
Citation: Murata, M. Global

Well-Posedness for the Compressible

Nematic Liquid Crystal Flows.

Mathematics 2023, 11, 181. https://

doi.org/10.3390/math11010181

Academic Editor: Marco Pedroni

Received: 30 October 2022

Revised: 17 December 2022

Accepted: 19 December 2022

Published: 29 December 2022

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Global Well-Posedness for the Compressible Nematic Liquid
Crystal Flows
Miho Murata 1,2

1 Department of Mathematical and System Engineering, Faculty of Engineering, Shizuoka University,
3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka, Japan; murata.miho@shizuoka.ac.jp

2 Mathematical Institute, Graduate School of Science, Tohoku University, 6-3 Aramaki, Aza-Aoba, Aoba-ku,
Sendai 980-8578, Miyagi, Japan

Abstract: In this paper, we prove the unique existence of global strong solutions and decay estimates
for the simplified Ericksen–Leslie system describing compressible nematic liquid crystal flows in RN ,
3 ≤ N ≤ 7. Firstly, we rewrite the system in Lagrange coordinates, and secondly, we prove the global
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1. Introduction

Nematic liquid crystals are aggregates of elongated, rod-like molecules that possess
the same orientational order (cf. [1]). A continuum theory for the hydrodynamics of nematic
liquid crystals was developed by Ericksen [2] and Leslie [3] in the 1960s. In this paper, we
consider the following simplified Ericksen–Leslie system modeling compressible nematic
liquid crystal flows in the N dimensional Euclidean space RN , 3 ≤ N ≤ 7.

∂tρ + div (ρv) = 0 in RN for t ∈ (0, T),

ρ(∂tv + (v · ∇)v)−Div (S(v)− P(ρ)I)

= −ηDiv
(
∇d�∇d− 1

2
|∇d|2I

)
in RN for t ∈ (0, T),

∂td + (v · ∇)d = ζ(∆d + |∇d|2d) in RN for t ∈ (0, T),

(ρ, v, d)|t=0 = (ρ∗ + ρ0, v0, d∗ + d0) in RN .

(1)

Here, ∂t = ∂/∂t, t is the time variable, ρ = ρ(x, t), x = (x1, . . . , xN) ∈ RN is the
density function of the fluid, v(x, t) = (v1(x, t), . . . , vN(x, t))T is the fluid velocity, where
MT denotes the transposed M, d = (d1(x, t), . . . , dN(x, t))T is the macroscopic average
of the nematic liquid crystal orientation field, and P(ρ) is the pressure satisfying a C∞

function defined on (0, ∞) and P′(ρ∗) > 0, where ρ∗ is a positive constant describing
the mass density of the liquid crystal flows in RN . For the vector of functions u, we set
div u = ∑N

j=1 ∂juj, and also for N × N matrix field A with (j, k)th components Ajk, the

quantity Div A is an N-vector with jth component ∑N
k=1 ∂k Ajk, where ∂k = ∂/∂xk. The

tensor S(u) is
S(u) = µD(u) + (ν− µ)div uI,

where µ and ν are the viscosity coefficients satisfying µ, ν > 0, D(u) = ∇u + (∇u)T is the
deformation tensor, I is the N× N identity matrix. Moreover, η and ζ are positive constants
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describing the competition between kinetic and potential energy and the microscopic elastic
relaxation time, respectively; ∇d�∇d = (∇d)T∇d, |∇d|2 = ∑N

i,j=1(∂idj)
2, and d∗ is a

constant vector.
The system (1) is a simplified version, but still retains most of the interesting mathe-

matical properties of the original Ericksen–Leslie system; see [4–6] for more discussions on
the relations between the two models. The simplified Ericksen–Leslie system modeling
the motion of incompressible nematic liquid crystals was first derived by Lin [7]. Since the
nonlinear term |∇d|2d with the restriction |d| = 1 causes mathematical difficulties, Lin [7]
introduced the Ginzburg–Landau approximation of the simplified Ericksen–Leslie system,
namely, |∇d|2d in the third equation of (1) is replaced by the Ginzburg–Landau energy
functional ∇(|d|2 − 1)2/ε2 or more general smooth and bounded functions. Consequently,
Lin and Liu [5] proved the global existence of weak solutions in the two-dimensional case
and the three-dimensional case.

In the past several decades, there are many results on the analysis of (1) by overcoming
the difficulty induced by the nonlinear term |∇d|2d. For the incompressible case, Li and
Wang [8] considered the problem in a three-dimensional bounded smooth domain and
obtained a global strong solution with small data in certain Besov spaces. Hineman and
Wang [9] proved the global well-posedness in R3 with small initial data in the space of
uniformly locally L3-integrable functions. Wang [10] established the global well-posedness
in RN for small initial data (v0, d0) belonging to BMO−1 × BMO with div v0 = 0, which
is a invariant space with respect to parabolic scaling associated with the system for the
incompressible nematic liquid crystal flows. Schonbek and Shibata [11] obtained the global
well-posedness and decay properties in RN for small initial data by using the maximal
Lp-Lq regularity and Lp-Lq decay estimates for the Stokes and heat equations, which is the
same as our motivation.

For the compressible case, Ding, Lin, Wang, and Wen [12] obtained the existence
and uniqueness of global strong solutions in dimension one. Later, this result about the
classical solution was improved in the presence of a vacuum by Ding, Lin, Wang, and
Wen [13]. For the multi-dimensional case, Huang, Wang, and Wen [14] proved the local
existence of unique strong solutions for the initial and initial-boundary value problem
provided that initial data were sufficiently regular. Later, Huang, Wang, and Wen [15]
showed the global well-posedness and Lp decay estimates for 1 ≤ p ≤ 6 with initial
condition close to a constant state in H2 norm. In L2 framework, Gao, Tao, and Yao [16],
Xu, Zhang, Wu [17], and Xiong, Wang, and Wang [18] obtained the existence of a unique
global solution to the Cauchy problem and optimal time-decay rates when initial data
is a small perturbation near a steady state in H3(R3) ∩ L1(R3), H2(R3) ∩ L1(R3), and
H3(R3) ∩ Ḃ−s

2,∞(R3) for 0 ≤ s ≤ 5/2, respectively. Schade and Shibata [19] proved the

existence of local in time strong solutions in a uniform W3−1/q
q domain and global in time

strong solution for small initial data in a bounded domain. In particular, they constructed
local in time solutions ρ = ρ∗ + ω, v, and d = d∗ + n in the following maximal Lp-Lq
regularity class:

ω ∈ H1
p((0, T), Lq(RN)) ∩ Lp((0, T), H1

q (RN)),

(v, n) ∈ H1
p((0, T), Lq(RN)2N) ∩ Lp((0, T), H2

q (RN)2N)

with certain p and q.
Motivated by [11,19], we improve the existence result obtained by [19] in the whole

space and establish the decay estimates by the maximal Lp-Lq regularity and Lp-Lq decay
estimates of solutions to linearized equations. The spirit to use both of them are the same
as in [11], but the idea of how to use them is different, and we think that our approach
here gives a general framework to prove the global well-posedness for small initial data
of quasilinear parabolic equations in unbounded domains. To explain our idea more
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precisely, we separate problem (1) into the linear part and nonlinear part by the Lagrangian
transformation as follows:

∂tθ + ρ∗ div u = f (θ, u) in RN for t ∈ (0, T),

ρ∗∂tu−Div (S(u)− P′(ρ∗)θI) = g(θ, u, k) in RN for t ∈ (0, T),

(θ, u)|t=0 = (ρ0, v0) in RN ,

(2)

{
∂tk− ζ∆k = h(u, k) in RN for t ∈ (0, T),

d|t=0 = d0 in RN ,
(3)

where θ, u, and k are the density, the fluid velocity, and the macroscopic average of
the nematic liquid crystal orientation field in Lagrange coordinates, respectively, and
nonlinear terms f (ρ, v), g(ρ, v, k), and h(v, k) are detailed in Section 2 below. Note that the
linear operators for (2) and (3) are the same as the compressible Navier–Stokes equations
and the heat equation, respectively. In particular, we write (2) as ∂tu − Au = f and
u|t=0 = u0 symbolically, where u = (θ, u), f = ( f (θ, u), g(θ, u)), u0 = (ρ0, v0) and A
is a closed linear operator with domain D(A) = H1

q × H2
q . We decompose a solution

u = u1 + u2, where u1 satisfies the time shifted equations: ∂tu1 + λ0u1 − Au1 = f and
u1|t=0 = 0 with some large number λ0 and u2 satisfies compensation equations: ∂tu2 −
Au2 = λ0u1 and u2|t=0 = u0. For the time-shifted equations, we use the maximal Lp-
D(A) regularity and we see that u1 has the same decay properties as f . On the other
hand, by Duhamel’s principle, the solution of the compensation equations is written by
u2 = eAtu0 + λ0

∫ t
0 eA(t−s)u1(s) ds. To estimate

∫ t−1
0 eA(t−s)u1(s) ds we use Lp-Lq decay

estimates of continuous analytic semigroup {eAt}t≥0 associated with the operator A for
t > 1, and to estimate

∫ t
t−1 eA(t−s)u1(s) ds we use a standard estimate: ‖eA(t−s)u1(s)‖D(A) ≤

C‖u1(s)‖D(A) for 0 < t− s < 1, where ‖ · ‖D(A) denotes a domain norm. For the later part,
what u1(t) ∈ D(A) for t > 0 is a key observation. Note that if we apply Duhamel’s principle
to the original equations directly, we need to use Lq-Lq decay estimate of semigroup
{eAt}t≥0 for 0 < t < 1 proved in [20]. In this case, we can not choose 2 < p < ∞ such that∫ t

t−1 eA(t−s)u(s) ds is bounded. Therefore, we use a standard estimate of the semigroup.
Before stating the main result of this paper, we summarize several symbols and

functional spaces used throughout the paper. N and R denote the sets of all natural
numbers and real numbers, respectively. We set N0 = N∪ {0}. Let p′ be the dual exponent
of p defined by p′ = p/(p− 1) for 1 < p < ∞. For any multi-index α = (α1, . . . , αN) ∈ NN

0 ,
we write |α| = α1 + · · ·+ αN and ∂α

x = ∂α1
1 · · · ∂

αN
N with x = (x1, . . . , xN). For N-vector of

functions u, we set ∇2u = (∂α
xu1, . . . , ∂α

xuN) with |α| = 2. For any 1 ≤ p, q ≤ ∞, Lq(RN),
Hm

q (RN) and Bs
q,p(RN) denote the usual Lebesgue space, Sobolev space and Besov space,

while ‖ · ‖Lq(RN), ‖ · ‖Hm
q (RN) and ‖ · ‖Bs

q,p(RN) denote their norms, respectively. We set

H0
q (RN) = Lq(RN) and Hs

q(RN) = Bs
q,q(RN). C∞(RN) denotes the set of all C∞ functions

defined on RN . Lp((a, b), X) and Hm
p ((a, b), X) denote the standard Lebesgue space and

Sobolev space of X-valued functions defined on an interval (a, b), respectively. The d-
product space of X is defined by Xd, while its norm is denoted by ‖ · ‖X instead of ‖ · ‖Xd

for the sake of simplicity. Set

Hm,`
q (RN) = {( f , g) | f ∈ Hm

q (RN), g ∈ H`
q(RN)N},

‖( f , g)‖Hm,`
q (RN)

= ‖ f ‖Hm
q (RN) + ‖g‖H`

q(RN).

