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Abstract: Approaches presented today in the scientific literature suggest that there are no methodolog-
ical solutions based on the training of artificial neural networks to predict the direction of industrial
development, taking into account a set of factors—innovation, environmental friendliness, modern-
ization and production growth. The aim of the study is to develop a predictive model of performance
management of innovative industrial systems by building neural networks. The research methods
were correlation analysis, training of neural networks (species—regression), extrapolation, and expo-
nential smoothing. As a result of the research, the estimation efficiency technique of an innovative
industrial system in a complex considering the criteria of technical modernization, development,
innovative activity, and ecologization is developed; the prognostic neural network models allow to
optimize the contribution of signs to the formation of target (set) values of indicators of efficiency for
macro and micro-industrial systems that will allow to level a growth trajectory of industrial systems;
the priority directions of their development are offered. The following conclusions: the efficiency of
industrial systems is determined by the volume of sales of goods, innovative products and waste
recycling, which allows to save resources; the results of forecasting depend significantly on the
DataSet formulated. Although multilayer neural networks independently select important features,
it is advisable to conduct a correlation analysis beforehand, which will provide a higher probability
of building a high-quality predictive model. The novelty of the research lies in the development
and testing of a unique methodology to assess the effectiveness of industrial systems: it is based
on a multidimensional system approach (takes into account factors of innovation, environmental
friendliness, modernization and production growth); it combines a number of methodological tools
(correlation, ranking and weighting); it expands the method of effectiveness assessment in terms of
the composition of variables (previously presented approaches are limited to the aspects considered).

Keywords: innovative industrial system; extractive industry; manufacturing industry; efficiency;
forecasting; neural networks; radial basis functions (RBF); multilayer perceptron (MLP)

MSC: 90C35

1. Introduction

The growing demands on industry and the conditions of modernity are caused by
a number of objective reasons: the problem of the exhaustion of natural resources, in-
tensive environmental pollution, and concern for future generations. Industrial systems
that do not meet the requirements of the external (interaction with the environment and
excessive emissions of pollutants, external effects in relation to society, etc.) and internal
environment (working conditions, the state of fixed assets, etc.), need significant mod-
ernization. This affects the efficiency of the functioning of industrial systems, due to the
level of rationality of capital investment, operating costs, organization and automation of
production, digitalization of industrial systems, and innovation activities. The importance
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of managing the efficiency of innovative industrial systems in Russia is due to the high
indices of industrial production: over a ten-year period (2010–2020) the index in Russia
was 124%, Turkey—167%, Poland—143%, Australia—126%, the Republic of Korea—115%,
USA—104%, Japan—88%, etc. [1]. However, Russian industry operates under conditions
of high depreciation of fixed assets (at the end of 2021 in the extractive industry the index
was 60.8%, and in the manufacturing sector—52.5%), which increases production risks and,
presumably, affects the performance. Thus, under the conditions of tightening economic
conditions, the management of efficiency and its factors becomes especially important,
which makes the problems studied in this article urgent.

The aim of the study is to develop a predictive model of performance management of
innovative industrial systems by building neural networks. The theoretical significance of
the formulated provisions consists of the development of the methodology of performance
management. The practical significance of the research lies in the possibility of predicting
the performance of enterprises based on data management of the assets of industrial
systems, and the identification of the degree of influence of production factors on the
results of the functioning of industrial systems.

The object of the study is innovative industrial systems. The key features of such sys-
tems are, firstly, notable innovation activity, supported by human capital, scientific potential,
availability of resources, investments, and secondly, production of products. Consequently,
the considered category is based on a combination of the designated key features with an
orientation on technological development. Let us highlight the provisions characterizing
the functioning of innovative industrial systems in modern economic conditions.

First, industrial innovations determine the competitiveness of companies on the mar-
ket and make a significant contribution to improving the quality of products [2–4].

Second, the ongoing structural transformation of industrial systems is accompanied
by modernization, the quality of which is determined by innovation [5,6].

Third, the level of change management determines the category of the system, in
connection with which modern scientists distinguish such types of innovation systems as
national, regional, technological, and sectoral [7–15]. Our research is focused on innovative
branch systems, i.e., systems which unite organizations (links of production system),
processing raw materials into finished products, and interacting with each other and with
infrastructural organizations of a national innovation system.

Fourthly, the interaction of agents in the innovative development of industry takes
place under various forms of cooperation, which include clusters [16–18], technological
platforms [19,20], consortia [21,22] and other types of cooperation.

Generalizing the above provisions, as well as relying on [23], let us clarify the definition
of «innovation industrial system». Under it, we understand a set of interconnected subsys-
tems, processes, elements, and participants, united by commodity-raw, energy, information,
financial and service flows, contributing to the production of industrial products and the
formation of GDP. By subsystems, we mean a subsystem of R&D, supply, production,
distribution, transport, storage subsystems, and related infrastructure. Industrial systems
can be considered at the scale of micro, meso- and macro levels. In the first case we should
understand a production system and its functioning subsystems, in the second case—an in-
dustrial complex (a set of interacting enterprises located in a particular territory and united
by industry, in particular, industrial clusters, holdings), in the third case—national industry
as an independent branch of the national economy, uniting extractive, manufacturing, and
energy production.

The behavior of complex systems, in particular industrial systems, is influenced by
many external and internal factors, predictable and random. In this regard, the processes
occurring in innovative industrial systems are stochastic in nature. Simulation tools allow
us to assess and predict the behavior of such a system, as well as the nature and degree of
influence of factors. In the conditions of the necessity of processing large arrays of data
(on equipment operation, technological and business processes, stocks, etc.) methods of
predictive analytics: Data mining, statistical and econometric methods, and methods of
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artificial intelligence are recognized as valuable tools. The latter is based on the training
of neural networks, which has gained popularity in practice today: the search for min-
erals, solving logistics problems, the prediction of equipment failures, etc. Against the
background of the advantages of neural networks, statistical methods of data processing
(correlation and regression, cluster analysis, factor analysis and the principal component
method, classification, and regression trees, etc.) have a certain weakness—the prediction
of results based only on available data; neural networks can generate a prediction based on
data not encountered in the training.

