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Abstract: The present exploration discusses the combined effect of non-linear thermal radiation along
with viscous dissipation and magnetic field through a porous medium. A distinctive aspect of our
work is the simultaneous use of porous wall and a porous material. The impact of thermal rays is
essential in space technology and high temperature processes. At the point when the temperature
variation is very high, the linear thermal radiation causes a noticeable error. To overcome such
errors, nonlinear thermal radiation is taken into account. The coupled system of ordinary differential
equations are derived from the partial differential equation. The dimensional model equations are
transformed into non-dimensional forms using some appropriate non-dimensional transformation
and the resulting nonlinear equations are solved numerically by executing persuasive numerical
technique R-K integration procedure with the shooting method. Graphical analysis were used to
assess the consequences of engineering factors for the momentum, angular velocity, concentration and
temperature profiles. The skin friction values, local Sherwood and Nusselt number are the fascinating
physical quantities whose numerical data are computed and validated against different parametric
values. The vortex viscosity parameter and spin gradient viscosity parameter shows the reverse
phenomenon on micro-rotation profile. The thermal radiation phenomena flattens the temperature
and speeds up the heat transfer rate in the lower wall and a peak in the concentration is observed
for the Pem >> 1 due to the inertial force. The Variational Iteration Method (VIM) and Adomian
Decomposition Method (ADM) are the two analytical approach which have been incorporated here
to decipher the non linear equations for showing better approximity. Comparisons with existing
studies are scrutinized very closely and they are determined to be in good accord.

Keywords: micropolar fluids; heat and mass transfer; porous medium; non-linear thermal radiation;
magnetic field; viscous dissipation; Runge–Kutta–Fehlberg method; Adomian decomposition method;
variational iteration method

MSC: 34A25; 76A05; 76S05; 80A19

1. Introduction

Non-Newtonian fluids have extensive applications in industry and engineering sec-
tors. No single relation exists that entirely describes the features of non-Newtonian fluids.
Applications depicting the characteristics of non-Newtonian fluids include foams, apple
sauce, sugar solution, soaps, clay, and lubricants, etc. Numerous non-Newtonian liquid
models are defined by the researchers. Among these, micropolar fluids are category of
fluids that include co-polymerized molecules with irregular structures which moves in a
viscous medium. Gyratory micro-sized particles in these fluids create new subtleties in
contemporary high-tech engineering mechanics and ergonomics. Some typical examples of
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micropolar fluids include the extraction of crude oil, sludge and blood flows, polymeric
materials, liquid precipitation and fluids with bar-like components. In contrast to classical
fluids, which only display translational momentum, micropolar fluids exhibit both rota-
tional and translational momentum concurrently. Eringen [1] was the first person who
rooted out that the Navier-Stokes premises, do not effectively describe the aspects of many
physiological fluids, which display microscopic influences resulting from the local structure
and micro motions of the fluid constituents. One form of fluid that fits within this class is
micropolar fluid. Later, Eringen [2] expanded his initial ideas to include thermo-micropolar
fluids and created constitutive laws. Applications for this type of transport phenomenon
study includes the aerodynamic extruded plastics, blow molding, rolling and extrusion
in manufacturing processes as well as water phase during condensation processing. By
using Eringen’s theory, Lukaszewicz [3] investigated the mathematical characteristics of
the micropolar fluid flow idea and identified the non-Newtonian nature of these fluids. In
addition, the theoretical simulations for describing how microorganisms move through
blood while being heated which was scrutinized by Rana et al. [4] and he examined the
effects of velocity gradient on the micro-organisms floating in blood by treating blood as a
Williamson fluid.

The research community has been interested in channel flows owing to their uses in the
disciplines of binary gas diffusion, micro-fluidic devices, surface cremation, temperature
control, flocculation, granular regression and designing of air to circulate in the nasal
passages. Since micropolar fluid is a trendy topic of the study many researchers have looked
into the flow and heat transmission problem connected with it. Due to its widespread use
in numerous fluid fluxes, the flow of micropolar fluid via soddened porous media has
drawn tremendous attention. Convection flow liable to porous channel act as a component
in environmental and industrial circuits including geothermal energy systems and heat
exchanges devices. Heat transport analysis on porous surfaces is extremely practical due to
its many uses. On the other hand, flow of porous media has is important application in heat
removal from nuclear fuel, debris, underground disposal of radioactive waste material,
micro-emulsions, geotechnical hydrodynamics and paper production, etc. Rocks, dunes in
seashore, respiratory track, granite, the bile duct and alimentary canal with stones in blood
capillaries are the typical examples of natural porous materials.