The values of constant C may change from line to line. We use small boldface letters,
e.g., f to denote vector-valued functions and capital boldface letters, e.g., A to denote
matrix-valued functions, respectively.

The following theorem is the main result of this paper.
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Theorem 1. Let 3 ≤ N ≤ 7 and 0 < T < ∞. Let 2 < p < ∞, 2 < q1 < N < q2 < ∞, b > 0 be
numbers such that

q1 ≤ 4,
1
q1

=
1
N

+
1
q2

,
N

2q1
<

1
p′

< b <
N

2q1
+

1
2
− 1

p
.

Then, there exists a small number ε > 0 such that for any initial data ρ0 ∈
⋂

q=q1,q2
H1

q (RN)∩
Lq1/2(RN), (v0, d0) ∈

⋂
q=q1,q2

B2(1−1/p)
q,p (RN)2N ∩ Lq1/2(RN)2N with

I := ∑
q=q1,q2

(‖ρ0‖H1
q (RN) + ‖(v0, d0)‖B2(1−1/p)

q,p (RN)
) + ‖(ρ0, v0, d0)‖Lq1/2(RN) < ε2,

problem (1) admits unique solutions ρ = ρ∗ + ω, v, and d = d∗ + n with

ω ∈ H1
p((0, T), Lq(RN)) ∩ Lp((0, T), H1

q (RN)),

v ∈ H1
p((0, T), Lq(RN)N) ∩ Lp((0, T), H2

q (RN)N),

n ∈ H1
p((0, T), Lq(RN)N) ∩ Lp((0, T), H2

q (RN)N)

(4)

for q = q1, and q2 satisfying the estimate

E(ω, v, n)(T) ≤ ε. (5)

Here, we have set

E(ω, v, n)(T)

= ‖ < t >b ∇ω‖Lp((0,T),Lq1 (R
N)) + ‖ < t >b ∇(v, n)‖Lp((0,T),H1

q1 (R
N))

+ ‖ < t >b ω‖Lp((0,T),H1
q2 (R

N)) + ‖ < t >b (v, n)‖Lp((0,T),H2
q2 (R

N))

+ ‖ < t >N/2q1 (ω, v, n)‖L∞((0,T),Lq1 (R
N))

+ ‖ < t >b (ω, v, n)‖L∞((0,T),Lq2 (R
N))

+ ‖ < t >b ∇n‖L∞((0,T),Lq1 (R
N)) + ‖ < t >b n‖L∞((0,T),H1

∞(RN))

+ ∑
q=q1,q2

(
‖ < t >b ∂tω‖Lp((0,T),Lq(RN)) + ‖ < t >b ∂t(v, n)‖Lp((0,T),Lq(RN))

)
with < t >= (1 + t2)1/2.

Remark 1. (1) T > 0 is taken arbitrarily and ε is chosen independent of T, therefore, Theorem 1
yields the global well-posedness for (1).
(2) Choosing q1 = 2 + δ and p = 4 for small δ if N = 3, we can obtain the decay rate b satisfying
3/4 < b < (8 + δ)/4(2 + δ), for instance.
(3) Physically, it is natural to treat d satisfies the constraint |d| = 1. We can show this condition in
the same way as in ([19], Proposition 1.3). In fact, if (v, d) is the solution obtained in Theorem 1, we
see that v ∈ L∞((0, T), L∞(RN)) and n ∈ L∞((0, T), H1

∞(RN)) by B2(1−1/p)
q,p (RN) ⊂ H1

q (RN)
provided by p > 2, (87), and Lemma 1 below. Thus, we can verify the uniqueness of the solution
to the parabolic convection–reaction–diffusion equations with homogeneous initial data for t ≥ 0.
Therefore, if we assume that |d0 + d∗|2 = 1 and |d∗| = 1, then |d| = 1 for all t ≥ 0.

This paper is organized as follows: Section 2 introduce the Lagrange transformation
and the key theorem, which is the global well-posedness for the system in Lagrange
coordinates. In Section 3, we consider estimates of nonlinear terms as preparation for
analyzing time-shifted equations and applying the contraction mapping principle below.
In Section 4, we consider a priori estimates for the linearized problems with the help of the
maximal Lp-Lq regularity and the Lp-Lq decay estimates. Section 5 proves the key theorem
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for equations with Lagrangian description. Section 6 proves the main theorem by using the
key theorem proved in Section 5.

2. Lagrangian Formulation

In order to eliminate v · ∇ρ from the first equation of (1) and treat (1) in the maximal
Lp-Lq regularity class, we reduce the problem by using the Lagrangian transformation. Let
velocity fields u(ξ, t) and v(x, t) be known as vectors of functions of Lagrange coordinates
ξ and Euler coordinates x of the same fluid particle, respectively. In this case, the connection
between the Lagrange coordinate and the Euler coordinate is written in the form:

x = ξ +
∫ t

0
u(ξ, s) ds ≡ Xt(ξ) (6)

for 0 < t < T. In order to ensure the inverse transformation of Xt(ξ), we assume that∫ T

0
‖∇ξ u(·, s)‖L∞(RN) ds < σ (7)

with sufficiently small σ ∈ (0, 1), where ∇ξ = ∂/∂ξ. By (6), we have

∂x
∂ξ

= ∇ξ Xt = I +
∫ t

0
∇ξ u(ξ, s) ds,

and then by (7), there exists the inverse of ∇ξXt such that

∂ξ

∂x
= (∇ξXt)

−1 = I + V0(Ku),

where V0(Ku) is an N × N matrix of C∞ functions with respect to Ku =
∫ t

0 ∇ξ u(ξ, s) ds
defined on |Ku| < σ satisfying V0(0) = 0.

By the chain rule, we have the gradient, divergence, and deformation tensor in La-
grange coordinates as follows:

∇x = (I + V0(Ku))∇ξ ,

div xv = div ξ u + V div (Ku)∇ξ u,

V div (Ku)∇ξ u = V0(Ku) : ∇ξ u,

Dx(v) = Dξ(u) + VD(Ku)∇ξ u,

VD(Ku)∇ξ u = V0(Ku)∇ξu + (V0(Ku)∇ξ u)T ,

Div xA = Div ξ A + VDiv (Ku)∇ξA,

VDiv (Ku)∇ξ A = (V0(Ku)∇ξ | A),

(8)

where A : B = ∑N
i,j=1 AijBij and ith component (B∇ξ | A)i = ∑N

j,k=1 Bjk∂k Aij for N × N
matrices A and B with (i, j)th components Aij and Bij, respectively. Assume that ρ(x, t) =
ρ∗ + ω(x, t), u(x, t), and d(x, t) = d∗ + n(x, t) satisfy (1) in the Euler coordinate. Setting
ω(Xt(ξ), t) = θ(ξ, t), v(Xt(ξ), t) = u(ξ, t), n(Xt(ξ), t) = k(ξ, t) and using (8), (θ, u, k)
satisfies the following systems:

∂tθ + ρ∗ div u = f (θ, u) in RN for t ∈ (0, T),

ρ∗∂tu−Div (S(u)− P′(ρ∗)θI) = g(θ, u, k) in RN for t ∈ (0, T),

∂tk− ζ∆k = h(u, k) in RN for t ∈ (0, T),

(θ, u, k)|t=0 = (ρ0, v0, d0) in RN ,

(9)
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where

f (θ, u) = −θ div u− (ρ∗ + θ)V div (Ku)∇u,

g(θ, u, k) = −θ∂tu + V1(Ku)∇2u + V2(Ku)
∫ t

0
∇2u ds∇u

− (P′(ρ∗ + θ)− P′(ρ∗))∇θ − P′(ρ∗ + θ)V0(Ku)∇θ

− η{(∇k)T∆k + V3(Ku)(∇2k)∇k + V4(Ku)
∫ t

0
∇2u ds(∇k)2},

h(u, k) = ζ{V5(Ku)∇2k + V6(Ku)
∫ t

0
∇2u ds∇k

+ |∇k|2(k + d∗) + (|V0(Ku)∇k|2 + (∇k : V0(Ku)∇k))(k + d∗)}

with Vj(K) (j = 1, . . . , 6) are some matrices of C∞ functions with respect to matrix K for
|K| < σ.

In order to prove Theorem 1, we first show the following theorem concerning the
global well-posedness of the system in Lagrange coordinates.

Theorem 2. Let 3 ≤ N ≤ 7 and 0 < T < ∞. Let 2 < p < ∞, 2 < q1 < N < q2 < ∞, b > 0 be
numbers such that

q1 ≤ 4,
1
q1

=
1
N

+
1
q2

,
N

2q1
<

1
p′

< b <
N

2q1
+

1
2
− 1

p
. (10)

Then, there exists a small number ε > 0 such that for any initial data ρ0 ∈
⋂

q=q1,q2
H1

q (RN)∩
Lq1/2(RN), (v0, d0) ∈

⋂
q=q1,q2

B2(1−1/p)
q,p (RN)2N ∩ Lq1/2(RN)2N with

I := ∑
q=q1,q2

(‖ρ0‖H1
q (RN) + ‖(v0, d0)‖B2(1−1/p)

q,p (RN)
) + ‖(ρ0, v0, d0)‖Lq1/2(RN) < ε2, (11)

problem (9) admits a unique solution (θ, u, k) with

θ ∈ H1
p((0, T),H1

q (RN)), u ∈ H1
p((0, T), Lq(RN)N) ∩ Lp((0, T), H2

q (RN)N)

k ∈ H1
p((0, T), Lq(RN)N) ∩ Lp((0, T), H2

q (RN)N)

for q = q1, and q2 satisfying the estimate

N (θ, u, k)(T) ≤ ε.

Here, we have set

N (θ, u, k)(T) = E(θ, u, k)(T) + ∑
q=q1,q2

‖ < t >b ∂t∇θ‖Lp((0,T),Lq(RN)) (12)

with < t >= (1 + t2)1/2.