The practical application of neural network tools is popular and covered in the studies
of many scientists. Conceptually, the neural network training methodology is widely
covered in the scientific literature [24–31]. According to scientists, the quality and adequacy
of models, and their predictive properties for extrapolation purposes are conditioned by
the data set and their volume. Learning neural networks contribute to the structuring of
information about complex dynamic systems, which include industrial systems. In this
regard, neural networks are widely used in industry, due to the need for high-quality
processing of large amounts of data on resource consumption, energy consumption, and
business processes. In the context of oil pipeline monitoring and petroleum product
volume prediction, this tool is highlighted in Mayet et al. where pipeline performance
characteristics (amplitudes) are defined as inputs of the neural network, with percentages of
four petroleum products as outputs [32]. To ensure continuous pharmaceutical production,
the neural network model was tested by Wong et al. [33].

One of the purposes of the neural network technique is forecasting. A one-dimensional
GDP prediction model was proposed by Longo et al. [34]. The problems of forecasting the
regional industrial systems, where the authors proposed a neural network model with two
blocks of input data (block 1—regional system and regional GDP level; block 2—panel data
network and indicators of regional GDP growth index, mining, manufacturing and service
sector growth values), and output parameters—forecasted values of industrial growth are
disclosed in the works of Tuo et al. [35]. A predictive neural network model was proposed
by Zhao and Niu [36]. The authors investigated the dependence of CO2 emissions on four
factors—population, GDP per capita, standard coal consumption and the share of thermal
power generation. Adesanya et al. use neural networks to predict process parameters in
the thermoplastic extrusion process in the cable industry, whereby the authors set nine
neurons (parameters describing physical material properties) as the input and 11 neurons
(temperature parameters) as the output layer [37].

Under the conditions of implementation of resource and energy-saving policies, energy
consumption management is of particular importance, and in this regard, neural network
models have become very popular in the context of rationalization of energy consumption.
The study by Leite Coelho da Silva et al. presents the results of building a one-dimensional
model for predicting energy consumption and reveals that a better prediction is obtained
by building an MLP mode [38]. Shinkevich et al. propose energy resource optimization
methods based on neural network training: the input parameters of the model are optimal,
minimal and average energy consumption values, deviation and variance, and the output
parameter is the optimal energy consumption in the chemical industry [39]. Ramos et al.
propose a model to predict the electricity consumption of industrial facilities by analyzing
online data (consolidated every 5 min) and applying an artificial neural network (ANN) [40].
Seawram et al. propose a predictive model of specific heat capacity (one neuron per output)
based on the latent dependence of the target variable on the input parameters (nine neurons
per input—different parameters of base fluid, nanoparticles and temperature) consistent
with sustainable development and direction to reduce carbon dioxide emissions [41]. The
team of scientists, Dli et al., built a process state prediction model using recurrent neural
networks [42]. Thus, the key effect of modeling industrial systems based on a neural
network is to improve the quality of manufactured products and the level of safety of
production systems.
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The methodology for training neural networks to assess the performance of enterprises
(microindustrial systems) is covered in a number of papers [43–45], which demonstrates
the high practical value and widespread application of deep learning tools as part of
the evaluation and prediction of enterprise performance. However, studies limited to
economic and innovation indicators, ignoring the environmental aspects of the functioning
of enterprises prevail. Thus, Du combines such a wide range of indicators, including
innovation activities, but does not focus on the analysis of a series of dynamics and
prospection, but on a set of enterprises with an identical set of indicators, and does not
consider environmental issues [43]. A similar approach is outlined in a study by Luo and
Ren [45], but it also omits the environmental issue.

At the same time, the literature review of scientific positions allows us to judge
the presence of a certain unrealized potential in the methodology of industrial systems
efficiency management: there are no methodological solutions based on the training of
artificial neural networks, allowing us to evaluate and predict the direction of industrial
development, considering a complex of factors—innovation, environmental friendliness,
modernization and production growth. An interesting approach to regional industry
management based on neural networks was found in [35], but the authors limited the
study to the inclusion of GDP and production index indicators. The above determines
the relevance and importance of the development of predictive models and directions of
development of both macro- and micro-industrial systems with the use of intelligent data
processing tools.

2. Materials and Methods

The algorithm of this study is built on the principle of decomposition at the macro-
and micro levels of management of industrial systems. In the first case, we are talking
about the industrial sector of the Russian economy, represented mainly by extractive
and manufacturing industries. The array of data for diagnostics and forecasting of the
development of industrial systems (in retrospect) covers the period from 2005 to 2021—the
period of structural transformation of industry in Russia [1,46]. In addition, speaking
of innovative industrial systems, we refer not only to the output of innovative products
but also to the investment of resources in improving the environmental friendliness of
production. In the second case—at the micro level—the object of the research was a Russian
industrial petrochemical enterprise PJSC «Nizhnekamskneftekhim»; the initial data set
represented by the time series for 2009–2021 (quarterly data). The choice in favor of this
enterprise is due to its strategic importance since it is one of the largest petrochemical
enterprises in Russia and in Europe, one of the largest producers of synthetic polyisoprene
in the world and the third largest supplier of butyl rubbers in the world.

1. Consequently, it is strategically important to develop adequate predictive models that
can not only consider the history of the development of the industrial system but also
be able to predict the results of activity under the influence of certain factors. In this
regard, the following stages of research are outlined:

1. identification of patterns and trends in the development of macro- and micro-
industrial systems;

2. forecasting the efficiency of innovative macro-industrial systems;
3. predicting the efficiency of the microindustrial system.

2. The methodological basis of this study is a set of the following stages of modeling:

1. information gathering;
2. identification of significant relationships between indicators (correlation analy-

sis);
3. formation of a mathematical model;
4. model verification;
5. analysis of simulation results.
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As an indicator of efficiency at the macro level, the use of the gross value added,
combining the interests of all participants of the industrial system and the economy as a
whole state proposed. It is a value equal to the difference between the volume of produced
goods and services and their intermediate consumption [1]. The latter covers payroll, net
profit, taxes, and depreciation, which is of interest not only to owners, but also to the state,
investors, and employees.