Owing to their tremendous uses in areas including MHD generating electricity, blood
plasma, mettaloids, paper manufacture, micro-floppy and fractional distillation porous
media play a vital part in the fluid transportation of many bio-mechanics research. Later
Tetbirt et al. [5] studied the effect of micropolar fluid subject to the vertical channel in
the conducting fields. Pal and Biswas [6] investigated the MHD flow on a chemically
reactive micropolar fluid in a porous medium. Nisar et al. [7] explores the heat and mass
transportation of MHD micropolar fluid in a porous annulus and they concluded that The
material parameters promotes the growth of micro-rotation profile but the magnetized
particles shows the varying effects. In view of that, Ashraf et al. [8] examined the movement
of micropolar fluids via a porous tube and they considered different permeability in channel
annulus. By using a porous shrinkage layer, Turkyilmazoglu [9] looked into the details of
energy transfer in micropolar fluid flow. Cao et al. [10] discussed the analysis of micropolar
fluid using a porous improved conduits. In a small-width permeable channel, Lu et al. [11]
focused on the two-dimensional flow of a micropolar fluid. Numerous scholars can examine
the pressure distribution of blood circulation in glomerular of the kidneys using the data
that they established. By adopting FEM, Shamshuddin and Thumma [11] were able to
compute a theoretical formulation of MHD diffusive flow in micropolar fluid past a porous
media and discovered that high values of the micro-rotation component reduces the angular
velocity profile. Tiwari et al. [12] conducted an empirical evaluation by employing heat
transfer approach to assess the flow of micro polar fluid across a porous multilayered
microvessels. Micropolar fluid flow over a linear stretching surface with magnetic field
was analytically studied by Siddheshwar and Mahabaleshwar [13].
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The cumulative impact of mass and energy transport in streams have a variety of ap-
plications in earth sciences and technological field including energy absorption, geological
underground aquifers, drying, evaporation at the surface of a water body, synthesized
substances, refrigeration in atomic furnace, drying of absorbents, pollution investigations,
porcelain fabrication, solvent extraction, fiber insulating material, latent heat vaporization.
Over the past few decades, there has been a lot of research conducted on the issues of
combined effects of mass and heat transports. The significance of thermal radiation in
heat transmission has huge applications in a wide range of thermal engineering fields,
including industrial operations that use hybrid solar and electric power systems, aircraft,
nuclear power plants, rocket motors, missiles and satellite communications. Most probably,
thermal radiation happens as a result of significant temperature difference between the
two media. For investigations with greater temperature variations, it is not suitable to take
linear thermal radiation into account. Therefore, in contrast to linear thermal radiation, the
researchers recently suggested the idea of nonlinear thermal radiation with the inclusion
of some parameters. This additional parameter exhibits the difference between surface
temperature and uniform temperature [14]. Viscous dissipation alters temperature distribu-
tions and impacts heat transfer rates by acting as an energy source. Depending on whether
the sheet is being heated or cooled, viscous dissipation works differently.

Hayat et al. [15] studied the effects of nonlinear thermal radiation on the three-
dimensional nanofluid flow past a stretching sheet. Animasaun et al. [16] analyzed the
effects of nonlinear thermal radiation and induced magnetic field on viscoelastic fluid flow
toward a stagnation point. From this study, they concluded that the nonlinear thermal radi-
ation improves the temperature profiles and suppresses the rate of heat transfer. Radiative
magneto hydrodynamic nanofluid flow due to gyrotactic microorganisms with chemical
reactions and non-linear thermal radiation is explored by Ramzan et al. [17]. Brownian
movement and thermophoresis behaviors in radiative flow of micropolar nanoliquids with
Lorentz force is demonstrated by Patel and Singh [18].

By exploiting the contribution of viscous dissipation, Xinhui Si et al. [19] were able to
tackle the micropolar fluid problem with dilating or shrinking walls in a absorbent conduits.
In contrast, the MHD micropolar fluid in a vertical permeable channel with scattering of
viscous phenomenon was explored by Muthuraj et al. [20]. Sheri and Shamshuddin [21]
study the MHD flow of a micropolar liquid across a stretched surface with chemical reaction
and viscous dissipation. In order to account for viscous dissipation, Ahmad et al. [22]
numerically investigated the heat and mass transfer flow of an incompressible micropolar
fluid through a resistive porous material between channel walls. They explored a clear view
for the cause of viscous dissipation affects the rate of heat and mass transfer at the channel’s
lower and upper walls as well as how a rise in the Eckert number and the Peclet number
for heat diffusion affects the rate of heat transfer at both sides of a wall. Algehyne et al. [23]
have deliberated the influence of viscous dissipation and nonlinear thermal radiations
upon micropolar MHD fluid flow and have established that fluid flow has decayed with
growth in magnetic parameter while thermal characteristics have enlarged with upsurge
in electric, magnetic, thermal ratio and radiation factors. Many articles that explore the
significance of non linear thermal radiation with viscous dissipation effects are in [24,25].

In the absence of sufficient experimental data for micropolar fluids, the goal of this
work is to investigate the impact of the engineering parameters of the micropolar fluid flow
in a permeable channel by means of theoretical study. The preponderance of engineering
issues, particularly some heat transfer equations are non-linear. As a result, some of them
are resolved numerically and others analytically. In this analysis, we investigated the
micropolar fluids with a porous annulus analytically by Variational Iteration Method (VIM)
and Adomian Decomposition Method (ADM).

The variational iteration method (VIM) is a new approach for finding the approximate
solution of linear and nonlinear problems. This method was considered interesting due to
its simplicity, high accuracy and efficiency in finding analytical solutions. The Lagrange
multipliers, which can be ideally found by variational theory that can be used to create
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correction function and from the possible unknown the initial approximations, can be
selected are the main novelty of this method. The predictions that this technique generates
are accurate for both very large and small parameters [26–28]. Moreover, Adomian decom-
position method is one of the semi-exact methods that does not require linearization or
discretization, and various modifications has strengthened its efficacy. This method has the
benefit of being able to approximate a solution to large class of nonlinear equations without
the use of linearization, perturbation, closure approximation, or discretization techniques.
As a result, its predictions are more accurate. Many scientists have chosen to employ this
technique to address fluid dynamic topics because of ADM advantages [29–31].

A review and analysis of litrature has revealed that a numerical study on MHD microp-
olar fluid past a porous material in a permeable channel with the extra effects of non-linear
thermal radiation, viscous dissipation and magnetic field has not been analytically evalu-
ated by VIM and ADM. By applying the similarity transformations to the governed partial
differential equations, the corresponding non-dimensional ordinary differential equations
are obtained and then tackled numerically by MATLAB-bvp4c with the aid of shooting
technique. The consequence of various factors includes velocity, angular momentum,
temperature, concentration are portrayed graphically and discussed convincingly. Further,
tables were incorporated in order to understand the consequences of different parameters
on skin friction coefficients, Sherwood and Nusselt numbers. Additionally, the equation are
solved analytically by Adomian decomposition method and variational iteration method
for showing better approximations. The analytical results and the numerical results are
compared for the non dimensionless parameter f (η) and θ(η) and also the numerical
results are compared with previously published articles. Both numerical and analytical
results comparison are found to be in remarkable agreement.