Remark 2. (1) Since nonlinear terms have products of derivatives of k (e.g., (∇k)T∆k), we need
to estimate ‖∇k‖L∞((0,T),Lq(RN)) for q = q1, ∞. In order to estimate these norms in a short time
interval, we use Sobolev’s embedding properties provided by p > 2 and (N/2q2 + 1/2)p′ < 1,
which implies that N/2q1 < 1/p′. According to [19], the local well-posedness is also obtained
under these conditions. For details, see Section 4.2 below.
(2) In order to get a priori estimates, we use the Lq1-Lq1/2 and Lq2-Lq1/2 decay estimates of
semigroup associated with the homogeneous compressible Navier–Stokes equations, therefore, we
assume 1 < q1/2 ≤ 2. By this condition and N < q2, we also have 1/4 ≤ 1/q1 = 1/q2 + 1/N <
2/N, which implies that N ≤ 7. For details see Section 4.1.2 in Section 4.1 below.
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3. Estimates of Nonlinear Terms

Let Xi
T(i = 1, 2, 3) be underlying spaces for linearized equations corresponding to (9),

which is defined by

X1
T =

{
θ ∈

⋂
q=q1,q2

H1
p((0, T), H1

q (RN)) | θ|t=0 = ρ0, sup
t∈(0,T)

‖θ(·, t)‖L∞(RN) ≤ ρ∗/4
}

,

X2
T =

{
u ∈

⋂
q=q1,q2

H1
p((0, T), Lq(RN)N) ∩ Lp((0, T), H2

q (RN)N) |

u|t=0 = v0,
∫ T

0
‖∇u(·, s)‖L∞(RN) ds ≤ σ

}
,

X3
T =

{
k ∈

⋂
q=q1,q2

H1
p((0, T), Lq(RN)N) ∩ Lp((0, T), H2

q (RN)N) | k|t=0 = d0

}
.

(13)

In this section, we consider the necessary estimates of the nonlinear terms: f (θ, u),
g(θ, u, k), and h(u, k) for (θ, u, k) ∈ X1

T × X2
T × X3

T and difference: f (θ1, u1)− f (θ2, u2),
g(θ1, u1, k1) − g(θ2, u2, k2), and h(u1, k1) − h(u2, k2) for (θi, ui, ki) ∈ X1

T × X2
T × X3

T
(i = 1, 2) to prove the global well-posedness. For this purpose, we review estimates
of matrices V div (Ku) and Vj(Ku) (j = 0, 1, . . . , 6) proved in [21]. For notational sim-
plicity, we write ‖ f ‖Lq(RN) = ‖ f ‖Lq , ‖ f ‖H1

q (RN) = ‖ f ‖H1
q
, ‖ f ‖L∞((0,T),X) = ‖ f ‖L∞(X), and

‖ < t >b f ‖Lp((0,T),X) = ‖ f ‖Lp,b(X) for the Banach space X. Recall that Ku =
∫ t

0 ∇u ds for

u ∈ X2
T , then

|Ku(ξ, t)| ≤ σ (14)

for any (ξ, t) ∈ RN × (0, T). Moreover, by Hölder inequality and the condition bp′ > 1,

‖Ku‖L∞(X) ≤
∫ T

0
‖∇u(·, t)‖X dt ≤ C‖∇u‖Lp,b(X) (15)

for X ∈ {Lq, H1
q} with q = q1 and q2. Note that V div (0) = 0 and Vj(0) = 0 (j = 0, 1, . . . , 6),

by (14) and (15), we have

‖V div (Ku)‖L∞(H1
q )
≤ C‖Ku‖L∞(H1

q )
≤ C‖∇u‖Lp,b(H1

q )
,

‖Vj(Ku)‖L∞(Lq) ≤ C‖Ku‖L∞(Lq) ≤ C‖∇u‖Lp,b(Lq),

‖Vj(Ku)‖L∞(L∞) ≤ C‖Ku‖L∞(H1
q2 )
≤ C‖∇u‖Lp,b(H1

q2 )

(16)

for q = q1, q2 and j = 0, 1, . . . , 6. We also have estimates of difference:

‖V div (Ku1)−V div (Ku2)‖L∞(H1
q )

≤ C(‖∇(u1 − u2)‖Lp,b(H1
q )
+ ∑

i=1,2
‖∇ui‖Lp,b(H1

q )
‖∇(u1 − u2)‖Lp,b(H1

q2 )
),

‖Vj(Ku1)−Vj(Ku2)‖L∞(Lq) ≤ C‖∇(u1 − u2)‖Lp,b(Lq),

‖Vj(Ku1)−Vj(Ku2)‖L∞(L∞) ≤ C‖∇(u1 − u2)‖Lp,b(H1
q2 )

(17)

for q = q1, q2 and i = 0, 1, . . . , 6.
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3.1. Estimates of f (θ, u)

According to [21], f (θ, u) and difference f (θ1, u1)− f (θ2, u2) satisfy

‖ f (θ, u)‖Lp,b(H1
q )

≤ CN (θ, u, k)(I +N (θ, u, k))(1 +N (θ, u, k)),

‖ f (θ1, u1)− f (θ2, u2)‖Lp,b(H1
q )

≤ CN ((θ1, u1, k1)− (θ2, u2, k2))

×
(
I + ∑

i=1,2
N (θi, ui, ki)

)(
1 + ∑

i=1,2
N (θi, ui, ki)

)
(1 +N (θ1, u1, k1))

(18)

for q = q1/2, q1, and q2.

3.2. Estimates of g(θ, u, k)

Set
g(θ, u, k) = g1(θ, u) + g2(u, k),

where

g1(θ, u) = −θ∂tu + V1(Ku)∇2u + V2(Ku)
∫ t

0
∇2u ds∇u

− (P′(ρ∗ + θ)− P′(ρ∗))∇θ − P′(ρ∗ + θ)V0(Ku)∇θ,

g2(u, k) = −η{(∇k)T∆k + V3(Ku)(∇2k)∇k + V4(Ku)
∫ t

0
∇2u ds(∇k)2}.

Due to [21], g1(θ, u) and difference g1(θ1, u1)− g1(θ2, u2) satisfy

‖g1(θ, u)‖Lp,b(Lq)

≤ CN (θ, u, k)(I +N (θ, u, k)),

‖g1(θ1, u1)− g1(θ2, u2)‖Lp,b(Lq)

≤ CN ((θ1, u1, k1)− (θ2, u2, k2))

(
I + ∑

i=1,2
N (θi, ui, ki)

)(
1 + ∑

i=1,2
N (θi, ui, ki)

) (19)

for q = q1/2, q1, and q2.
Now let us consider ‖g2(u, k)‖Lp,b(Lq1/2)

and ‖g2(u1, k1) − g2(u2, k2)‖Lp,b(Lq1/2)
by

using the following estimates:

‖ f g‖Lp,b(Lq1/2)
≤ ‖ f ‖L∞(Lq1 )

‖g‖Lp,b(Lq1 )
,

‖ f gh‖Lp,b(Lq1/2)
≤ ‖ f ‖L∞(L∞)‖g‖L∞(Lq1 )

‖h‖Lp,b(Lq1 )
.

(20)

By (14), (16), and (20), we have

‖g2(u, k)‖Lp,b(Lq1/2)

≤ C(‖∇k‖L∞(Lq1 )
‖∇2k‖Lp,b(Lq1 )

+ ‖∇2u‖Lp,b(Lq1 )
‖∇k‖Lp,b(Lq1 )

‖∇k‖L∞(L∞)).
(21)

In order to estimate difference g2(u1, k1)− g2(u2, k2), we write

‖g2(u1, k1)− g2(u2, k2)‖Lp,b(Lq1/2)
≤

3

∑
j=1

Ej
g,q1/2, (22)
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where

E1
g,q1/2 = ‖(∇k1)

T∆k1 − (∇k2)
T∆k2‖Lp,b(Lq1/2)

,

E2
g,q1/2 = ‖V3(Ku1)(∇

2k1)∇k1 −V3(Ku2)(∇2k2)∇k2‖Lp,b(Lq1/2)
,

E3
g,q1/2 = ‖V4(Ku1)

∫ t

0
∇2u1 ds(∇k1)

2 −V4(Ku2)
∫ t

0
∇2u2 ds(∇k2)

2‖Lp,b(Lq1/2)
.

By (14), (16), (17), and (20), we have

E1
g,q1/2 ≤ C(‖∇(k1 − k2)‖L∞(Lq1 )

‖∆k1‖Lp,b(Lq1 )
+ ‖∇k2‖L∞(Lq1 )

‖∆(k1 − k2)‖Lp,b(Lq1 )
),

E2
g,q1/2 ≤ C(‖∇(u1 − u2)‖Lp,b(Lq1 )

‖∇2k1‖Lp,b(Lq1 )
‖∇k1‖L∞(L∞)

+ ‖∇2(k1 − k2)‖Lp,b(Lq1 )
‖∇k1‖L∞(Lq1 )

+ ‖∇2k2‖Lp,b(Lq1 )
‖∇(k1 − k2)‖L∞(Lq1 )

),

E3
g,q1/2 ≤ C{‖∇(u1 − u2)‖Lp,b(Lq1 )

‖∇2u1‖Lp,b(Lq1 )
‖∇k1‖2

L∞(L∞)

+ ‖∇2(u1 − u2)‖Lp,b(Lq1 )
‖∇k1‖Lp,b(Lq1 )

‖∇k1‖L∞(L∞)

+ ‖∇2u2‖Lp,b(Lq1 )
‖∇(k1 − k2)‖Lp,b(Lq1 )

(‖∇k1‖L∞(L∞) + ‖∇k2‖L∞(L∞))}.

We next consider ‖g2(u, k)‖Lp,b(Lq) and ‖g2(u1, k1) − g2(u2, k2)‖Lp,b(Lq) for q = q1

and q2. If terms do not include
∫ t

0 ∇
2u ds, we use

‖ f g‖Lp,b(Lq) ≤ ‖ f ‖L∞(L∞)‖g‖Lp,b(Lq),

‖ f gh‖Lp,b(Lq) ≤ ‖ f ‖L∞(L∞)‖g‖L∞(L∞)‖h‖Lp,b(Lq),
(23)

if terms include
∫ t

0 ∇
2u ds, we use∥∥∥∥(∫ t

0
∇2u ds

)
f
∥∥∥∥

Lp,b(Lq)
≤ C‖∇2v‖Lp,b(Lq)‖ f ‖Lp,b(H1

q2 )
,∥∥∥∥(∫ t

0
∇2u ds

)
f g
∥∥∥∥

Lp,b(Lq)
≤ C‖∇2v‖Lp,b(Lq)‖ f ‖Lp,b(H1

q2 )
‖g‖L∞(L∞).

(24)

By (14), (16), (23), and (24), we have

‖g2(u, k)‖Lp,b(Lq)

≤ C(‖∇k‖L∞(L∞)‖∇2k‖Lp,b(Lq) + ‖∇
2u‖Lp,b(Lq)‖∇k‖Lp,b(H1

q2 )
‖∇k‖L∞(L∞)).