We took the gross value added (Yi) as the dependent variable:
Ymining—is the gross value added created in the mining sector (billion rubles);
Ymanufacturing—is the gross value added created in the manufacturing sector

(billion rubles).
Taking into consideration current trends in economic development, the following

indicators are taken as independent variables:
DFA(i)—degree of depreciation of fixed assets on the full range of organizations of the

i-th sector of industry (%)—criterion of technical modernization;
VSG(i)—volume of shipped goods of own production, work and services performed

by own forces in the i-th sector of industry (million rubles)—development criterion;
VIG(i)—volume of innovative goods, works, and services in the Russian Federation

(million rubles)—criterion of innovative activity;
RW(i)—use and neutralization of production and consumption waste in the i-th sector

of industry (million tons)—greening criterion.
At the micro level, the evaluation efficiency of the classical indicators of profitabil-

ity, taken as dependent (output) variables carried out, and taken as dependent (output)
variables:

Rps—profitability of sold products;
Rs—return on sales.
As input variables (independent) investigated:
CA—current assets (thousand rubles);
FA—fixed assets (thousand rubles);
GP—gross profit (thousand rubles);
PS—profit from sales (thousand rubles).

Based on the identified relationships between the criteria variables and predictors the
author’s methodology for assessing the effectiveness of innovative industrial systems (IIS)
is proposed. Our approach is based on the method of rating assessments and benchmarks
and focused on a comprehensive assessment of the development of an innovative industrial
system. For this purpose, the index which takes into consideration the correlation of
predictors with the gross added value created by a separate sector of the economy—the
growth of the innovative industrial system coefficient (Kiisd) is developed. It takes into
consideration the criteria of technical modernization, development, innovation activity,
and ecologization and reflects the complex efficiency of industrial system functioning.
The algorithm of the methodology (Figure 1) clearly reflects the stages and the arrays of
necessary data formed at each stage.

The suggested methodology is distinguished by taking into account heterogeneous,
but significant components of the functioning of industrial enterprises (technical modern-
ization, development, innovation activity, and greening), which allows us to overcome
the limitations in assessing the directions of development; correlates with the interests
of all stakeholders in the economic system (noted above); is multifaceted, flexible and
adaptive (the weighting factors are adjustable and respond to changes in the dynamics
of indicators), which affects the correlation coefficients. The formulated methodology
develops the previously proposed by us method for assessing the sustainable growth of
innovative mesosystems (ISDI) [23] and overcomes the problems of dimensionality of the
parameters under study.
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Figure 1. The author’s methodology algorithm for assessing the effectiveness of innovative industrial
systems.

The result of the presented methodology is the calculation of the coefficient of devel-
opment of an innovative industrial system—Kiisd (1):

Kiisd = ∑4
j=1

( Aij(min)
Aij(year)

·wj

)
+ ∑4

j=1

( Aij(year)
Aij(max)

·wj

)
,

wj =
aj
4 and wj ≤ 1,

aj = 4, if rmax
(
Yi; Aij

)
,

aj = 1, if rmin
(
Yi; Aij

)
,

(1)

where j—is one of the four attributes (DFA, VSG, VIG, RW); Aij(min) or Aij(max))—is the
reference value for the corresponding attribute in the dynamics series; Aij(year)—is the
actual value of the indicator in a particular year; wj—is the weight coefficient j attribute;
aj—the rank assigned to the j attribute in accordance with the value of the correlation
coefficient (aj = 4 for the attribute with the strongest correlation; aj = 1 for the attribute with
the weakest correlation); Yi—the gross value added created in the i-th industry sector.

At the next stages of the study, modeling and forecasting of the indicators are carried
out. The forecasting tool was artificial neural networks (ANN), trained in the Statistica
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environment. Of the three available modeling strategies (automated neural networks search
(ANS), custom neural networks (CNS) and subsampling (random, bootstrap)) the ANS
option is used in all modeling cases. The basic problem solved by neural networks is
regression. The neural network parameters are weights and shifts of neurons, and the
hyperparameters are the number of layers, the number of neurons in each layer, activation
functions and the error function. Let us consider these parameters in more detail.

The neural network construction is based on the summation function of a neuron,
which consists of the summation of products of input values by their weight coefficients (2):

Y = F(WX) = F(x1ω1 + x2ω2 + . . . + xnωn) = F
(

n
∑

i=1
xiωi

)
or

Y = b + x1ω1 + x2ω2 + . . . + xnωn = b +
n
∑

i=1
xiωi

(2)

where Y—is the output value; X = (x1, x2 . . . , xn)—is a vector of input signals, a feature;
W = (ω1, ω2 . . . , ωn)—is a vector of weights reflecting the significance of the corresponding
feature (strength of synaptic connection, synapse); b is the activation function bias neuron.

The inputs of the artificial neural network are a mathematical vector of numbers X (3):

X = [x1, x2, . . . , xn]. (3)

• An activation function is a function that converts weighted inputs into an adequate
output. We distinguish between activation functions for radial basis functions (RBF)
and multilayer perceptron (MLP). In the former, we rely on the following functions:

• Gauss function (4):

f (x) = exp
(
−S2

2σ2

)
,

S2 = |X−W|2 = ∑
i
(xi −ωi)

2 (4)

where σ—is the standard deviation of the width of the radial-baseline function; S is the
weighted sum of the neuron;

• the identity function (linear) (5):

f (x) = x. (5)

The following activation functions in MLP training applied:

• an identical function;
• logistic function (sigmoid) (6):

f (x) = 1
1+e−x ,

f (x) ∈ (0; 1)
(6)

• function of the hyperbolic tangent (7):

f (x) = th(x) = (ex−e−x)
(ex+e−x)

,

f (x) ∈ (−1; 1),
(7)

• exponential function (8):

f (x) = e−x. (8)
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The error function (neural network error) in regression problems is determined by the
formula for summing the squares of errors (9):

E =
n

∑
i=1

(Y−Y∗)2, (9)

where Y—is the actual value of the output variable and Y*—Y* is the predicted value of the
output variable.

We evaluated the quality of trained artificial neural networks using the test sample
with the average absolute error MAPE (10):

MAPE =
1
n

n

∑
i=1

|Y−Y∗|
Y

=
1
n

n

∑
i=1

YAR
Y

, (10)

where n—is the number of observations in the test sample (automatically); YAR—is the
absolute residuals on Y in the test sample.

According to the architecture, all neural networks are divided into two types: single-
layer and multilayer. A single-layer network is a neural network without hidden layers, the
signals of the input layer, including synapses, are fed to the output layer, which provides
a relatively high speed of learning; the architecture of such a network is stable and does
not vary; pre-processing of predictors is required [47–51]. However, due to the simplicity
of tuning and consequently, the low accuracy of the model, we do not use the method of
training single-layer neural networks in the study.