The following are the research questions to enrich the novelty of the study:

• How do the porosity parameter and magnetic number affect the velocity profile?
• How do the vortex viscosity parameter and magnetic parameter affects the angular

velocity profile.
• Why non-linear thermal radiation is chosen to analyze the heat transfer process?
• In what way the radiation term and temperature ratio parameter affects the tempera-

ture profile?
• How does the Peclet number for heat and mass transfer affect the temperature and

concentration profile?
• What is the superiority of ADM and VIM compared with other analytical method?

2. Problem Formulation

We perceive the steady state laminar flow of a micropolar fluid in a two-dimensional
tube through a resistive porous medium between a channel, where fluid is uniformly
added or vented at velocity v0. The thermal radiation and effects of viscous dissipation
are incorporated in the energy equation. The parapet of the channel have the co-ordinates
y = ±h and adjacent to the x axis where the channel width is indicated as 2h. T1, C1, and
T2, C2 are the temperature and concentration for the lower and upper wall accordingly.
In geometrical concept, the Cartesian coordinate system is chosen in such way that the
x-axis is measured along the direction of the plate, y-axis is normal to the plate and z-axis
is considered to be zero. The physical geometry with its co-ordinate system is shown
in Figure 1.
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Figure 1. Physical representation of the problem.

For the flow assumptions listed above, the appropriate governing differential equation
has the form:
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u
∂T
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+ v
∂T
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=
k
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∂2T
∂y2 −

1
ρcp

∂q∗r
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+
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+
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ρcp

(
∂u
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)2
(5)

u
∂C
∂x

+ v
∂C
∂y

= D
∂2C
∂y2 (6)

where (u,v,0) are the velocity components for (x,y,z) axes, respectively, and ρ, cp, k, k∗, N, P,
D, T, C, j, qr and k are the fluid density, specific heat at constant pressure, vortex viscosity,
Darcy permeability, molecular diffusivity, micro-rotation or angular velocity, fluid pressure,
temperature, species concentration, micro inertia density, radiative heat flux and thermal
conductivity, respectively.

Due to fundamental distinctions between radiation and convection-conduction energy
exchange systems, the thermal radiation phenomena has critical significance at high ab-
solute temperatures. Some equipment is made to function at high temperatures in space
missions for achieving high thermal efficacy. Because of this, when assessing thermal effects
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with high temperatures, radiation effects play a crucial role. In accordance with non-linear
radiation the Rosseland’s approximation the heat flux radiation q∗r is given by,

q∗r = −
(

4σ

3k0

)
∂T4

∂y
(7)

Here, σ is Stefan’s Boltzmann constant and k0 is the absorption coefficient. The simi-
larity variable related to the Energy equation is T = T2[1 + (θw − 1)θ] with the temperature
ratio parameter θw = T1

T2
. Now, Equation (5) reduces to

u
∂T
∂x

+ v
∂T
∂y

=
k

ρcp

∂2T
∂y2 +

4σ

3 k0 ρcp
4T3 ∂2T

∂y2 +
σ∗ B2

0 u2

ρ cp
+

µ + κ

ρcp

(
∂u
∂y

)2
(8)

The imposed boundary constraints according to the flow are,

u = 0, v = −v0, N = −s ∂u
∂y , T = T1, C = C1, at y = −h

u = 0, v = +v0, N = v0x
h2 , T = T2, C = C2, at y = +h

}
(9)

In these boundary assumptions, S is referred to as a boundary parameter, and v0 > 0
describes the suction velocity, while v0 < 0 mentions the injection velocity. The condition
v = ±v0 shows that the fluid is being sucked (injected) uniformly through the channel walls,
whereas u = 0 represents the no slip condition due to stationary walls. Moreover, N indicates
micro-rotation of the fluid at the walls. The case s = 0 represents concentrated particle flows
in which micro elements close to the wall are unable to rotate. Other interesting particular
cases that have been considered in the literature include s = 0.5 which represents weak
concentrations and the vanishing of the antisymmetric part of the stress tensor and s = 1
which represents turbulent flow.

3. Dimensionless Formulation

Dimensionless variables are highlighted as follows for non-dimensionalize the pro-
vided governed equations:

η =
y
h

, ψ = −v0x f (η), N = g(η)
v0x
h2 , (10)

θ(η) =
T − T2

T1 − T2
, φ(η) =

C− C2

C1 − C2
,

By using these similarity variables, the Equations (1)–(6) are changed into a set of
ordinary differential equations.

(1 + N1) f
′′′′ − N1 g

′′ − Re( f f ′′′ − f ′ f ′′)− P0(1 + N1) f ′′ − Ha f ′′ = 0 (11)

N1( f ′′ − 2g) + N2 g′′ − N3 Re( f g′ − f ′g) = 0 (12)(
1 +

1
R
(1 + (θw − 1)θ)3

)
θ′′ +

(
3
R
(θw − 1)(1 + (θw − 1)θ)2

)
θ′2 (13)

+Peh( f ′θ − f θ′) + Pr Ha Ec f ′2 + Pr Ec (1 + N1) f ′′
2
= 0

φ′′ + Pem
(

f ′φ− f φ′
)
= 0 (14)

In perspective of Equation (10), the boundary conditions are transformed as follows,

f ′ = 0, f = −1, g = 0, θ = 1, φ = 1 at η = −1
f ′ = 0, f = 1, g = 1, θ = 0, φ = 0 at η = +1

}
(15)
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where,

N1 =
κ

µ
, N2 =

νs

µh2 , N3 =
j

h2 , Re =
v0

ν
h, P0 =

h2

k∗
(16)

Ha =
h

2
σ∗B

2

0
µ

, Sc =
ν

D
, Gr =

gβr Ah4

ν2 , Peh = PrRe, θw =
T1

T2

Pem = ScRe, Nr =
3k0k

16σT3
∞

, Pr =
νρcp

k
, Ec =

v2
0

cp (θw − 1)

Here, N1, N2 and N3 are the vortex viscosity, spin gradient viscosity and micro-inertia
density, respectively, Re is the Reynolds number, P0 is the porosity parameter, Magnetic
parameter is denoted as Ha, Pr is the Prandtl number, Sc is the Schmidt number, Peh and
Pem are the Peclet number for heat and mass transfer, Eckert number is denoted as Ec, Rn
is the Radiation parameter.