(25)

Writing

‖g2(u1, k1)− g2(u2, k2)‖Lp,b(Lq) ≤
3

∑
j=1

Ej
g,q, (26)

by (14), (16), (17), (23), and (24), we have

E1
g,q ≤ C(‖∇(k1 − k2)‖L∞(L∞)‖∆k1‖Lp,b(Lq) + ‖∇k2‖L∞(L∞)‖∆(k1 − k2)‖Lp,b(Lq)),

E2
g,q ≤ C(‖∇(u1 − u2)‖Lp,b(H1

q2 )
‖∇2k1‖Lp,b(Lq)‖∇k1‖L∞(L∞)

+ ‖∇2(k1 − k2)‖Lp,b(Lq)‖∇k1‖L∞(L∞) + ‖∇2k2‖Lp,b(Lq)‖∇(k1 − k2)‖L∞(L∞)),

E3
g,q ≤ C{‖∇(u1 − u2)‖Lp,b(H1

q2 )
‖∇2u1‖Lp,b(Lq)‖∇k1‖Lp,b(H1

q2 )
‖∇k1‖L∞(L∞)

+ ‖∇2(u1 − u2)‖Lp,b(Lq)‖∇k1‖Lp,b(H1
q2 )
‖∇k1‖L∞(L∞)

+ ‖∇2u2‖Lp,b(Lq)‖∇(k1 − k2)‖Lp,b(H1
q2 )

(‖∇k1‖L∞(L∞) + ‖∇k2‖L∞(L∞))}.
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Thus, by (19), (21), (22), (25), and (26), g(θ, u, k) and difference g(θ1, u1, k1)− g(θ2, u2, k2)
satisfy

‖g(θ, u, k)‖Lp,b(Lq)

≤ CN (θ, u, k)(I +N (θ, u, k))(1 +N (θ, u, k)),

‖g(θ1, u1, k1)− g(θ2, u2, k2)‖Lp,b(Lq)

≤ CN ((θ1, u1, k1)− (θ2, u2, k2))

×
(
I + ∑

i=1,2
N (θi, ui, ki)

)(
1 + ∑

i=1,2
N (θi, ui, ki)

)
(1 +N (θ1, u1, k1))

(27)

for q = q1/2, q1, and q2.

3.3. Estimates of h(u, k)

Recall that

h(u, k) = ζ{V5(Ku)∇2k + V6(Ku)
∫ t

0
∇2u ds∇k

+ |∇k|2(k + d∗) + (|V0(Ku)∇k|2 + (∇k : V0(Ku)∇k))(k + d∗)}.

By the same calculation as in Section 3.2, we have

‖h(u, k)‖Lp,b(Lq1/2)

≤ C{‖∇u‖Lp,b(Lq1 )
‖∇2k‖Lp,b(Lq1 )

+ ‖∇2u‖Lp,b(Lq1 )
‖∇k‖Lp,b(Lq1 )

+ ‖∇k‖Lp,b(Lq1 )
‖∇k‖L∞(Lq1 )

(‖k‖L∞(L∞) + 1)},

(28)

‖h(u1, k1)− h(u2, k2)‖Lp,b(Lq1/2)

≤ C{‖∇(u1 − u2)‖Lp,b(Lq1 )
‖∇2k1‖Lp,b(Lq1 )

+ ‖∇u2‖Lp,b(Lq1 )
‖∇2(k1 − k2)‖Lp,b(Lq1 )

+ ‖∇(u1 − u2)‖Lp,b(H1
q2 )
‖∇2u1‖Lp,b(Lq1 )

‖∇k1‖Lp,b(Lq1 )

+ ‖∇2(u1 − u2)‖Lp,b(Lq1 )
‖∇k1‖Lp,b(Lq1 )

+ ‖∇2u2‖Lp,b(Lq1 )
‖∇(k1 − k2)‖Lp,b(Lq1 )

+ ‖∇(k1 − k2)‖Lp,b(Lq1 )
(‖k1‖L∞(L∞) + 1)(‖∇k1‖L∞(Lq1 )

+ ‖∇k2‖L∞(Lq1 )
)

+ ‖k1 − k2‖Lp,b(H1
q2 )
‖∇k2‖2

L∞(Lq1 )

+ ‖∇(u1 − u2)‖Lp,b(Lq1 )
(‖k1‖L∞(L∞) + 1)‖∇k1‖Lp,b(H1

q2 )

× (‖∇k1‖L∞(Lq1 )
+ ‖∇k2‖L∞(Lq1 )

)}.

(29)

Moreover, ‖h(u, k)‖Lp,b(Lq) and ‖h(u1, k1)− (u2, k2)‖Lp,b(Lq) with q = q1, q2 satisfy
the following estimates:

‖h(u, k)‖Lp,b(Lq)

≤ C{‖∇u‖Lp,b(H1
q2 )
‖∇2k‖Lp,b(Lq) + ‖∇

2u‖Lp,b(Lq)‖∇k‖Lp,b(H1
q2 )

+ ‖∇k‖Lp,b(Lq)‖∇k‖L∞(L∞)(‖k‖L∞(L∞) + 1)},

(30)
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‖h(u1, k1)− h(u2, k2)‖Lp,b(Lq)

≤ C{‖∇(u1 − u2)‖Lp,b(H1
q2 )
‖∇2k1‖Lp,b(Lq) + ‖∇u2‖Lp,b(H1

q2 )
‖∇2(k1 − k2)‖Lp,b(Lq)

+ ‖∇(u1 − u2)‖Lp,b(H1
q2 )
‖∇2u1‖Lp,b(Lq)‖∇k1‖Lp,b(H1

q2 )

+ ‖∇2(u1 − u2)‖Lp,b(Lq)‖∇k1‖Lp,b(H1
q2 )

+ ‖∇2u2‖Lp,b(Lq)‖∇(k1 − k2)‖Lp,b(H1
q2 )

+ ‖∇(k1 − k2)‖Lp,b(Lq)(‖k1‖L∞(L∞) + 1)(‖∇k1‖L∞(L∞) + ‖∇k2‖L∞(L∞))

+ ‖k1 − k2‖Lp,b(H1
q2 )
‖∇k2‖L∞(L∞)‖∇k2‖L∞(Lq)

+ ‖∇(u1 − u2)‖Lp,b(Lq)(‖k1‖L∞(L∞) + 1)‖∇k1‖Lp,b(H1
q2 )

× (‖∇k1‖L∞(L∞) + ‖∇k2‖L∞(L∞))}.

(31)

Therefore, by (28), (29), (30), and (31), h(u, k) and difference h(u1, k1) − h(u2, k2)
satisfy the following estimate

‖h(u, k)‖Lp,b(Lq) ≤ CN (θ, u, k)2(1 +N (θ, u, k)),

‖h(u1, k1)− h(u2, k2)‖Lp,b(Lq)

≤ CN ((θ1, u1, k1)− (θ2, u2, k2))

× ∑
i=1,2
N (θi, ui, ki)

(
1 + ∑

i=1,2
N (θi, ui, ki)

)
(1 +N (θ1, u1, k1))

(32)

for q = q1/2, q1, and q2.

4. A Priori Estimates for Linearized Problems

Let ε be a small positive number and letN (ρ, v, d)(T) be the norm defined in (12). Let

IT,ε = {(ρ, v, d) ∈ X1
T × X2

T × X3
T | N (ρ, v, d)(T) ≤ ε}.

Given (ρ, v, d) ∈ IT,ε, let (θ, u, k) be a solution to equations:
∂tθ + ρ∗ div u = f (ρ, v) in RN for t ∈ (0, T),

ρ∗∂tu−Div (S(u)− P′(ρ∗)θI) = g(ρ, v, d) in RN for t ∈ (0, T),

(θ, u)|t=0 = (ρ0, v0) in RN ,

(33)

{
∂tk− ζ∆k = h(v, d) in RN for t ∈ (0, T),

k|t=0 = d0 in RN .
(34)

Now we shall prove the following inequality:

N (θ, u, k)(T) ≤ C(ε2 + ε3 + ε4). (35)
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For this purpose, we divideN (θ, u, k)(T) into two terms: N (θ, u, k)(T) = N1(θ, u, k)(T)+
N2(k)(T), where

N1(θ, u, k)(T) = ‖ < t >b ∇θ‖Lp((0,T),Lq1 (R
N)) + ‖ < t >b ∇(u, k)‖Lp((0,T),H1

q1 (R
N))

+ ‖ < t >b θ‖Lp((0,T),H1
q2 (R

N)) + ‖ < t >b (u, k)‖Lp((0,T),H2
q2 (R

N))

+ ‖ < t >N/(2q1) (θ, u, k)‖L∞((0,T),Lq1 (R
N))

+ ‖ < t >b (θ, u, k)‖L∞((0,T),Lq2 (R
N))

+ ∑
q=q1,q2

(
‖ < t >b ∂tθ‖Lp((0,T),H1

q (RN)) + ‖ < t >b ∂t(u, k)‖Lp((0,T),Lq(RN))

)
N2(k)(T) = ‖ < t >b ∇k‖L∞((0,T),Lq1 (R

N)) + ‖ < t >b k‖L∞((0,T),H1
∞(RN)).

4.1. Estimates of N1(θ, u, k)(T)

In this subsection, we proveN1(θ, u, k)(T) ≤ C(ε2 + ε3 + ε4). To obtain this inequality,
we decompose solutions (θ, u) to (33) by (θ, u) = (θ1, u1) + (θ2, u2) and k to (34) by
k = k1 + k2, where (θ1, u1) and k1 satisfy time-shifted equations:

∂tθ1 + λ0θ1 + ρ∗ div u1 = f (ρ, v) in RN for t ∈ (0, T),

ρ∗∂tu1 + λ0u1 −Div (S(u1)− P′(ρ∗)θ1I) = g(ρ, v, d) in RN for t ∈ (0, T),

(θ1, u1)|t=0 = (0, 0) in RN ,

(36)

{
∂tk1 + k1 − ζ∆k1 = h(v, d) in RN for t ∈ (0, T),

k1|t=0 = 0 in RN ,
(37)

(θ2, u2) and k2 satisfy compensation equations:
∂tθ2 + ρ∗ div u2 = λ0θ1 in RN for t ∈ (0, T),

ρ∗∂tu2 −Div (S(u2)− P′(ρ∗)θ2I) = λ0u1 in RN for t ∈ (0, T),

(θ2, u2)|t=0 = (ρ0, v0) in RN ,

(38)

{
∂tk2 − ζ∆k2 = k1 in RN for t ∈ (0, T),

k2|t=0 = d0 in RN .
(39)

4.1.1. Analysis of Time Shifted Equations

We consider the following linearized problems for (36) and (37):
∂tθ + λ0θ + ρ∗ div u = f in RN for t ∈ (0, T),

ρ∗∂tu + λ0u−Div (S(u)− P′(ρ∗)θI) = g in RN for t ∈ (0, T),

(θ, u)|t=0 = (0, 0) in RN ,

(40)

{
∂tk + k− ζ∆k = h in RN for t ∈ (0, T),

k|t=0 = 0 in RN .
(41)

By the existence ofR-bounded solution operators for the resolvent problems corresponding
to (40) and (41), we have the following theorem.