We rely on the application of a multilayer neural network (deep), in which the input
signals pass through hidden layers with one set of synapses, and only then to the output
layer with other weights. While the single-layer network requires careful preparation of
the input data, in the multilayer neural networks this problem is overcome by the transfor-
mation and selection of features during training. At the same time, the addition of hidden
layers causes an increase in the training time of the network, and the ability to process a
small amount of data and retraining can contribute to a low quality of prediction [52–55].

Thus, the key type of neural network used in the paper is a multilayer network
(1 hidden layer with h neurons), where x—is a set of predictors, inputs, and Y—is a set of
categorical variables, outputs (Figure 2).
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Figure 2. The architecture of the multilayer neural network.

Homogeneous and heterogeneous neural networks are distinguished according to the
type of neuronal structures. In the first case, homogeneous networks consist of neurons
with one type of activation, while in the second case there is a combination of activation
functions [56]. In our study, there are artificial neural networks of both types, but predomi-
nantly heterogeneous ones, because in this way the network automatically chooses the best
option to calculate the output value.

The methodological basis was the use of such methods of data processing as correlation
analysis, training of neural networks (species—regression), extrapolation, and exponential
smoothing. An instrumental set of data processing includes such software products as
Statistica (module—«Automated neural networks search», «Time series and forecasting»)



Mathematics 2023, 11, 164 9 of 25

and Deductor Studio (module—Neural network). The calculation of efficiency indicators
and the coefficient of development of the innovative industrial system Kiisd is implemented
in Microsoft Excel.

3. Results
3.1. Trends in the Development of Stochastic Innovation Industrial Systems in Russia

Industrial systems in Russia are developing steadily to a certain extent, as evidenced
by the dynamics of gross value added created in the mining and processing sector. The
trend analysis makes it possible to judge the global growth trend in both types of industrial
systems (Figure 3) (more data in Appendix A). A more predictable and sustainable dynamic
is demonstrated by manufacturing, which, unlike extractive industries, maintained its
production momentum in 2020 (the year of the global pandemic, when supply chains
around the world were disrupted, negatively affecting technological processes, production
costs, and sales volumes). While the index of gross value added in 2020 in the extractive
industries decreased by 27% (relative to 2019), the index in the manufacturing industries
increased by 1.4%. This trend is due to the specificity of industries, flexibility and ability to
restructure and diversify production.
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Figure 3. Extrapolation of gross value added by industrial sector of the Russian economy by con-
structing an exponential trend line for the mining (a) and manufacturing (b) industries.

According to the author’s methodology algorithm (Figure 1), the data collection of the
development of the industrial system in Russia allowed to carry out a correlation analysis,
which revealed that the dependent variable (Yi) significantly depends on all four input
variables (DFA, VSG, VIG, RW) in both cases—the extractive and manufacturing sectors of
the economy in Russia (Table 1, Table 2). The correlation coefficients exceed 0.7, and the
closeness of the relationship between all the indicators is high.

Table 1. Correlation matrix and ranking indicators the mining sector of the economy.

Mean Ymining DFA(mining) VSG(mining) VIG(mining) RW(mining)
The Rank of
the Trait, a Weight, w

Ymining 6652 1 0.788233 0.997309 0.862541 0.953822

x1(mining) 54 0.788233 1 0.796851 0.666535 0.775370 1 0.25

x2(mining) 10,315,429 0.997309 0.796851 1 0.871492 0.948996 4 1

x3(mining) 400,421 0.862541 0.666535 0.871492 1 0.785332 2 0.5

x4(mining) 2274 0.953822 0.775370 0.948996 0.785332 1 3 0.75
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Table 2. Correlation matrix and ranking indicators the manufacturing sector of the economy.

Mean Ymanufacturing DFA(manuf.) VSG(manuf.) VIG(manuf.) RW(manuf.)
The Rank of
the Trait, a Weight, w

Ymanuf. 9048 1 0.915754 0.996381 0.917357 0.720713

x1(manuf.) 48 0.915754 1 0.920973 0.843458 0.784281 2 0.5

x2(manuf.) 29,618,279 0.996381 0.920973 1 0.942095 0.738616 4 1

x3(manuf.) 2,035,221 0.917357 0.843458 0.942095 1 0.718756 3 0.75

x4(manuf.) 149 0.720713 0.784281 0.738616 0.718756 1 1 0.25

Having all the necessary data, we identified the reference values in the series of
dynamics (Table 3).

Table 3. Benchmark values the innovative industrial systems indicators.

DFA (min) VSG (max) VIG (max) RW (max)

Mining 49.6 (2009) 23,598,403 (2021) 874,337 (2021) 3585 (2018)

Manufacturing 45.6 (2008) 62,978,104 (2021) 3,659,812 (2021) 247 (2021)

Then by Formula (1), we calculated the weighted values of the four indicators for the
study period and the final coefficient of growth of the innovative industrial system Kiisd
for two types of industrial systems (Table 4) and compared them to the dynamics of gross
value added (Figure 4).

Table 4. Comprehensive assessment of the development of innovative industrial systems (calculated
according to the author’s methodology).

Year Ymining
(bln rub.)

Kiisd (mining)
(Coefficient)

Ymanuf.
(bln rub.)

Kiisd (manufacturing)
(Coefficient)

2005 2064 0.63 3388 0.85

2006 2509 0.68 4116 0.92

2007 2866 0.87 5025 0.97

2008 3285 0.90 6164 1.07

2009 2885 0.84 5005 1.00

2010 3843 0.92 5935 1.12

2011 4944 1.25 6896 1.24

2012 5563 1.37 7774 1.46

2013 5911 1.29 8070 1.56

2014 6231 1.46 8959 1.56

2015 7276 1.43 10,289 1.76

2016 7423 1.56 10,017 1.93

2017 9029 1.72 11,308 1.79

2018 12,410 2.09 13,315 1.90

2019 12,622 2.12 14,215 1.99

2020 9185 1.73 14,415 2.17

2021 15,031 2.44 18,926 2.43
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Figure 4. The verification coefficient of development effectiveness the innovation industrial system
for the mining (a) and manufacturing (b) industries (comparison of the actual values of gross value
added and calculated by the author’s methodology values of the coefficient of development of
innovative industrial system).