4. Numerical Approach

The Runge–Kutta–Fehlberg integration methodology has been executed here to decipher
the set of ordinary differential Equations (11)–(14) with boundary constraint Equation (15) nu-
merically. The R-K method along with shooting process is enacted here which is composed
of a number of repeating procedures for deriving the solutions. The boundary constraints
and the guided equations are merged together to create a series of first order derivatives,

( f , f ′, f ′′, f ′′′, g, g′, θ, θ′, φ, φ′) = ( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10) (17)

In terms of Equation (17), Equations (11)–(14) takes the following form,

f ′4 =

N1
N2

(−N1( f3 − 2 f5) + N3 Re( f1 f6 − f2 f5)) + Re( f1 f4 − f2 f3) + P0(1 + N1) f3 + Ha f3

1 + N1
(18)

f ′6 =
−N1( f3 − 2 f5) + N3Re( f1 f6 − f2 f5)

N2
(19)

f ′8 =
−( 3

Nr
(θw − 1)(1 + (θw − 1) f7)

2) f
2

8 − Peh( f2 f7 − f1 f8)− PrHaEc f
2

2 − PrEc(1 + N1)y
2

3

(1 + 1
Nr
(1 + (θw − 1) f7)3)

(20)

f ′10 = −Pem f2 f9 + Pem f1 f10

The boundary condition Equation (15) becomes,

f1 = −1, f2 = 0, f5 = 0, f7 = 1, f9 = 1 at η = −1
f1 = 1, f2 = 0, f5 = 1, f7 = 0, f9 = 0 at η = +1

}
(21)

Since f3(0), f4(0), f6(0), f8(0), f10(0) and f12(0) are not prescribed here, we set the
initial guess value of f3(0) = s1, f4(0) = s2, f6(0) = s3, f8(0) = s4 and f10(0) = s5. Because
of the unavailability of sufficient initial conditions, we mounted shooting procedure here
for obtaining the missing initial conditions with minimal computation. The unknown
initial constraints s1, s2, s3, s4 and s5 are assumed and the values of assumed missing initial
conditions are corrected by correlating the computed value of the dependent variable at
end point with its provided value. This RK technique includes a procedure to detect if the
appropriate step size h is being utilized. There is a correlation between the two predictions
of the solution for each stage. The approximation is valid if the two responses are almost
equal; otherwise, the step size h is adjusted until the required accuracy is reached (i.e.,
10−6). The bvp4c matlab routine is carried here where the results are graphically displayed
and the important findings of this assessment are listed.
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5. Analytical Approach

For the strengthening of results, a significant quantity of research has been devoted to
the study of nonlinear problems through the analytical findings. Our focus in this research
on two prominent methodologies such as ADM and VIM. The fundamental benefit of
the two approaches is that they may be used directly for any kind of homogeneous or
inhomogeneous differential and integral problems. Further significant benefit of the men-
tioned algorithms is their tendency to drastically reduce the amount of computing labour
required while retaining a huge level of accuracy in the solution [32–34]. By obtaining
precise solutions to the models under investigation, the efficacy and utility are proved by
both the techniques. By using the correction functional, VIM approach produces a number
of subsequent approximations. This potent method VIM unifies the treatment of both linear
and nonlinear equations. The Adomian decomposition approach, on the other hand, offers
the precise solution’s component parts, where they ought to come after the summation
term. Additionally, the ADM involves the evaluation of the Adomian polynomials whereas
the VIM demands the evaluation of the Lagrangian multiplier.

5.1. Adomian Decomposition Method (ADM)

The Adomian decomposition approach were adopted here for solving the non-linear
differential Equations (11)–(14) in accordance with the boundary constraints Equation (15).
Due to the method’s numerous uses in science and technology, researchers have taken a
particularly keen interest in it.

Consider an equation Qu(t) = g(t), where the term Q indicates a general nonlinear
ordinary or partial differential operator which includes both linear and nonlinear terms in
it. The linear terms are decomposed into L + R, where L is the invertible operator (often
the derivatives of highest order) and R is the left over linear operator. Thus, the equation
can be prescribed in the form,

Lu + Nu + Ru = g (22)

Here, Nu denotes the terms that are not linear. As L is invertible, we can solve this
equation for Lu and then write as:

L−1Lu = L−1g− L−1Ru− L−1Nu (23)

where L and L−1 are the second-order operator and two fold indefinite integral, respectively.
After elucidating the above equation, we have:

u = A1 + B1t + L−1g− L−1Ru− L−1Nu (24)

where A1 and B1 are integration constants that can be computed from the initial and
boundary conditions. This methodology surmises that the expansion of a solution u into
infinite series as follows:

u =
∞

∑
n=0

un (25)

Furthermore, the non-linear term Nu will be expressed as:

Nu =
∞

∑
n=0

An (26)

Here, An represent the special Adomian polynomial whereas, the next component of
u can the found from the Adomian polynomial An.

un+1 = L−1
∞

∑
n=0

An (27)
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After some iterations and obtaining adequate accuracy, the solution can be finally ex-
pressed as Equation (24). There are many procedures for formulating Adomian Polynomials
for Equation (27), here we have used recursive formulation.

An =
1
n!

[
dn

dλn

[
N

(
n

∑
i=0

λiui

)]]
λ=0

(28)

Since the method does not focus on linearization or the assumption of weak nonlin-
earity, the results are generally more accurate than when the physical problem’s model
was simplified.