Theorem 3. Let 1 < p, q < ∞. Let b ≥ 0. Then, there exists a constant λ0 > 0 such that the
following assertions hold:
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(1) For any < t >b ( f , g) ∈ Lp((0, T), H1,0
q (RN)), problem (40) admits unique solutions

θ ∈ H1
p((0, T), H1

q (RN)) and u ∈ H1
p((0, T), Lq(RN)N) ∩ Lp((0, T), H2

q (RN)N) possessing
the estimate

‖ < t >b ∂t(θ, u)‖Lp((0,T),H1,0
q (RN))

+ ‖ < t >b (θ, u)‖Lp((0,T),H1,2
q (RN))

≤ C‖ < t >b ( f , g)‖Lp((0,T),H1,0
q (RN))

.
(42)

(2) For any < t >b h ∈ Lp((0, T), Lq(RN)N), problem (41) admits a unique solution
k ∈ H1

p((0, T), Lq(RN)N) ∩ Lp((0, T), H2
q (RN)N) possessing the estimate

‖ < t >b ∂tk‖Lp((0,T),Lq(RN)) + ‖ < t >b k‖Lp((0,T),H2
q (RN))

≤ C‖ < t >b h‖Lp((0,T),Lq(RN)).
(43)

Proof. (1) Firstly, we consider the case b = 0. Let f0 and g0 be the zero extension of f and
g outside of (0, T). By the existence of R-bounded solution operators for the resolvent
problem corresponding to (40) proved in ([22], Theorem 2.5), we see that there exists λ0 > 0
such that the following system{

∂tθ + λ0θ + ρ∗ div u = f0 in RN for t ∈ R,

ρ∗∂tu + λ0u−Div (S(u)− P′(ρ∗)θI) = g0 in RN for t ∈ R

has unique solutions θ ∈ H1
p(R, H1

q (RN)) and, u ∈ ×H1
p(R, Lq(RN)N) ∩ Lp(R, H2

q (RN)N)
satisfying

‖∂t(θ, u)‖Lp(R,H1,0
q (RN))

+ ‖(θ, u)‖Lp(R,H1,2
q (RN))

≤ C‖( f0, g0)‖Lp(R,H1,0
q (RN))

= C‖( f , g)‖Lp((0,T),H1,0
q (RN))

.

Moreover, for any γ > λ0, we have

γ‖(θ, u)‖Lp((−∞,0],Lq(RN)) ≤ γ‖e−γt(θ, u)‖Lp((−∞,0],Lq(RN)) ≤ γ‖e−γt(θ, u)‖Lp(R,Lq(RN))

≤ C‖e−γt( f0, g0)‖Lp(R,H1,0
q (RN))

= C‖( f , g)‖Lp((0,T),H1,0
q (RN))

,

where C is a constant independent of γ. Thus, letting γ→ ∞ yields that (θ, u) vanishes for
t ≤ 0. In particular, we have (θ, u)|t=0 = (0, 0).

Secondly, we consider the case b ∈ (0, 1]. Multiplying < t >b to (40) and setting
< t >b θ = ρ and < t >b u = v, we have

∂tρ + λ0ρ + ρ∗ div v =< t >b f + (∂t < t >b)θ in RN for t ∈ (0, T),

ρ∗∂tv + λ0v−Div (S(v)− P′(ρ∗)ρI)

=< t >b g + (∂t < t >b)u in RN for t ∈ (0, T),

(ρ, v)|t=0 = (0, 0) in RN .

Noting that |∂t(< t >b)| ≤ 1 and applying (42) for the case b = 0 yields that

‖ < t >b ∂t(θ, u)‖Lp((0,T),H1,0
q (RN))

+ ‖ < t >b (θ, u)‖Lp((0,T),H1,2
q (RN))

≤ ‖∂t(ρ, v)‖Lp((0,T),H1,0
q (RN))

+ ‖(ρ, v)‖Lp((0,T),H1,2
q (RN))

+ ‖(θ, u)‖Lp((0,T),H1,0
q (RN))

≤ C‖ < t >b ( f , g)‖Lp((0,T),H1,0
q (RN))

.

Finally, if b > 1, the repeated use of the argument above yield estimates (42) for any
b > 0.
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(2) Let h0 be the zero extension of h outside of (0, T). By the results concerning theR-
bounded solution operators to the heat equations proved in [23], we see that the following
two estimates:

‖∂tk‖Lp(R,Lq(RN)) + ‖k‖Lp(R,H2
q (RN)) ≤ C‖h0‖Lp(R,Lq(RN)),

γ‖e−γtk‖Lp(R,Lq(RN)) ≤ C‖e−γth0‖Lp(R,Lq(RN))

for any γ > 0, where C is a constant independent of γ. Thus, employing the same method
as in (1), we have (43), which completes the proof of Theorem 3.

Applying Theorem 3 to (36) and (37), we have

‖ < t >b ∂t(θ1, u1)‖Lp((0,T),H1,0
q (RN))

+ ‖ < t >b (θ1, u1)‖Lp((0,T),H1,2
q (RN))

+ ‖ < t >b ∂tk1‖Lp((0,T),Lq(RN)) + ‖ < t >b k1‖Lp((0,T),H2
q (RN))

≤ C(‖ < t >b ( f (ρ, v), g(ρ, v, d))‖Lp((0,T),H1,0
q (RN))

+ ‖ < t >b h(v, d)‖Lp((0,T),Lq(RN)))

(44)

for q = q1/2, q1, and q2. In order to estimate the right-hand side of (44), we recall that
∑q=q1,q2

‖ρ0‖H1
q (RN) ≤ ε2, N (ρ, v, d) ≤ ε, (18), (27), and (32). Then we have

‖ < t >b ∂t(θ1, u1)‖Lp((0,T),H1,0
q (RN))

+ ‖ < t >b (θ1, u1)‖Lp((0,T),H1,2
q (RN))

+ ‖ < t >b ∂tk1‖Lp((0,T),Lq(RN)) + ‖ < t >b k1‖Lp((0,T),H2
q (RN))

≤ C(ε2 + ε3 + ε4)

(45)

for q = q1/2, q1, and q2. Moreover, by the trace method of the real interpolation theorem,

‖ < t >b (θ1, u1)‖L∞((0,T),H1,0
q (RN))

+ ‖ < t >b k1‖L∞((0,T),Lq(RN))

≤ C(‖ < t >b ∂t(θ1, u1)‖Lp((0,T),H1,0
q (RN))

+ ‖ < t >b (θ1, u1)‖Lp((0,T),H1,2
q (RN))

+ ‖ < t >b ∂tk1‖Lp((0,T),Lq(RN)) + ‖ < t >b k1‖Lp((0,T),H2
q (RN))),

which combined with (45) yields that

‖ < t >b (θ1, u1)‖L∞((0,T),H1,0
q (RN))

+ ‖ < t >b k1‖L∞((0,T),Lq(RN)) ≤ C(ε2 + ε3 + ε4) (46)

for q1 and q2. Summing up, by (45) and (46), we have

∑
q=q1/2,q1,q2

(‖ < t >b ∂t(θ1, u1)‖Lp((0,T),H1,0
q (RN))

+ ‖ < t >b (θ1, u1)‖Lp((0,T),H1,2
q (RN))

+ ‖ < t >b ∂tk1‖Lp((0,T),Lq(RN)) + ‖ < t >b k1‖Lp((0,T),H2
q (RN)))

+ ∑
q=q1,q2

‖ < t >b (θ1, u1, k1)‖L∞((0,T),Lq(RN))

≤ C(ε2 + ε3 + ε4).

(47)
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4.1.2. Analysis of Compensation Equations for (θ, u)

Let us consider problem (38). The existence ofR-bounded solution operators proved
in ([22], Theorem 2.5) implies generation of continuous analytic semigroup {S(t)}t≥0 on
H1,0

p (RN) associated with the following homogeneous problem:
∂tθ + ρ∗ div u = 0 in RN for t ∈ (0, T),

ρ∗∂tu−Div (S(u)− P′(ρ∗)θI) = 0 in RN for t ∈ (0, T),

(θ, u)|t=0 = (ρ0, v0) in RN .

(48)

Applying Duhamel’s principle to (38) furnishes that (θ2, u2) = (θ1
2 , u1

2) + (θ2
2 , u2

2), where

(θ1
2 , u1

2) = S(t)(ρ0, v0), (θ2
2 , u2

2) = λ0

∫ t

0
S(t− s)(θ1, u1)(·, s) ds. (49)

To get estimates of (θ1
2 , u1

2) and (θ2
2 , u2

2), we use the decay estimates for (θ, u) = S(t)( f , g),
which follow from ([20], Theorem 2.3 and 2.4):

‖(θ, u)‖Lp(RN) ≤ Ct−
N
2 ( 1

q−
1
p )[( f , g)]p,q,

‖∇(θ, u)‖Lp(RN) ≤ Ct−
N
2 ( 1

q−
1
p )−

1
2 [( f , g)]p,q,

‖∇2u‖Lp(RN) ≤ Ct−
N
2 ( 1

q−
1
p )−1

[( f , g)]p,q

(50)

for t > 1 and 1 < q ≤ 2 ≤ p < ∞. Here, [ f , g]p,q = ‖( f , g)‖H1,0
p (RN)

+ ‖( f , g)‖Lq(RN).

Moreover, we use the following standard estimates for continuous analytic semigroup:

‖(θ, u)‖H1,2
p (RN)

≤ C‖( f , g)‖H1,2
p (RN)

for ( f , g) ∈ H1,2
p (RN),

‖(θ, u)‖H1,0
p (RN)

≤ C‖( f , g)‖H1,0
p (RN)

for ( f , g) ∈ H1,0
p (RN)

(51)

for 0 < t < 2.
Estimates of (θ1

2 , u1
2)

Firstly, we consider the case 1 < t < T. Using (50) with (p, q) = (q1, q1/2), (q2, q1/2)
and noting that 1/q1 = 1/q2 + 1/N, we have

‖(θ1
2 , u1

2)‖Lq1 (R
N) ≤ Ct−

N
2q1 [(ρ0, v0)]q1,q1/2,

‖(θ1
2 , u1

2)‖Lq2 (R
N) ≤ Ct−

N
2 ( 2

q1
− 1

q2
)
[(ρ0, v0)]q2,q1/2 = t−

N
2q1
− 1

2 [(ρ0, v0)]q2,q1/2,

‖∇(θ1
2 , u1

2)‖Lq1 (R
N) ≤ Ct−

N
2q1
− 1

2 [(ρ0, v0)]q1,q1/2,

‖∇(θ1
2 , u1

2)‖Lq2 (R
N) ≤ Ct−

N
2 ( 2

q1
− 1

q2
)− 1

2 [(ρ0, v0)]q2,q1/2 = t−
N

2q1
−1

[(ρ0, v0)]q2,q1/2,

‖∇2u1
2‖Lq1 (R

N) ≤ Ct−
N

2q1
−1

[(ρ0, v0)]q1,q1/2,

‖∇2u1
2‖Lq2 (R

N) ≤ Ct−
N
2 ( 2

q1
− 1

q2
)−1

[(ρ0, v0)]q2,q1/2 = t−
N

2q1
− 3

2 [(ρ0, v0)]q2,q1/2.