As in the case of gross value added, the coefficient of integrated development of
industrial systems as a whole, increases (in both cases). The quality of the proposed
indicator is confirmed by the comparison with the size of the gross value added. The
higher quality of the indicator is demonstrated by the mining sector, as evidenced by
low deviations and a correlation coefficient of 0.988 (Figure 4a). The deviations are more
pronounced in the manufacturing industrial systems sector, as evidenced by the correlation
coefficient of 0.969 (Figure 4b).

In general, the high quality of the proposed indicator should be noted; it succinctly
and comprehensively describes the characteristics of industrial systems in a particular
period of time and allows a comparative analysis of the development of various objects
of research.

Thus, the patterns of development of innovative industrial systems should include
the steady growth of gross value added, which satisfies the interests of owners, investors,
government, and employees; there is direct and high dependence on this performance
indicator for the four most important criteria of modern economic system functioning
(the criteria of technical modernization, development, innovation activity, greening). The
causal relationship (positive) between the depreciation of fixed assets x1 and the gross
added value Y can be explained by the concentration of efforts and resources of production
systems not on the renewal of technical infrastructure, but on product and technological
innovation, as well as on measures for the recycling of production and consumption waste.
Shifting the focus to the purchase of new equipment and the subsequent reduction in the
degree of fixed assets will restrain the growth of production and gross value added as a
result of the redistribution of income and investment.
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3.2. Variative Forecasting of the Efficiency of Innovative Macro-Industrial Systems in Russia
3.2.1. Univariate Prediction

In order to predict the efficiency of industrial systems development the gross value
added indicator taken as a basis (modeling for the dependent variable Kiisd showed similar
architectures and characteristics of neural networks and corresponding predictions), alter-
native types of neural networks—Multilayer Perceptron (MLP) and Radial Basis Function
(RBF)—evaluated. Univariate prediction assumes a single neuron input and output: the
actual value (input value) and the predicted value (output value). The size of the subsam-
ples is set in the following proportions: training—60%, test—20%, validation—20%. By
applying the ANS option, five networks with the best quality scores were trained.

1. In the extractive sector, the highest performance is shown by the radial basis function
network with five hidden neurons RBF 1-5-1 and a learning performance of 97.55%
(Table 5). The error function is defined by the sum of squares formula, the activation
function of hidden neurons is Gaussian, and the output neurons are identical (linear).
Thus, the obtained one-dimensional neural network is heterogeneous, combining
neurons with two different activation functions, and multilayer.

Table 5. Alternative univariate models for predicting Ymining gross value added.

Net.
Name

Training
Perf. Test Perf. Validation

Perf.
Training

Error Test Error Validation
Error

RBF 1-5-1 0.975502 0.991997 0.999828 74,038.1 2,517,832 10,540,650

RBF 1-5-1 0.924554 −0.713870 0.999946 290,964.0 13,077,520 29,005,897

RBF 1-5-1 0.958372 0.973763 0.986317 148,272.0 6,215,827 17,400,202

MLP 1-6-1 0.969824 0.931990 0.984887 98,788.5 834,197 4,930,694

RBF 1-5-1 0.750521 −0.862889 0.975379 944,232.3 1,353,0519 29,115,342

The time series graph is plotted in the projection over 25 periods (starting from
period 1), which allows us to estimate the near-term performance of the extractive sector of
the economy in Russia (in 7 years). According to the best network (RBF 1-5-1), the projected
value of gross value added in the industry will remain at 9000 billion rubles (Figure 5a).
Forecasting Kiisd shows a similar development trend (Figure 5b).
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Since the quality of the model was estimated by the test sample, we estimated the
relative error of this model by absolute residuals. We calculated the average absolute error
of MAPE and found that the quality of the test sample for Ymining was 31.3%, for Kiisd—22%
(high error), indicating the low quality of the predicted scenario of changes in gross value
added in the mining sector. The difficult-to-predict indicator is due to the previously noted
sharp decline in gross value added in the industry.

The application of the exponential smoothing tool (α = 0,1; without trend and seasonality)
reduces the average absolute error of MAPE to 12%. However, the results of smoothing
significantly distort the original data set, which affects the results of forecasting by neural
networks. If the actual data provide the forecast of the indicator for future periods at the
level of 9000 billion rubles (Figure 5a), then taking into account the exponential smoothing,
the forecasted value falls below 6000 billion rubles.

The intermediate conclusion is that the neural network RBF 1-5-1 (MAPE = 31.3%)
predicts the value of gross value added in the extractive industry at 9000 billion rubles.

2. In the processing sector, we obtained the best multilayer perceptron type network
described by the MLP 1-2-1 architecture—with two hidden neurons, whose activation
function is hyperbolic; the activation function of neurons at the output is identical
(Table 6). The model is again heterogeneous.

Table 6. Alternative univariate models for forecasting the gross value added of Ymanuf..

Net.
Name

Training
Perf. Test Perf. Validation

Perf.
Training

Error Test Error Validation
Error

MLP 1-2-1 0.942668 0.965460 0.955398 242,733.9 295,473.1 2,886,074

MLP 1-2-1 0.941358 0.954011 0.961203 251,689.5 348,608.2 2,281,566

MLP 1-8-1 0.942357 0.959377 0.958476 245,806.0 312,927.0 2,445,556

MLP 1-7-1 0.941358 0.954011 0.961203 249,517.3 365,610.0 2,588,421

MLP 1-2-1 0.941099 0.964267 0.956155 287,181.8 277,392.1 2,333,691

According to the projection, the gross value added will fluctuate between 15,000 and
16,000 billion rubles (Figure 6). The average value of the error calculated on absolute
residuals in the test sample was 14.6%, which is twice better than in the case of the one-
dimensional Ymanuf. projection model. The manufacturing industry is expected to grow
further, but at a lower growth rate (with a probability of 14.6%).
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The intermediate conclusion is that the multilayer neural network of MLP 1-2-1 archi-
tecture (MAPE = 14.6%) predicts the value of Ymanuf. in the range of 15,000–16,000 billion
rubles.

3.2.2. Multivariate Forecasting

As an alternative method of prediction, we trained a neural network taking into
account several features—DFA, VSG, VIG, RW. The quality of the models has increased
significantly.