According to Equation (22), the governing Equations (11)–(14) can be expressed in the
following form,

L1 f =
1

1 + N1

[
N1g

′′
+ Re( f f ′′′ − f ′ f ′′) + P0(1 + N1) f ′′ + Ha f ′′

]
(29)

L2g =
1

N2

[
N1(− f ′′ + 2g) + N3Re( f g′ − f ′g)

]
= 0 (30)

L3θ =
1(

1 + 1
Nr
(1 + (θw − 1)θ)3

)(− 3
Nr

(θw − 1)(1 + (θw − 1)θ)2
)

θ′2 (31)

−Peh( f ′θ − f θ′)− Pr Ha Ec f ′2 − Pr Ec (1 + N1) f ′′
2

L4φ = −Pem f ′φ + Pem f φ′ (32)

Here, L1, L2, L3, L4 and L5 are the differential operator which is given by, L1= d4

dη4 and

L2 = L3 = L4= d2

dη2 and also assume the inverse of the operator L−1
1 , L−1

2 , L−1
3 , L−1

4 exists
which can be integrated from 0 to η. (i.e.,)

L−1
1 =

∫ η

0
(•)dηdηdηdη (33)

L−1
2 = L−1

3 = L−1
4 = L−1

5 =
∫ η

0
(•)dηdη (34)

5.2. Variational Iteration Method (VIM)

The underneath differential equations should be taken into consideration for imple-
menting VIM methodology,

L∗u + N∗u = g∗(t) (35)

where L
∗

and N
∗

are the linear and nonlinear operator and g
∗
(t) is an in-homogeneous

term. The VIM proposes correctional function for Equation (35) with the form,

un+1(t) = un(t) +
t∫

0

Λ
{

L
∗
un(τ) + N

∗
un(τ)− g

∗
(τ)
}

dτ (36)

Here, Λ is the Lagrange multiplier that can be detect by implementing variational
theory, and un as a restricted variation which means δūn = 0, the subscript n indicates the
nth-order approximation. It should be emphasized that the Lagrange multiplier Λ may be
either a constant or a function, In order to proceed the strategy, it is necessary to predict the
Lagrange multiplier Λ(t), which can be conducted by utilizing integration by parts and
restricted variation.

The correction function can be considered as follows:

un+1 = un +
∫ t

0
Λ{unω − (D(un)unx)}dω (37)
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where δD(un) is a restricted variation that can be determined as follows:

Λ
′
(ω) = 0 (38)

1 + Λ(ω) = 0, ω = t (39)

The iteration formula with the Lagrange multiplier Λ = −1 can be prescribed as:

un+1 = un +
∫ t

0
{unω − (D(un)unx)x}dω (40)

The solution for the current problem is given as,

f0 η = −1
2

η3 +
3
2

η (41)

g0 η =
1
2
(η + 1) (42)

θ0 η =
1
2
(−η + 1) (43)

φ0 η =
1
2
(−η + 1) (44)

The Lagrange multiplier Λ can be calculated as:

Λ1 =
(ω− η)3

6
, Λ2 = ω− η, Λ3 = ω− η, Λ4 = ω− η

6. Results Discussion and Code Validation

The nonlinear ODEs (11)–(14) along with boundary constraint Equation (15) are
complicated to solve. On that basis, here we have intended to calculate the solutions
by implementing R-K methodology along with shooting technique in a Matlab software.
Additionally, analytical techniques ADM and VIM are also demonstrated in this assessment
for showing the accuracy of numerical work. The importance of various parameters such
as dimensionless parameters N1, N2 and N3, Reynolds number, Peclet number for heat and
mass transfer, porosity parameter, magnetic parameter, Eckert number, temperature ratio
parameter and Radiation parameter are graphically portrayed. Tables were incorporated in
this study for a better evaluation of shear stress, rate of micro-organisms, heat and mass
transfer rate in the channel. Throughout the analysis the values of the parameters are
N1 = 3, N2 = 2, N3 = 1, Re = 1, Pem = 2, Peh = 2, P0 = 1, Ha = 0.1, Ec = 0.1, Nr =
0.1, θw = 1.01, Pr = 1 unless otherwise specified.

Figures 2 and 3 exhibits the comparison sketch of velocity profile f (η) and temperature
profile θ(η) for numerical (RK-45) and analytical (VIM and ADM) results for the parameters
N1 = N2 = N3 = P0 = Ha = Nr = Ec = 0.1, Peh = Pem = 0.2, Re = 1, θw = 1.01, Pr = 1.
The main calculations are mentioned in the Appendix A elaborately for both ADM and
VIM formulations.
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Figure 2. Velocity profile f (η) compared with Numerical and Analytical results for the parameters
N1 = N2 = N3 = P0 = Mg = Nr = Ec = 0.1, Peh = Pem = 0.2, Re = 1, θw = 1.01, Pr = 1.

Figure 3. Temperature profile θ(η) compared with Numerical and Analytical results for the parame-
ters N1 = N2 = N3 = P0 = Mg = Nr = Ec = 0.1, Peh = Pem = 0.2, Re = 1, θw = 1.01, Pr = 1.

Figure 4 shows the influence of velocity profile over a Reynolds number. We can
predict that when we increase the Reynolds number the velocity profile decreases. The
fluid system whose viscosity significantly affects the flow pattern can be identified with
the help of Reynolds number. Physically, as the liquid flow rate diminishes, the velocity
declines as well. Here, the profile is fully obsessed by viscous force. The same trend prevails
over the micro-rotation profile also.
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Figure 4. Velocity profile for varied Re.

To show the influence of porosity parameter P0 on the temperature profile Figure 5
is drawn. As expected the velocity profile decreases when enhancement in the porosity
parameter. By making the channel’s surface more permeable, the velocity is dropped. The
stoutness of the pores inside a permeable channel is connected to the rational explanation
for such a diminishing trend. As a result, the fluid reacts with a repulsive force coming
from the opposite direction of the flow fields, which causes the velocity boundary layer
thickness to drop.

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f'

P
0
 = 1,3,5,7,9

Figure 5. Velocity profile for various values of porosity parameter P0.

The influence of Magnetic factor Ha over the velocity profile are depicted in the
Figure 6. This figure shows the declining behavior in the velocity figure for various Ha
values. The astounding application of a transverse magnetic field, which produces a
resistivity force known as the Lorentz force, which is comparable to the drag force which
provide the physical explanation for this type of behavior. As a result, as Ha rises, the drag
force enhances, which causes the flow to slow down, so velocity decreases by increasing
the magnetic character.
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Figure 6. Velocity profile for different magnetic number Ha.