(52)

Noting that all decay rates obtained in (52) except for ‖(θ1
2 , u1

2)‖Lq1 (R
N) is greater or equal

to N/2q1 + 1/2 and using the condition 1 < (N/2q1 + 1/2− b)p in (10), we have

‖ < t >b ∇(θ1
2 , u1

2)‖Lp((1,T),H0,1
q1 (RN))

+ ‖ < t >b (θ1
2 , u1

2)‖Lp((1,T),H1,2
q2 (RN))

+ ‖ < t >N/(2q1) (θ, u)‖L∞((1,T),Lq1 (R
N)) + ‖ < t >b (θ, u)‖L∞((1,T),Lq2 (R

N))

≤ C ∑
q=q1,q2

[(ρ0, v0)]q,q1/2 ≤ CI ,

(53)
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where I is defined in (11).
Secondly, we consider the case 0 < t < min(1, T). Since (θ1

2 , u1
2) satisfies (48), we infer

from ([24], Theorem 2.7) that

∑
q=q1,q2

‖ < t >b (θ1
2 , u1

2)‖Lp((0,1),H1,2
q (RN))

≤ C ∑
q=q1,q2

‖(ρ0, v0)‖H1
q (RN)×B2(1−1/p)

q,p (RN)

≤ CI .

(54)

Moreover, by (51), we have

‖ < t >
N

2q1 (θ1
2 , u1

2)‖L∞((0,1),Lq1 (R
N)) + ‖ < t >b (θ1

2 , u1
2)‖L∞((0,1),Lq2 (R

N))

≤ C ∑
q=q1,q2

‖(ρ0, v0)‖H1,0
q (RN)

≤ CI .

(55)

Then, (53), (54), and (55) give us

‖ < t >b ∇(θ1
2 , u1

2)‖Lp((0,T),H0,1
q1 (RN))

+ ‖ < t >b (θ1
2 , u1

2)‖Lp((0,T),H1,2
q2 (RN))

+ ‖ < t >
N

2q1 (θ1
2 , u1

2)‖L∞((0,T),Lq1 (R
N)) + ‖ < t >b (θ1

2 , u1
2)‖L∞((0,T),Lq2 (R

N))

≤ CI .

(56)

Furthermore, we can obtain estimates of time derivatives ∂t(θ1
2 , u1

2) by using equations
of (θ1

2 , u1
2). In fact, by (48) and (56), we have

∑
q=q1,q2

‖ < t >b ∂t(θ
1
2 , u1

2)‖Lp((0,T),H1,0
q (RN))

≤ C ∑
q=q1,q2

(‖ < t >b ∇θ1
2‖Lp((0,T),Lq(RN)) + ‖ < t >b ∇u1

2‖Lp((0,T),H1
q (RN)))

≤ CI .

(57)

Estimates of (θ2
2 , u2

2)
Let

[[(θ1, u1)(·, s)]] = ‖(θ1, u1)(·, s)‖Lq1/2(RN) + ∑
q=q1,q2

‖(θ1, u1)(·, s)‖H1,2
q (RN)

.

Setting

Ñ (θ1, u1)(T) =
(∫ T

0
(< t >b [[(θ1, u1)(·, t)]])p dt

)1/p

and using (47), we have
Ñ (θ1, u1)(T) ≤ C(ε2 + ε3 + ε4). (58)

In what follows, we estimate (θ2
2 , u2

2) with the help of Ñ (θ1, u1). Note that

(θ2
2 , u2

2) = λ0

∫ t

0
S(t− s)(θ1, u1)(·, s) ds (59)
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satisfies the linearized problem:
∂tθ

2
2 + ρ∗ div u2 = λ0θ1 in RN for t ∈ (0, T),

ρ∗∂tu2
2 −Div (µD(u2

2) + (ν− µ)div u2
2I− P′(ρ∗)θ2

2I)

= λ0u1 in RN for t ∈ (0, T),

(θ2
2 , u2

2)|t=0 = (0, 0) in RN .

(60)

Firstly, we consider the decay estimates of spatial derivatives of (θ2
2 , u2

2). Set (θ3, u3) =
(∇θ2

2 , ∇̄1∇u2
2) when q = q1 and (θ3, u3) = (∇̄1θ2

2 , ∇̄2u2
2) when q = q2. Here, ∇̄m f =

(∂α
x f | |α| ≤ m). Let us consider the case 2 ≤ t ≤ T. In this case, we decompose

‖(θ3, u3)(·, t)‖Lq(RN)

≤ C
(∫ t/2

0
+
∫ t−1

t/2
+
∫ t

t−1

)
‖(∇, ∇̄1∇) or (∇̄1, ∇̄2)S(t− s)(λ0θ1, λ0u1)(·, s)‖Lq(RN) ds

=: Iq(t) + I Iq(t) + I I Iq(t).

We shall consider estimates of Iq(t), I Iq(t), and I I Iq(t) by (50). Setting ` = N/2q1 + 1/2,
we see that all the decay rates used below are greater than or equal to `. In fact, by (10)
and (50) with (p, q) = (q1, q1/2), (q2, q1/2), we have the following decay rates:

N
2

(
2
q1
− 1

q1

)
+

j
2
=

N
2q1

+
j
2
≥ ` (j = 1, 2),

N
2

(
2
q1
− 1

q2

)
+

j
2
=

N
2

(
2
q1
− 1

q1
+

1
N

)
+

j
2
=

N
2q1

+
1
2
+

j
2
≥ ` (j = 0, 1, 2).

Using (50) with (p, q) = (q, q1/2) and Hölder’s inequality, we have

Iq(t) ≤ C
∫ t/2

0
(t− s)−`[[(θ1, u1)(·, s)]] ds

≤ C(t/2)−`
(∫ ∞

0
< s >−p′b ds

)1/p′(∫ T

0

(
< s >b [[(θ1, u1)(·, s)]]

)p
ds
)1/p

≤ Ct−`Ñ (θ1, u1)(T).

Since 1− (`− b)p < 0, we have∫ T

2

(
< t >b Iq(t)

)p
dt ≤ C

∫ T

2
< t >−(`−b)p dt Ñ (θ1, u1)(T)p

≤ CÑ (θ1, u1)(T)p.
(61)

Using (50) with (p, q) = (q, q1/2), < t >b≤ C < s >b for t/2 < s < t− 1, and Hölder’s
inequality, we have

< t >b I Iq(t)

≤ C
(∫ t−1

t/2
(t− s)−` ds

)1/p′(∫ t−1

t/2
(t− s)−`

(
< s >b [[(θ1, u1)(·, s)]]

)p
ds
)1/p

.

By Fubini’s theorem, we have∫ T

2

(
< t >b I Iq(t)

)p
dt ≤ C

∫ T

1

∫ 2s

s+1
(t− s)−` dt

(
< s >b [[(θ1, u1)(·, s)]]

)p
ds

≤ CÑ (θ1, u1)(T)p.
(62)
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By (51), we have

I I Iq(t) ≤ C
∫ t

t−1
‖(θ1, u1)(·, s)‖H1,2

q (RN)
ds ≤ C

∫ t

t−1
[[(θ1, u1)(·, s)]] ds.

Employing the same method as the estimate of I Iq(t), we have

∫ T

2

(
< t >b I I Iq(t)

)p
dt ≤ CÑ (θ1, u1)(T)p. (63)

Combining (61), (62), and (63), we have∫ T

2

(
< t >b ‖(θ3, u3)(·, t)‖Lq(RN)

)p
dt ≤ CÑ (θ1, u1)(T)p. (64)

In the case that 0 < t < min(2, T), by the same method as the estimate of I I Iq(t),
we have ∫ min(2,T)

0

(
< t >b ‖(θ3, u3)(·, t)‖Lq(RN)

)p
dt ≤ CÑ (θ1, u1)(T)p,

which combined (64), we have∫ T

0

(
< t >b ‖(θ3, u3)(·, t)‖Lq(RN)

)p
dt ≤ CÑ (θ1, u1)(T)p,

namely,

‖ < t >b ∇(θ2
2 , u2

2)‖Lp((0,T),Lq1 (R
N)) + ‖ < t >b ∇2u2

2‖Lp((0,T),Lq1 (R
N))

+ ‖ < t >b (θ2
2 , u2

2)‖Lp((0,T),H1,2
q2 (RN))

≤ CÑ (θ1, u1)(T).

(65)

In the same way as estimates of (θ1
2 , u1

2), using Equations (60), we can obtain estimates
of time derivatives ∂t(θ2

2 , u2
2) as follows:

∑
q=q1,q2

‖ < t >b ∂t(θ
2
2 , u2

2)‖Lp((0,T),H1,0
q (RN))

≤ CÑ (θ1, u1)(T). (66)

Secondly, we consider estimates of (θ2
2 , u2

2) in L∞ in time Lq in space setting for q = q1
and q2. Since we can obtain the case q = q2 by the similar calculation as the case q = q1,
we only verify the case q = q1, namely, we consider the estimate of ‖ < t >N/(2q1)

(θ2
2 , u2

2)‖L∞((0,T),Lq1 (R
N)). In the case that 2 < t < T, we divide three parts as follows:

‖(θ2
2 , u2

2)(·, t)‖Lq1 (R
N)

≤ C
(∫ t/2

0
+
∫ t−1

t/2
+
∫ t

t−1

)
‖S(t− s)(λ0θ1, λ0u1)(·, s)‖Lq1 (R

N) ds

=: Iq1,0(t) + I Iq1,0(t) + I I Iq1,0(t).
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Using (50) with (p, q) = (q1, q1/2) and noting that 1 − bp′ < 0 and t − s << s > if
t/2 < s < t− 1, we have estimates of Iq1,0(t) and I Iq1,0(t) as follows:

Iq1,0(t) ≤ C
∫ t/2

0
(t− s)−N/(2q1)‖(θ1, u1)(·, s)‖Lq1/2(RN) ds

≤ C(t/2)−N/(2q1)

(∫ t/2

0
< s >−bp′ ds

)1/p′

×
(∫ t/2

0

(
< s >b ‖(θ1, u1)(·, s)‖Lq1/2(RN)

)p
ds
)1/p

≤ Ct−N/(2q1)Ñ (θ1, u1)(T). (67)

I Iq1 ,0(t) ≤ C
∫ t−1

t/2
(t− s)−N/(2q1)‖(θ1, u1)(·, s)‖Lq1/2(RN ) ds

≤ C
(∫ t−1

t/2

(
(t− s)−N/(2q1) < s >−b

)p′
ds
)1/p′

×
(∫ t−1

t/2

(
< s >b ‖(θ1, u1)(·, s)‖Lq1/2(RN )

)p
ds
)1/p

≤ C < t/2 >−N/(2q1)

(∫ t−1

t/2

(
(t− s)−N/(2q1) < s >N/(2q1)−b

)p′
ds
)1/p′

Ñ (θ1, u1)(T)

≤ C < t >−N/(2q1)

(∫ t−1

t/2
(t− s)−bp′ ds

)1/p′

Ñ (θ1, u1)(T).