We modeled the dynamics series, which characterize the efficiency of industrial sys-
tems functioning, according to a similar algorithm carried out. However, the architecture
of networks has changed in terms of input neurons—their number has increased to 4
(according to a set of features). Both types of neural networks (MLP and RBF) are set for
training the largest number of networks, nets for training—50, nets for conservation—5.

1. In the field of mining, it was revealed that MLP models demonstrate a higher quality
of prediction of the output variable (Table 7). The balance of the quality of the training
and control samples allows the choice to be made in favor of networks with MLP 4-8-1
and MLP 4-9- 1 architecture. The choice of the best model was also made according
to the MAPE criterion, so network #3 with MLP 4-9-1 architecture was chosen for
scenario prediction. The activation function of hidden neurons is a hyperbolic tangent;
the activation function of output neurons is identical. A quality check of the test
sample confirms the lowest error value for the selected network, but at the same
time—high (28%).

Table 7. Alternative multivariate models for predicting Ymining gross value added.

Net. Name Training Perf. Test Perf. Validation Perf. Training Error Test Error Validation Error MAPE

RBF 4-5-1 0.986852 0.975468 0.999344 24,126.39 3,109,395 12,947,184 42%

MLP 4-8-1 0.991204 0.927100 0.994118 4907.93 1,623,501 7,684,535 32%

MLP 4-9-1 0.992292 0.933468 0.999945 0.00 1,285,083 6,436,301 28%

MLP 4-8-1 0.992292 0.969944 0.998589 0.00 2,112,949 9,731,973 33%

MLP 4-9-1 0.992292 0.943643 0.999955 0.00 1,567,571 7,404,531 29%

The evaluation of the weights in the network connections allows us to judge the high
strength of the synaptic connection of the variable DFA(mining), which characterizes the
degree of depreciation of fixed assets at the enterprises of the industry, with the hidden
neuron #5 (w (DFA(mining); h5) = 4.20); the hidden neuron #3 has a high positive effect on
the output variable, as evidenced by indicates w (h3; Ymining) = 1.21.

Based on the constructed neural network model, four different scenarios were calcu-
lated (Table 8):

• Scenario 1: continuation of the increase in all four variables (by 1%);
• scenario 2: reduction in the degree of depreciation of fixed assets in the industry

(DFA(mining)) by 1% as a result of the modernization of industrial systems) and an
increase in the other three indicators by 1%;

• scenario 3: reduction of DFA(mining) by 1% and growth of the other three indicators
by 5%;

• scenario 4: reduction DFA(mining) by 5% (investing in the renovation of fixed assets)
and an increase in the other three indicators by 1%.
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Table 8. Scenarios of changes in the efficiency of industrial systems in the mining sector of the
economy.

Year Ymining DFA(mining) VSG(mining) VIG(mining) RW(mining)

2021 15,031 60.8 23,598,403 874,336.9 3510.6

Scenarios Ymining
(predicted) DFA(mining) VSG(mining) VIG(mining) RW(mining)

1 11,646.8 61.4 23,834,387 88,3080.3 3545.7

2 11,143.7 60.2 23,834,387 88,3080.3 3545.7

3 11,103.6 60.2 24,778,323.2 91,8053.7 3686.1

4 10,320.2 57.8 23,834,387 88,3080.3 3545.7

According to these scenarios, the efficiency of macro-industrial systems in the field of
mining is at the point of bifurcation, the way out of which will be a choice between further
increasing economic efficiency to the detriment of the state of fixed assets (which are the core
of the production system) and investing in modernization with an economic return only
in the future. As noted above, this revealed a high relationship between Y and DFA. Our
hypothesis that the redistribution of income and investment in favor of the modernization
of fixed assets will restrain the increase in the efficiency of the industrial system is confirmed
(the value of Ymining (predicted) will be only 10 320.2 billion rubles). If economic agents
concentrate the financial flow on the purchase of new machinery, equipment, and transport,
it will provide a decrease in the added value relative to the level of 2021.

2. In the field of manufacturing industries, the lowest value of absolute error MAPE by
the network of architecture MLP 4-3-1 is shown (Table 9). The error of 6.9% can be
considered satisfactory, and this neural network is applicable in the quality of scenario
forecasting of the industrial system. The highest strength of the synaptic connection is
also demonstrated by the predictor DFA(manuf.) in connection with the hidden neuron
#3 (connection weight is 0.46); in the output—hidden neuron #1 (connection weight
is 0.77).

Table 9. Alternative multivariate models for forecasting the gross value added of Ymanufacturing.

Net. Name Training Perf. Test Perf. Validation Perf. Training Error Test Error Validation Error MAPE

MLP 4-4-1 0.915479 0.976979 0.985058 457,466.8 384,616 2,737,451 11.6%

RBF 4-5-1 0.944350 0.803836 0.957482 233,871.7 4,591,564 13,365,813 31.4%

RBF 4-5-1 0.956258 0.994056 0.960144 171,935.9 4,136,706 13,562,300 26.9%

RBF 4-5-1 0.963447 0.917787 0.956054 134,166.2 3,415,319 11,026,154 26%

MLP 4-3-1 0.895015 0.941203 0.999883 549,292.2 563,440 554,153 6.9%

3. The development of the four scenarios outlined above regarding manufacturing
allows us to judge in all cases, a significant increase in the gross value added in the
industry compared to 2021 (Table 10).
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Table 10. Scenarios of changes in the efficiency of industrial systems in manufacturing industries.

Year Ymanuf. DFA(manuf.) VSG(manuf.) VIG(manuf.) RW(manuf.)

2021 18,926 52.5 62,978,104 36,598,12.3 247

Scenarios Ymanuf.
(predicted) DFA(manuf.) VSG(manuf.) VIG(manuf.) RW(manuf.)

1 24,113.16 53.02 63,607,885 36,964,10 249.4

2 23,101.90 51.98 63,607,885 36,964,10 249.4

3 24,959.65 51.98 66,127,009 38,428,03 259.3

4 21,224.49 49.88 63,607,885 36,964,10 249.4

A summary of the results of forecasting the efficiency of macro-industrial systems,
as well as the priority areas of development that require special attention, is presented in
the form of a scheme (Figure 7). The univariate (1 attribute on the input) and multivariate
(4 attributes on the input) variant models are reflected.
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Figure 7. A predictive model for improving the efficiency of macro-industrial systems and priority
areas for their development.