The micro-rotation profile for different coupling parameter or vortex viscosity pa-
rameter are sketched in Figure 7. From this outline, we can analyzed that the magnitude
of micro-rotation tends to decrease when we increases the coupling parameter or vortex
viscosity parameter. The micro-rotation profile gradually increases towards the lower plate
of channel and behaves differently from the midsection of the plate close to the upper plate.
Due to the particle’s delicate concentration the character N1 attains Maximum rotation
near the lower plate therefore this type of behavior exists in micro-rotation profile when
enhancement in the vortex viscosity parameter N1.

-1 -0.5 0 0.5 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

g

N
1
 = 2,3,5

Re>>1

Re<<1

Figure 7. Micro-rotation for different N1 with high and low viscous force.

The effect of spin gradient viscosity parameter N2 over an angular velocity profile is
engrafted in Figure 8. An increasing trend is noted throughout the channel in the upper
annulus. The micro-rotation function g accelerates close to the upper wall whereas it
exhibiting the opposite retardation pattern close to the lower wall. The fluid’s spin gradient
viscosity reduced as N2 increased, which led to imperfections in the fluid particles motion.
Figure 9 portrays the effect of micro inertia density parameter over a angular velocity profile.
Here, the micro-rotation decreases for the higher factors of N3 in upper wall however, it
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shows the opposite trend in lower wall. Furthermore the angular velocity profile changes
the concavity somewhere near the midpoint of the channel for the magnetic parameter.
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Figure 8. Micro-rotation versus spin gradient viscosity parameter N2.
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3
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Figure 9. Variation in Micro inertia density parameter N3 for high and low viscous force.

The influence of Magnetic parameter Ha on the micro-rotation profile is manifested
in Figure 10. The magnetic parameter increases in the upper wall whereas it decreases
in the lower wall. The physical reason for this type of change in behavior is the Lorentz
force which has a resistivity force equivalent to drag force that makes the fluid experience a
resistance by increasing the friction between its layers and thus increases its micro-rotation
near the upper wall. Figure 11 is sketched to show the effect of Eckert number Ec for high
and low values of heat transfer Peclet number on the dimensionless parameter θ(η). The
Peclet number for heat transfer Peh is the product of Reynolds number and Prandtl number.
We can note that there is an increase in temperature profile when Prandtl and Reynolds
number increases. Physically, the momentum diffusivity and inertial forces dominates
vigorously in temperature profile due to this reason there is a surge in the temperature
profile. From this figure we observed that the temperature profile increases when we
increases viscous dissipation effects. According to the physical view the temperature
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profile and Ec prevails a direct relationship with each other. The physical reason behind
this type of scenario is that the Eckert number enhances the kinetic energy due to this inter
molecular collision is increasing, so the temperature profile increases. Although Eckert
number helps in the conversion of kinetic energy into internal energy by opposing fluid
stresses. Therefore greater the viscous dissipative heat causes a rise in the temperature.

-1 -0.5 0 0.5 1
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0.1
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0.5
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0.7

0.8

0.9

1
g

Ha = 0.1,0.3,0.5,0.7,0.9

Figure 10. Micro-rotation versus Magnetic parameter Ha.
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>>1
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Figure 11. Temperature profile for different values of Eckert number with high and low levels of
Peclet number for heat transfer Peh.

The variations in the Prandtl number against the temperature profile is predicted
in Figure 12. Here, we noticed that an increase in the values of Prandtl number creates
a reduction in the temperature profile. A rise in the Prandtl number corresponds to
weaker thermal diffusivity. It is a well known fact that the fluids with weaker thermal
diffusivity have lower temperature. Such weaker thermal diffusivity shows a reduction
in the temperature and thermal boundary layer thickness. We also analyzed that fluid
temperature enhances for increasing values of Ha. In fact magnetic field is associated with
Lorentz force which produces resistance to the motion of particles. Thus, more heat is
produced. It consequently increases temperature and thermal boundary layer thickness.
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Figure 12. Temperature profile for different values of Prandtl number.

The variation of Nr on the non dimensionalize temperature profile θ(η) is revealed in
Figure 13. The temperature profile decreases when increasing the phenomenon of radiation
Nr. The fact explained for this type of result is that decrease in the radiation parameter
R meant to be decrease in the Rosseland’s radiation absorptive. It is established that as
the permittivity falls, the divergence of the radiative heat flow ∂q∗r

∂y starts to rise which
insinuates that the rate of radiative heat transferred to the fluid increases owing to this the
temperature diminishes. Figure 14 is planted to obtain a clear view on the temperature
profile for the temperature ratio parameter θw. As expected the heating parameter boosts
the temperature and thickness of the thermal boundary layer. This increasing behavior is
perhaps because of the reason: As θw = T1

T2
increases the operating temperature difference

(T1 − T2) increases and this corresponds to the increases of the thermal state of the fluid
resulting in increases in temperature profiles. Influence of Pem on concentration profile
is represented in Figure 15. Peclet number for mass transfer is the product of Reynolds
number and Schmidt number. From this figure we can analyze that there is a rapid increases
in the concentration profile for the higher values of Pem. We can also observed that there
will be a peak in the concentration for the Pem >> 1 due to more inertial force applied.
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Figure 13. Temperature profile for various values of radiation parameter Nr.
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Figure 14. Temperature profile for different levels of temperature ratio parameter θw.
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Figure 15. Concentration profile for various values of Peclet number for mass transfer Pem.