≤ C < t >−N/(2q1) Ñ (θ1, u1)(T). (68)

Using (51) and noting that N/(2q1) < b and < t >≤ C < s > if 1 < t− 1 < s < t, we have

I I Iq1,0(t) ≤ C
∫ t

t−1
‖(θ1, u1)(·, s)‖H1,2

q1 (RN)
ds

≤ C < t >−N/(2q1)

(∫ t

t−1
< s >−(b−N/(2q1))p′ ds

)1/p′

×
(∫ t

t−1

(
< s >b ‖(θ1, u1)(·, s)‖H1,2

q1 (RN)

)p
ds
)1/p

≤ C < t >−N/(2q1)

(∫ t

t−1
ds
)1/p′

Ñ (θ1, u1)(T)

≤ C < t >−N/(2q1) Ñ (θ1, u1)(T). (69)

In the case that 0 < t < min(2, T), by (51), we have

‖ < t >N/(2q1) (θ2
2 , u2

2)‖L∞((0,min(2,T)),Lq1 (R
N)) ≤ C‖ < t >b (θ1, u1)‖L∞((0,T),H1,0

q1 (RN))
,

which combined with (67), (68), and (69) yields that

‖ < t >N/(2q1) (θ2
2 , u2

2)‖L∞((0,T),Lq1 )

≤ C(‖ < t >b (θ1, u1)‖L∞((0,T),H1,0
q1 (RN))

+ Ñ (θ1, u1)(T)).
(70)

Similarly, we have

‖ < t >b (θ2
2 , u2

2)‖L∞((0,T),Lq2 )

≤ C(‖ < t >b (θ1, u1)‖L∞((0,T),H1,0
q2 (RN))

+ Ñ (θ1, u1)(T)).
(71)
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4.1.3. Analysis of Compensation Equations for k

Let {T(t)}t≥0 be continuous analytic semigroup on Lp(RN) associated with the heat
equations:

∂td− ζ∆d = 0 in RN for t > 0, d|t=0 = f in RN . (72)

Recall that {T(t)}t≥0 has the following Lp-Lq decay estimates:

‖∂k
t∇jT(t)f‖Lp(RN) ≤ Ct−

N
2

(
1
q−

1
p

)
− j

2−k‖f‖Lq(RN) (73)

for t > 0, 1 ≤ q ≤ p ≤ ∞, k and j are non-negative integers. Moreover, {T(t)}t≥0 has the
following standard estimate for continuous analytic semigroup:

‖T(t)f‖H2
p(RN) ≤ C‖f‖H2

p(RN) for f ∈ H2
p(RN),

‖T(t)f‖Lp(RN) ≤ C‖f‖Lp(RN) for f ∈ Lp(RN)
(74)

for 0 < t < 2. Now we consider (39). By Duhamel’s principle, we write k2 as k2 = k1
2 + k2

2,
where

k1
2 = T(t)d0, k2

2 = λ0

∫ t

0
T(t− s)k1(·, s) ds. (75)

Firstly, we consider estimates of k1
2. Using (73) with (p, q) = (q1, q1/2), (q2, q1/2) if

1 < t < T, (74) and the maximal Lp-Lq regularity if 0 < t < min(1, T), namely, we use the
fact that if d satisfies (72), the following estimate holds:

‖∂td‖Lp((0,min(1,T)),Lq(RN)) + ‖d‖Lp((0,min(1,T)),H2
q (RN)) ≤ C‖f‖

B2(1−1/p)
q,p

with constants C (cf. ([19], Theorem 2.2(2))), then we have

‖ < t >b ∇k1
2‖Lp((0,T),H1

q1 (R
N)) + ‖ < t >b k1

2‖Lp((0,T),H2
q2 (R

N))

+ ‖ < t >
N

2q1 k1
2‖L∞((0,T),Lq1 (R

N)) + ‖ < t >b k1
2‖L∞((0,T),Lq2 (R

N))

≤ C ∑
q=q1,q2

(‖d0‖Lq1/2(RN) + ‖d0‖B2(1−1/p)
q,p (RN)

) ≤ CI .

(76)

Secondly, we consider estimates of k2
2. Let

[[k1(·, s)]] = ‖k1(·, s)‖Lq1/2(RN) + ∑
q=q1,q2

‖k1(·, s)‖H2
q (RN).

Setting

Ñ (k1)(T) =
(∫ T

0
(< t >b [[k1(·, t)]])p dt

)1/p

and using (47), we have
Ñ (k1)(T) ≤ C(ε2 + ε3 + ε4). (77)

Employing the same calculation as estimates of (θ2
2 , u2

2) and using (73) and (74), we have

‖ < t >b ∇k2
2‖Lp((0,T),H1

q1 (R
N)) + ‖ < t >b k2

2‖Lp((0,T),H2
q2 (R

N))

+ ‖ < t >N/(2q1) k2
2‖L∞((0,T),Lq1 )

+ ‖ < t >b k2
2‖L∞((0,T),Lq1 )

≤ C ∑
q=q1,q2

(‖ < t >b k1‖L∞((0,T),Lq(RN)) + Ñ (k1)(T)).

(78)

Summing up, by (11), (56), (57), (58), (65), (66), (70), (71), (76), (77), and (78), we have

N1(θ2, u2, k2)(T) ≤ C(ε2 + ε2 + ε4),
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which combined (47) yields that

N1(θ, u, k)(T) ≤ C(ε2 + ε2 + ε4). (79)

4.2. Estimates of N2(k)(T)

Recall that k is a solution to the equations:{
∂tk− ζ∆k = h(v, d) in RN for t ∈ (0, T),

k|t=0 = d0 in RN
(80)

for given (v, d) ∈ X2
T × X3

T . In this subsection, we prove

N2(k)(T) = ‖ < t >b ∇k‖L∞((0,T),Lq1 (R
N)) + ‖ < t >b k‖L∞((0,T),H1

∞(RN)) ≤ C(ε2 + ε3).

Firstly, we consider the case 2 ≤ t ≤ T by using Lp-Lq decay estimates for the heat
semigroup (73). By Duhamel’s principle, we write k as

k = T(t)d0 +
∫ t

0
T(t− s)h(v, d)(·, s) ds. (81)

Since∇T(t)d0 and ∇̄1T(t)d0 can be estimated by (73) with (p, q) = (q1, q1/2) and (p, q) =
(∞, q1/2), respectively, we only consider the second term of (81) below. Set k̃ =

∫ t
0 T(t−

s)h(v, d)(·, s) ds. Let k3 = ∇k̃ in Lq1(RN) and k3 = ∇̄1k̃ in L∞(RN). To estimate k3, we
divide three parts as follows:

‖k3(·, t)‖Lq(RN)

≤ C
(∫ t/2

0
+
∫ t−1

t/2
+
∫ t

t−1

)
‖(∇ or ∇̄1)T(t− s)h(v, d)(·, s)‖Lq(RN) ds

=: Iq,0(t) + I Iq,0(t) + I I Iq,0(t)

for q1 and ∞. Employing the similar calculation as (67) and (68), we have

Iq,0(t) ≤ Ct−b‖ < t >b h(v, d)‖Lp((0,T),Lq1/2(RN)),

I Iq,0(t) ≤ C < t >−b ‖ < t >b h(v, d)‖Lp((0,T),Lq1/2(RN)).
(82)

Using (73) with (p, q) = (∞, q2) and noting that 1−
(

N
2q2

+ 1
2

)
p′ > 0 provided by p > 2

and < t >b≤ C < s >b for t− 1 < s < t, we have

I I I∞,0(t) ≤ C
∫ t

t−1
(t− s)−(N/2q2+1/2)‖h(v, d)(·, s)‖Lq2 (RN) ds

= C
∫ t

t−1
(t− s)−(N/2q2+1/2) < s >−b< s >b ‖h(v, d)(·, s)‖Lq2 (RN) ds

≤ C < t >−b
(∫ t

t−1
(t− s)−(N/2q2+1/2)p′ ds

)1/p′

‖ < t >b h(v, d)‖Lp((0,T),Lq2 (RN))

≤ C < t >−b ‖ < t >b h(v, d)‖Lp((0,T),Lq2 (RN)). (83)
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Using (73) with (p, q) = (q1, q1) and noting that 1− p′/2 > 0 provided by p > 2, we have

I I Iq1,0(t) ≤ C
∫ t

t−1
(t− s)−1/2‖h(v, d)(·, s)‖Lq1 (R

N) ds

≤ C < t >−b
(∫ t

t−1
(t− s)−p′/2 ds

)1/p′

‖ < t >b h(v, d)‖Lp((0,T),Lq1 (R
N))

≤ C < t >−b ‖ < t >b h(v, d)‖Lp((0,T),Lq1 (R
N)). (84)

Combining (32), (82), (83), and (84), we have

sup
2<t<T

< t >b ‖k3(·, t)‖Lq(RN) ≤ C(ε2 + ε3) (85)

for q = q1 and ∞.
Secondly, we consider the case 0 < t < min(2, T) by using the following lemma

proved in ([11], Lemma 1).

Lemma 1. Let u ∈ H1
p((0, T), Lq(RN)) ∩ Lp((0, T), H2

q (RN)) with 1 < p, q < ∞ and T > 0.
Then,

sup
t∈(0,T)

‖u(·, t)‖
B2(1−1/p)

q,p (RN)

≤ C(‖u(·, 0)‖
B2(1−1/p)

q,p (RN)
+ ‖u‖Lp((0,T),H2

q (RN)) + ‖∂tu‖Lp((0,T),Lq(RN))),

where C is a constant independent of T.

Since 2(1 − 1/p) > 1 as follows from p > 2, we have B2(1−1/p)
q,p (RN) ⊂ H1

q (RN),
so that by Lemma 1, the maximal Lp-Lq regularity with finite times interval for the heat
equations proved in ([19], Theorem 2.2(2)), and (30) with b = 0, we have

sup
0<t<min(2,T)

< t >b ‖k(·, t)‖H1
q1 (R

N)

≤ C(‖d0‖B2(1−1/p)
q1,p (RN)

+ ‖k‖Lp((0,min(2,T)),H2
q1 (R

N)) + ‖∂tk‖Lp((0,min(2,T)),Lq1 (R
N)))

≤ C(‖d0‖B2(1−1/p)
q1,p (RN)

+ ‖h(v, d)‖Lp((0,min(2,T)),Lq1 (R
N)))

≤ C(ε2 + ε3).