Thus, a more predictable trend of changes in the efficiency of industrial systems is
observed in the sphere of manufacturing industries. This is due to a more uniform rate of
change Yi (Figure 3). Prediction of the efficiency of extractive innovative industrial systems
is complicated by the deterioration of the indicator of gross value added in 2020. This
«outlier» in the dynamic series affected the quality of neural networks. Further monitoring
of the dynamics of the criteria variables and predictors will allow for adjusting the neural
network and improving the quality of the predictive model.

3.3. Predicting the Efficiency of the Microindustrial System

Prediction of the efficiency of microindustrial systems is implemented on the example
of a large Russian petrochemical enterprise «Nizhnekamskneftekhim». In this case, the
input is four neurons (CA, FA, GP, PS), and the output is—2 (Rps и Rs). The learning
quality of the neural network on average has increased, due to the increase in the series
of dynamics to 52 periods (quarterly data on the activities of the company for 13 years,
Figure 8).
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Figure 8. Dynamics of change in input variables over 13 years (quarterly data presented).

The size of the subsamples is set in the following proportions: training—70%,
test—15%, validation—15%. ANS option is also applied, 50 networks for training. We ob-
tained five trained MLP networks (Table 11), the best quality of the test sample is observed
for network #4 MLP 4-8-2, which is the most adequate and considered by us acceptable for
prediction (the average absolute error of MAPE does not exceed 8%).

Table 11. Alternative multivariate models for predicting the profitability of an enterprise.

Net. Name Training
Perf.

Test
Perf.

Validation
Perf.

Training
Error

Test
Error

Validation
Error MAPE (Rps) MAPE (Rs)

MLP 4-3-2 0.977628 0.992374 0.986670 0.000158 0.000025 0.000173 9.68% 8.27%

MLP 4-9-2 0.975122 0.995172 0.981610 0.000174 0.000016 0.000325 16.65% 10.6%

MLP 4-9-2 0.981194 0.986588 0.984998 0.000132 0.000056 0.000260 12.15% 10.52%

MLP 4-8-2 0.993344 0.963579 0.991687 0.000046 0.000194 0.000102 7.11% 6.3%

MLP 4-6-2 0.987742 0.928401 0.996516 0.000082 0.000275 0.000157 10.87% 10.48%

The high quality of the trained neural networks is confirmed by the low scatter between
the target and output values of the performance indicators, clearly demonstrated by the
scatter diagrams (Figure 9).
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Figure 9. Scatter plot of the training sample (exponential activation function): (a) Return on sales Rps;
(b) Return on sales Rs.



Mathematics 2023, 11, 164 18 of 25

Evaluation of the sensitivity of the neural network to the predictors allows us to con-
clude that the variables GP and PS are noisy because their sensitivity is many times lower
than the predictors CA and FA (Table 12). However, their importance for the formation of
performance indicators is unconditional, in connection with which we leave these signs in
the DataSet.

Table 12. Evaluation the sensitivity of neural networks to input variables.

Net. Name CA FA GP PS

1.MLP 4-3-2 110.66 49.02 3.56 2.30

2.MLP 4-9-2 185.18 142.50 3.35 2.38

3.MLP 4-9-2 136.86 57.61 4.31 3.51

4.MLP 4-8-2 120,584.73 813.57 20.61 16.84

5.MLP 4-6-2 159,432.66 1637.65 17.53 4.69

Mean 56,090.02 540.07 9.87 5.95

We considered four scenarios of enterprise development based on the results of neural
network modeling (Table 13), according to which different rates of one-time growth of
indicators are provided:

• Scenario 1: 1% increase in input variables;
• Scenario 2: 5% increase in input variables;
• Scenario 3: 10% increase in input variables;
• Scenario 4: Reduce the value of input variables by 1%.

Table 13. Scenarios of changes in enterprise efficiency (exponential activation function).

Year Rps (%) Rs (%) CA
(ths. rub.)

FA
(ths. rub.)

GP
(ths. rub.)

PS
(ths. rub.)

4 quarter 2021 26.6 19.4 67,879,452 227,152,227 69,003,100 49,405,272

Scenarios Rps (%) Rs (%) CA
(ths. rub.)

FA
(ths. rub.)

GP
(ths. rub.)

PS
(ths. rub.)

1 26.8 19.1 68,558,247 229,423,749 69,693,131 49,899,325

2 25.8 18.6 71,273,425 238,509,838 72,453,255 51,875,536

3 24.6 17.9 74,667,397 249,867,450 75,903,410 54,345,799

4 27.2 19.4 67,200,658 224,880,705 68,313,069 48,911,219

Of course, the trajectory of enterprise development is not limited to the considered
scenarios. However, the calculations allow us to form a general idea about the patterns of
change in the indicators of the effectiveness of the industrial system.

A distinctive feature of the enterprise is the inverse dependence of performance
indicators on the size of fixed assets, current assets and profits. As we can see, fixed assets
have a high value, which bears a significant contribution to the formation of the criterion
variables. However, according to the identified patterns, the variable has little effect on
efficiency indicators. The explanation may be idle production facilities or a high degree of
depreciation of fixed assets at the enterprise.

Deductor Studio is used as an alternative neural network-training tool. In a similar
neural network with eight neurons on a hidden layer, the activation function is sigmoid
(Figure 10).
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Figure 10. Graph of a neural network with architecture 4-8-2, constructed in Deductor Studio
(dependence of the performance indicators of the microindustrial system on the input variables DFA,
VSG, VIG, RW).

The quality of the models was assessed by the scatter diagram (Figure 11) and the root
mean square error, which was 0.86%.
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Evaluation of the scenario forecasting of the enterprise activity confirms the previously
identified vectors of change in the performance indicators of the industrial system. The
trained neural network made it possible to identify the following values of the output
variables:

• scenario 1 (1% increase in input variables): Rps = 26%, Rs = 18.9%;
• scenario 2 (5% increase in input variables): Rps = 25.7%, Rs = 18.7%;
• scenario 3 (10% increase in input variables): Rps = 25.5%, Rs = 18.7%;
• scenario 4 (1% reduction in the value of input variables): Rps = 28.5%, Rs = 20.3%.

Once again, the increase in performance indicators may be noticeable in the case of a
decrease in the values of predictors.