In Table 1, the outcomes are effectively compared with the existing articles of [35,36]
for f (η) and θ(η) at N1 = N2 = N3 = Re = Peh = Pem = 0.1, P0 = Ha = Nr = Ec = 0.
Tables 2 and 3 are mounted here in order to view the numerical and analytical results
validation for f (η) and θ(η) for the parameters N1 = N2 = N3 = P0 = Mg = Rn = Ec =
0.1, Peh = Pem = 0.2, Re = 1, θw = 1.01, Pr = 1. Table 4 shows the skin friction values for
various values of Reynolds number, vortex viscosity, porosity and magnetic parameter. It
can be viewed that the skin friction values decreases when we increases Reynolds number
in lower and upper wall. The skin friction values increases when increases the magnetic
number in the lower wall whereas the reverse trend is noted in the upper wall. Table 5
is encrypted to show the Nusselt number values at various values of thermal radiation
term, Eckert number, porosity and magnetic parameter. We can observed that the heat
transfer rate increases in the lower wall and decreases in the upper wall correspondingly
the Nusselt number decreases in the lower annulus and increases in the upper annulus
for increasing values of Eckert number values. Table 6 displays the Sherwood number
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values for different mass transfer Peclet number, Reynolds number, porosity and magnetic
number for the cases of high and low viscous force. From this table we can know that the
Sherwood number increases in the lower annulus, however it decreases in upper annulus.

Table 1. Comparison table for f (η) and θ(η) at N1 = N2 = N3 = Re = Peh = Pem = 0.1, P0 = Ha =

Nr = Ec = 0.

Numerical Results

η f (η) θ(η)

Present Results Literature [35] Literature [36] Present Results Literature [35] Literature [36]

−1 −0.999999 −1 −1 0.999999 1 1

−0.8 −0.943910 −0.943889 −0.943853 0.909591 0.909562 0.909561

−0.6 −0.791605 −0.791757 −0.791599 0.818970 0.818914 0.818912

−0.4 −0.567102 −0.567738 −0.295686 0.726688 0.726610 0.726605

−0.2 0.621160 0.621165 0.621160 0.631831 0.631742 0.631734

0 0.001970 0 8.14 × 10−13 0.533923 0.533835 0.533825

0.2 0.298157 0.295835 0.295686 0.432823 0.432742 0.432737

0.4 0.569915 0.567738 0.567524 0.328631 0.328571 0.328563

0.6 0.793262 0.791757 0.791599 0.221584 0.221544 0.221538

0.8 0.944445 0.943889 0.943853 0.111965 0.111945 0.111942

1 1 1 1 0 0 0

Table 2. Numerical and Analytical results validation for f (η) for the parameters N1 = N2 = N3 =

P0 = Ha = Nr = Ec = 0.1, Peh = Pem = 0.2, Re = 1.

η f (η)NU M f (η)ADM f (η)V IM

−1 −1 −0.991187 −0.848750

−0.8 −0.942612 −0.941534 −0.909184

−0.6 −0.788848 −0.791491 −0.786459

−0.4 −0.564296 −0.567940 −0.567526

−0.2 −0.293073 −0.295998 −0.295990

0 0.001294 0 0

0.2 0.295483 0.295998 0.295990

0.4 0.566196 0.567940 0.567526

0.6 0.790007 0.791791 0.786459

0.8 0.943005 0.941531 0.909184

1 1 0.991187 0.848750

Table 3. Numerical and Analytical results validation for θ(η) for the parameters N1 = N2 = N3 =

P0 = ha = Nr = Ec = 0.1, Peh = Pem = 0.2, Re = 1.

η θ(η)NU M θ(η)ADM θ(η)V IM

−1 1 1.011693 1.000000

−0.8 0.907783 0.906892 0.889632

−0.6 0.814341 0.803208 0.790784

−0.4 0.718910 0.701014 0.695296

−0.2 0.621160 0.600131 0.598848

0 0.521108 0.500000 0.500000

0.2 0.419032 0.399868 0.399232

0.4 0.315380 0.298985 0.297984

0.6 0.210677 0.196791 0.197696

0.8 0.105425 0.093107 0.098848

1 0 −0.011693 −0.000001
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Table 4. Table values for skin-friction at various values of Re, N1, P0, Ha.

Re N1 P0 Ha f ′′(−1) f ′′(+1)

0.1

1

0.1
0.1 3.03075693 −2.9140140
0.3 3.05059889 −2.9346138
0.5 3.07033151 −2.9550899

1
0.1 3.20550833 −3.09510636
0.3 3.22441278 −3.11465427
0.5 3.24321921 −3.13409317

3

0.1
0.1 2.96246626 −2.61024483
0.3 2.97243614 −2.62136373
0.5 2.98237963 −2.6324449

1
0.1 3.13799613 −2.80485426
0.3 3.14751138 −2.81533854
0.5 3.15700259 −2.82579014

3

1

0.1
0.1 2.63571963 −3.54554686
0.3 2.66932666 −3.56240713
0.5 2.7023711 −3.57937237

1
0.1 2.92141356 −3.69995395
0.3 2.95109937 −3.71734373
0.5 2.98042261 −3.73475378

3

0.1
0.1 2.93011104 −2.60797715
0.3 2.94159375 −2.62055067
0.5 2.95303829 −2.6330743

1
0.1 3.13116496 −2.82702306
0.3 3.14199858 −2.83876397
0.5 3.15279838 −2.85046238

Table 5. Table values for Nusselt number at various values of Nr, Ec, P0, Ha.

Nr Ec P0 Ha −θ′(−1) −θ′(+1)

0.5

0.5

0.1
0.1 −0.52235455 1.12730298
0.3 −0.56353378 1.15291334
0.5 −0.60462149 1.17848312

1
0.1 −0.50548628 1.11587118
0.3 −0.54611874 1.14117643
0.5 −0.58668587 1.16645647

1

0.1
0.1 −1.28749058 1.60590433
0.3 −1.37011473 1.65773933
0.5 −1.45254232 1.70946438

1
0.1 −1.25517384 1.58527646
0.3 −1.33669037 1.63646255
0.5 −1.41806512 1.68759003

1.5

0.5

0.1
0.1 −0.22977973 0.65968306
0.3 −0.27017615 0.67421018
0.5 −0.31053466 0.68873936

1
0.1 −0.21591700 0.65463068
0.3 −0.25575187 0.66899326
0.5 −0.29556943 0.68336359

1

0.1
0.1 −0.98466242 0.93321072
0.3 −1.06703783 0.96337151
0.5 −1.10820333 0.97845345

1
0.1 −0.95466686 0.92270556
0.3 −1.03583161 0.95242927
0.5 −1.11692093 0.98218711

2.5

0.5

0.1
0.1 0.02844384 0.47956902
0.3 −0.01027970 0.48928915
0.5 −0.04899951 0.49901518

1
0.1 0.03870808 0.47716153
0.3 0.00045747 0.48680983
0.5 −0.03780857 0.49646556

1.5

0.1
0.1 −0.69651762 0.66164154
0.3 −0.77672460 0.68193716
0.5 −0.81684114 0.69210542

1
0.1 −0.67144335 0.65622783
0.3 −0.75038308 0.67625805
0.5 −0.82940928 0.69634174
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Table 6. Table values for Sherwood number at various values of Re, Pem, P0, Ha.