(86)

Moreover, since we can choose a small number δ such that N/q2 + 1 + δ < 2(1− 1/p)
provided by (N/2q2 + 1/2)p′ < 1, by Sobolev’ embedding theorem we have

‖k(·, t)‖H1
∞(RN) ≤ C‖k(·, t)‖

HN/q2+1+δ
q2 (RN)

≤ C‖k(·, t)‖
B2(1−1/p)

q2,p (RN)
. (87)

Then employing the same calculation as (86) yields that

sup
0<t<min(2,T)

< t >b ‖k(·, t)‖H1
∞(RN) ≤ C(ε2 + ε3). (88)

Summing up, by (85), (86), and (88), we have

N2(k)(T) ≤ C(ε2 + ε3),

which combined with (79) yields that (35).
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5. A Proof of Theorem 2

In this section, we prove Theorem 2. By (35), choosing ε > 0 small that C(ε + ε2 +
ε3) < 1, we haveN (θ, u, k)(T) ≤ ε. In particular, ‖ < t >N/2q1 (θ, u, k)‖L∞((0,T),Lq1 (R

N)) ≤
ε implies that (θ, u, k) ∈ Lp((0, T), Lq1(RN)) by q1 < N and p > 2. Moreover, by θ =

ρ0 +
∫ t

0 ∂sθ ds, Sobolev’s inequality: ‖ f ‖L∞(RN) ≤ C‖ f ‖H1
q2 (R

N) (q2 > N), Hölder inequality,

and the condition bp′ > 1, we have

‖θ‖L∞((0,T),L∞(RN))

≤ C
(
‖ρ0‖H1

q2 (R
N) +

∫ T

0
‖∂tθ(·, t)‖H1

q2 (R
N) dt

)
≤ C

{
‖ρ0‖H1

q2 (R
N) +

(∫ ∞

0
< t >−p′b dt

)1/p′

‖ < t >b ∂tθ‖Lp((0,T),H1
q2 (R

N))

}
≤ C(‖ρ0‖H1

q2 (R
N) + ‖ < t >b ∂tθ‖Lp((0,T),H1

q2 (R
N)))

≤ C(ε2 + ε3 + ε4).

Choosing ε > 0 so small that C(ε2 + ε3 + ε4) ≤ ρ∗/4, we have ‖θ‖L∞((0,T),L∞(RN)) ≤ ρ∗/4.
Furthermore, by Hölder inequality and 1− bp′ < 0, we have

∫ T

0
‖∇u(·, s)‖L∞(RN) ds ≤

(∫ ∞

0
< s >−bp′ ds

)1/p′

‖ < t >b ∇u‖Lp((0,T),H1
q2 (R

N)

≤ C(ε2 + ε3 + ε4).

Choosing ε > 0 so small that C(ε2 + ε3 + ε4) ≤ σ, we have
∫ T

0 ‖∇u(·, s)‖L∞(RN) ds ≤ σ.
Thus, we have (θ, u, k) ∈ IT,ε. Therefore, we define a map Φ acting on (ρ, v, d) ∈ IT,ε by
Φ(ρ, v, d) = (θ, u, k), and then Φ is the map from IT,ε into itself.

Let (ρi, vi, di) ∈ IT,ε. Setting (θ, u, k) = (θ1, u1, k1)− (θ2, u2, k2) = Φ(ρ1, v1, d1)−
Φ(ρ2, v2, d2), f = f (ρ1, v1)− f (ρ2, v2), g = g(ρ1, v1, d1)−g(ρ2, v2, d2), and h = h(v1, d1)−
h(v2, d2), by (33) and (34), we see that (θ, u, k) is a solution to the following system:

∂tθ + ρ∗ div u = f in RN for t ∈ (0, T),

ρ∗∂tu−Div (S(u)− P′(ρ∗)θI) = g in RN for t ∈ (0, T),

∂tk− ζ∆k = h in RN for t ∈ (0, T),

(θ, u, k)|t=0 = (0, 0, 0) in RN .

Employing the same argument as in the proof of (35) and using (18), (27), and (32), we have

N (Φ(ρ1, v1, d1)−Φ(ρ2, v2, d2))(T) ≤ C(ε + ε2 + ε3 + ε4)N ((ρ1, v1, d1)− (ρ2, v2, d2))(T)

with some C independent of T and ε. Therefore, choosing ε > 0 so small that C(ε + ε2 +
ε3 + ε4) < 1, we see that Φ is a contraction map on IT,ε, and therefore Φ has a unique fixed
point (ρ, v, d) ∈ IT,ε which solves (9) uniquely by the contraction mapping principle. This
completes the proof of Theorem 2.

6. Proof of Theorem 1

In this section, we prove Theorem 1 by (2). Assume that p, q1, q2, b, and initial
data (ρ0, v0, d0) satisfy the same condition (10) and (11) as in Theorem 2, respectively. As
was mentioned in ([21], Section 2), Theorem 2 implies that the Lagrange transformation
x = Xt(ξ) given by (6) is a C1+ω (ω ∈ (0, 1/2)) diffeomorphism on RN for any t ∈ (0, T).
In particular, since ‖Ku‖L∞(RN) ≤ σ < 1 provided by Theorem 2, choosing σ smaller
if necessary, we may assume that C−1 ≤ det(I + Ku) ≤ C with some constant C for
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any (ξ, t) ∈ RN × (0, T), where we have set Ku =
∫ t

0 ∇u(ξ, s) ds. Let ξ = X−1
t (x) be

an inverse map of x = Xt(ξ) and let ω(x, t) = θ(X−1
t (x), t), v(x, t) = u(X−1

t (x), t), and
n(x, t) = k(X−1

t (x), t). From now, we verify E(ω, v, n)(T) is estimated by N (θ, u, k)(T).
Noting that dx = det(I + Ku) dξ, we have

‖(ω, v, n)‖Lq(RN) + ‖n‖L∞(RN) ≤ C‖(θ, u, k)‖Lq(RN) + ‖k‖L∞(RN)

for q = q1 and q2. By the chain rule, we have

‖∇(ω, v, n)‖Lq(RN) + ‖∇n‖L∞(RN)

≤ C(1− ‖Ku‖L∞(RN))
−1(‖∇(θ, u, k)‖Lq(RN) + ‖∇k‖L∞(RN))

≤ C(‖∇(θ, u, k)‖Lq(RN) + ‖∇k‖L∞(RN)),

‖∇2(v, n)‖Lq(RN)

≤ C{(1− ‖Ku‖L∞(RN))
−2‖∇2(u, k)‖Lq(RN)

+ (1− ‖Ku‖L∞(RN))
−1‖∇Ku‖Lq(RN)‖∇(u, k)‖L∞(RN)},

which combined with (15) and ‖∇(u, k)‖L∞(RN) ≤ C‖∇(u, k)‖H1
q2 (R

N) yields that

∑
q=q1,q2

‖ < t >b ∇(ω, v, n)‖Lp((0,T),Lq(RN)) ≤ C ∑
q=q1,q2

‖ < t >b ∇(θ, u, k)‖Lp((0,T),Lq(RN)),

‖ < t >b (ω, v, n)‖Lp((0,T),Lq2 (R
N)) ≤ C‖ < t >b (θ, u, k)‖Lp((0,T),Lq2 (R

N)),

‖ < t >N/2q1 (ω, v, n)‖L∞((0,T),Lq1 (R
N)) + ‖ < t >b (ω, v, n)‖L∞((0,T),Lq2 (R

N))

≤ C‖ < t >N/2q1 (θ, u, k)‖L∞((0,T),Lq1 (R
N)) + ‖ < t >b (θ, u, k)‖L∞((0,T),Lq2 (R

N)),

‖ < t >b ∇n‖L∞((0,T),Lq1 (R
N)) ≤ C‖ < t >b ∇k‖L∞((0,T),Lq1 (R

N)),

‖ < t >b ∇n‖L∞((0,T),L∞(RN)) ≤ C‖ < t >b ∇k‖L∞((0,T),L∞(RN)),

‖ < t >b n‖L∞((0,T),L∞(RN)) ≤ C‖ < t >b k‖L∞((0,T),L∞(RN)),

∑
q=q1,q2

‖ < t >b ∇2(v, n)‖Lp((0,T),Lq(RN))

≤ C ∑
q=q1,q2

(‖ < t >b ∇2(u, k)‖Lp((0,T),Lq(RN))

+ ‖ < t >b ∇2u‖Lp((0,T),Lq(RN))‖ < t >b ∇(u, k)‖Lp((0,T),H1
q2 (R

N))).

Noting that ∂t(θ, u, k)(ξ, t) = ∂t(ω, v, n)(x, t) + u · ∇(ω, v, n)(x, t), we have

‖∂t(ω, v, n)‖Lq(RN)

≤ C(‖∂t(θ, u, k)‖Lq(RN) + ‖u‖L∞(RN)‖∇θ‖Lq(RN) + ‖u‖Lq(RN)‖∇(u, k)‖L∞).
(89)

By θ = ρ0 +
∫ t

0 ∂sθ ds, Hölder inequality, and the condition bp′ > 1, we have

‖∇θ‖L∞((0,T),Lq(RN)) ≤ ‖∇ρ0‖Lq(RN) + C‖ < t >b ∂tθ‖Lp((0,T),H1
q (RN)),
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which combined with (89) yields that

∑
q=q1,q2

‖ < t >b ∂t(ω, v, n)‖Lp((0,T),Lq(RN))

≤ C ∑
q=q1,q2

{‖ < t >b ∂t(θ, u, k)‖Lp((0,T),Lq(RN))

+ ‖ < t >b u‖Lp((0,T),H1
q2 (R

N))(‖∇ρ0‖Lq(RN) + ‖ < t >b ∂tθ‖Lp((0,T),H1
q (RN)))

+ (‖ < t >N/2q1 u‖L∞((0,T),Lq1 (R
N)) + ‖ < t >b u‖L∞((0,T),Lq2 (R

N)))

× ‖ < t >b ∇(u, k)‖Lp((0,T),H1
q2 (R

N))}.

Summing up, we have
E(ω, v, n)(T) ≤ CN (θ, u, k)(T).

Using (35) and choosing ε > 0 smaller if necessary, we have

E(ω, v, n)(T) ≤ ε,

which implies that (1) has solutions, ρ = ρ∗ + ω, v, and d = d∗ + n satisfying (4) and (5).
Moreover, the uniqueness of solutions also follows from Theorem 2, which completes the
proof of Theorem 1.

7. Concluding Remarks

In this paper, we proved global well-posedness for the simplified Ericksen–Leslie sys-
tem in the maximal Lp-Lq regularity class. We provided a general framework to prove the
global well-posedness for small initial data of quasilinear parabolic or hyperbolic–parabolic
equations in RN . This approach can be extended to boundary value problems with a non-
homologous boundary condition (cf. [25]).
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