Thus, the prediction results are significantly dependent on the DataSet. Despite the
fact that multilayer neural networks self-select important features, it is advisable to perform
correlation analysis beforehand, which will provide a higher probability of obtaining a
high-quality predictive model.

4. Discussion

An analytical review of scientific approaches to performance management allows
us to state the widespread use of artificial neural network tools to predict the behavior
of complex systems. This work highlights numerous studies aimed at the study and
development of neural network modeling methodology, where the object is mathematical
tools, industries, enterprises, oil product volumes, GDP, CO2 emissions, technological
parameters, etc. However, in the conditions of Russian industry’s transition to sustainable
development, circular economy, as well as innovative development, a comprehensive
assessment of the efficiency of industrial systems becomes important. Such an attempt in
a study by Tuo et al. has been made [35] but is limited to the growth of production and
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GDP. Other studies are limited to either technological processes [41,42], the environmental
performance of industrial systems [36], or electricity consumption forecasting [38], etc.

We have come to the conclusion that there is no one-size-fits-all, true methodology
for the performance management of industrial systems, which expands the scope for
incremental methodology. We continue to emphasize complex solutions, which allow
for a comprehensive assessment of a particular system. The tasks set for production
enterprises and complexes at the federal level affect the issues of innovative development,
modernization, and recycling. This formed the basis of our research and contributed
to the identification of patterns of development of industrial systems of different levels
and obtaining a number of new scientific results. Thus, we develop the methodology of
performance management the industrial systems based on modern data processing tools.

Neural networks of different types and architectures served as a key tool for the
processing of a series of dynamics. The advantage of this tool in relation to others (e.g.,
regression analysis) is that the mechanism of multilayer artificial neural networks automat-
ically selects the best architecture based on the predefined conditions—the given sample
structure (training, control, test), choice of neural network type (MLP or RBF), number of
neurons on the hidden layer and activation function. This tool allows to train different
variants of networks based on the same set of input data and to select the best model in
terms of quality.

Thus, this article formulates the following conclusions and results.

1. The methodological solution for calculating the coefficient of development of an
innovative industrial system (Kiisd), which develops the scientific groundwork in
the field of efficiency management, is distinguished by its comprehensiveness and
takes into account the most important components for today (the criteria of technical
modernization, development, innovation activity, greening is taken into account). The
basic principle of calculation of the indicator is universal and based on the results of
correlation analysis. The combination of correlation, ranking and the determination
of weighting coefficients makes our approach unique. The verification of the method-
ology confirms the correctness and adequacy of the real dynamics of the effectiveness
of industrial systems.

2. The patterns of development of industrial systems in Russia (extractive and manufac-
turing) are based on the implementation of two methods—trend extrapolation and
neural network modeling (univariate and multivariate). The results of comparing the
results of the two methods identify different trajectories of development of industrial
systems: in the first case—unconditional growth of the efficiency indicator (gross
value added), and in the second case—decline. These trends allow us to summarize
the difficult predictability of the development of innovative industrial systems, as
well as the finding of the Russian industry at the point of bifurcation. The way out of
the bifurcation point can be a structural transformation of state support of industrial
enterprises of development institutions.

3. Prognostic neural network models, which allow for optimizing the contribution
of attributes in the formation of target (set) values of performance indicators have
been developed. The models are complemented by the definition of those priority
directions of development of macro-industrial systems, which today are not given
enough attention (according to the results of economic-mathematical modeling). Our
conclusions and proposals will make it possible to align the growth trajectory of
production systems.
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4. Based on the results of neural network training, scenarios for the development of
the micro-industrial system were proposed, allowing the forming of an idea and
the potential vector of development of the enterprise—the growth or decline in
efficiency. The choice of the direction of development is conditioned by the necessity
of rationalization of production capacities and further modernization of technical
infrastructure.

5. It is determined that the efficiency of industrial systems is determined by the volume
of sales of goods, which is logical and natural. At the same time, innovative products
and recycling of waste, which allow for saving resources, also make a significant
contribution to the formation of gross value added.

The limitation of the proposed methodological complex is in the data set: a trained
neural network will give better results with a larger data set. The wider the data set, the
more cases the predictive model will consider.

Summarizing the study, we note that the constructed predictive models are non-linear
in nature (the construction of the linear regression equation did not give a qualitative
adequate model with significant regression coefficients). Neural networks allow us to
overcome the complexity of such dependence, which is comparable to the opinion of other
scientists [37,51]: multilayer networks with linear activation functions can be transformed
into single-layer ones, which negatively affects network performance and prediction results.

Our findings and recommendations can be useful as a methodological basis for moni-
toring the effectiveness of industrial systems of different levels (for statistical services and
public authorities) and can be included in strategies and programs for the development
of industry in the country, and can be applied to the forecasting of activities based on the
training of artificial neural networks.

5. Conclusions

This article presents the results of the study of innovative industrial systems, evaluated
by their effectiveness at different levels of management (at micro- and macro levels), and
using artificial neural networks developed predictive models that allow to identify the
priority areas of development of the Russian economy, and align the growth trajectory
of industrial systems. The significance of innovations and the ecologization of industrial
systems was substantiated by a macroeconomic system. For the micro-economic system,
the levers of efficiency have been identified, the management of which serves as the basis
for the strategic development of the industrial system.

In future studies, the authors will test the performance of trained neural networks
on new data sets for forecasting other industrial systems (macro- and micro-level). An
interesting area of research could be the application of the Recurrent neural network (RNN)
and Beetle antennae search in diagnosing the efficiency of economic systems.
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Appendix A. Symbol Table

Unit Designation Contents

Macroindustrial systems

Ymining the gross value added created in the mining sector

Ymanuf. the gross value added created in the manufacturing sector

i sector of industry (mining sector, manufacturing sector)

DFA(i)
degree of depreciation of fixed assets on the full range of

organizations of the i-th sector of industry

VSG(i)
volume of shipped goods of own production, work and services

performed by own forces in the i-th sector of industry

VIG(i) volume of innovative goods, works, services in Russia

RW(i)
use and neutralization of production and consumption waste in the

i-th sector of industry

Kiisd (mining) the growth of innovation industrial system coefficient (mining sector)

Kiisd (manufacturing)
the growth of innovation industrial system coefficient

(manufacturing sector)

Microindustrial system

Rps profitability of sold products

Rs return on sales

CA current assets

FA fixed assets

GP gross profit

PS profit from sales
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