Re Pem P0 M −φ′(−1) φ′(+1)

0.5

0.5

0.1
1 0.09049591 1.01213098
3 0.09196038 1.00934866
5 0.09331174 1.00672027

2
1 0.09549966 1.00233443
3 0.09659781 1.00006941
5 0.09762307 0.99791445

2.5

0.1
1 3.18338485 −1.4665947
3 3.18830548 −1.4828353
5 3.19322282 −1.4986293

2
1 3.20203016 −1.5259728
3 3.20688324 −1.5405845
5 3.21169920 −1.5548001

5

0.5

0.1
1 0.11605991 1.00085941
3 0.11499436 0.99886207
5 0.11426621. 0.99685709

2
1 0.11352000 0.99331531
3 0.11331770 0.99141162
5 0.11321857 0.98956335

2.5

0.1
1 3.14123546 −1.3900296
3 3.15022379 −1.4158994
5 3.15868590 −1.4399207

2
1 3.17287387 −1.4794332
3 3.18028355 −1.4996793
5 3.18740999 −1.5188976

7. Concluding Remarks

We have envisioned a channel’s flow as having two permeable or porous walls. Be-
tween the channel’s walls, a porous material has also been taken into consideration. A
distinctive aspect of our work is the simultaneous use of porous walls and a porous material
in between these walls. In this prosecution, we studied MHD micropolar fluid flow with
the impact of radiation and porosity along with the effects of viscous dissipation. Tables
were included for a full examination and the leading parameters for this study are shown vi-
sually. Additionally, the Runge–Kutta-Fehlberg method and variational iteration, Adomian
decomposition method are used to solve the nonlinear governed equations by numerically
and analytically. The results are compared and tabulated with previous findings. Some of
the key findings for this study are as follows:

• The vortex viscosity parameter and spin gradient viscosity parameter shows the
opposite reaction on micro-rotation profile.

• The porosity parameter increases the surface drag, while its effect reduces the mass
and thermal transit rates.

• The presumptions obviously demonstrate that the micro-rotation and velocity are
restrained by the porosity parameter and the Reynolds number.

• Increasing the magnetic field opposing the fluid motion.
• Increases the Eckert number rises the kinetic energy which enhances the temperature.
• The effect of viscous dissipation is to increase the heat transfer rate.
• The thermal radiation phenomena flattens the temperature and speeds up the heat

transfer rate in the lower wall
• Temperature distribution upgraded with increases in the temperature ratio parameter.
• The skin friction values increases when increases the magnetic number in the lower

wall whereas the reverse trend is noted in the upper wall.
• The impact of thermal rays is essential in space technology and high temperature

processes. At the point when the temperature variation is very high, the linear thermal
radiation causes a noticeable error. To overcome such errors, nonlinear thermal
radiation is taken into account.

• VIM and ADM having high accuracy in solving nonlinear differential problems.
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Appendix A

Appendix A.1. ADM Formulation

After implementing the parameters values N1 = N2 = N3 = P0 = Ha = Nr = Ec =
0.1, Peh = Pem = 0.2, Re = 1, θw = 1.01, Pr = 1, the governing Equations (11)–(14) are
transformed as:

f (η) = −0.50η3 + 1.50η − 0.003571428571η7 − 0.005250000000η5

+ 1.87312687310−6η13 + 6.25000000310−6η11

+ 1.09375000010−6η9

(A1)

g(η) = 0.5η + 0.5− 0.06666666667η3 − 0.08750000000η2

+ 0.003177083334η5 + 0.009166666667η4 − 0.0002395833334η7

− 0.0008541666665η6 + 5.20833333310−6η9

+ 0.00002343750000η8

(A2)

θ(η) = −0.5η + 0.5 + 0.00062500000η4 + 0.07500000000η2

+ 0.01097500000η5 − 0.05000000000η3 + 0.00003750000001η8

− 0.0007821428571η7 + 0.001375000000η6

+ 0.00008333333334η9

(A3)

φ(η) = −0.5η + 0.5 + 0.07500000000η2 + 0.009625000000η5

+−0.01437500000η4 − 0.05000000000η3 + 0.00008333333334η9

− 0.0001875000000η8 − 0.0006964285714η7

+ 0.002125000000η6

(A4)

Appendix A.2. VIM Formulataion

After implementing the parameters values N1 = N2 = N3 = P0 = Ha = Nr = Ec =
0.1, Peh = Pem = 0.2, Re = 1, θw = 1.01, Pr = 1, the governing Equations (11)–(14) are
transformed as:

f (η) = −0.50η3 + 1.50η − 0.1250000000η7 − 0.02625000000η5 (A5)

g(η) = 0.499999999999998 + 0.02500000000η5 + 0.0375000000000000η4

+ 0.200000000000000η3 + 0.0125000000000006η2

+ 0.499999999999998η

(A6)

θ(η) = 0.499999999999993− 0.05000000000η5 − 0.0150000000000000η4

− 0.0749999999999848η2 − 0.500000000000004η
(A7)

φ(η) = 0.500000000000000− 0.05000000000η5 + 0.0750000000000000η4

+ 4.44089209850063η310−17 − 0.0749999999999998η2

− 0.500000000000000η

(A8)
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