insurance Dataset and Comparison of the FST with Other Survival Models
	Application of the FRSF in Insurance and Comparing the FRSF with Other Survival Models
	Computational Time

	Discussion
	Conclusions
	References

