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Abstract: Geographically Weighted Regression (GWR) is the development of multiple linear regres-
sion models used in spatial data. The assumption of spatial heterogeneity results in each location
having different characteristics and allows the relationships between the response variable and each
predictor variable to be unknown, hence nonparametric regression becomes one of the alternatives
that can be used. In addition, regression functions are not always the same between predictor vari-
ables. This study aims to use the Geographically Weighted Nonparametric Regression (GWNR)
model with a mixed estimator of truncated spline and Fourier series. Both estimators are expected
to overcome unknown data patterns in spatial data. The mixed GWNR model estimator is then
determined using the Weighted Maximum Likelihood Estimator (WMLE) technique. The estimator’s
characteristics are then determined. The results of the study found that the estimator of the mixed
GWNR model is an estimator that is not biased and linear to the response variable y.

Keywords: GWNR; linear estimator; mixed estimator; spatial data; unbiased
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1. Introduction

Regression analysis is a statistical method used to determine the relationship between
response variables and one or more predictor variables [1]. Regression is divided into three
types: parametric regression, nonparametric regression, and semiparametric regression.
Parametric regression is used when the shape of the regression curve is known, whether
linear, quadratic, cubic or otherwise. Whereas, nonparametric regression is used when
the shape of the regression curve is unknown. As for semiparametric regression, it is a
combination of parametric and nonparametric regression.

Nonparametric regression is a method used to model regression curves of unknown
shape [2]. This method is a more flexible approach because the data is expected to look
for the estimation form of the regression curve itself without being influenced by the
researcher’s subjectivity factor [3]. Some of the estimators used in nonparametric regression
include spline estimators, Fourier series, kernels, and local polynomials. Each estimator has
its characteristics to approach unknown regression functions. Research on nonparametric
regression has been widely conducted by single estimators [4,5] and mixed estimators [6,7].
However, its application is still limited to nonspatial data. In fact, there are many problems
related to spatial data. Spatial data is data that contains size and location information [8].
Methods used in spatial data analysis include Spatial Autocorrelation, Spatial Error Model,
Geographically weighted regression, and others.

According to [8], Geographically Weighted Regression (GWR) is a statistical method
that can analyze spatial heterogeneity. Spatial heterogeneity is one of the same predictor
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variables exerting unequal influences on different locations within a study site. The GWR
model generates an estimator of model parameters that are local to each point or location
where the data is observed. Research on GWR by [9,10] shows that the GWR model is better
than the global model that can overcome spatial heterogeneity. It was further developed
on a nonparametric GWR with a single estimator [11–13]. In addition, the relationship
between response variables and some predictor variables can vary [14]. Therefore, a
nonparametric GWR model with mixed truncated spline and Fourier series would be
developed. The truncated spline estimator in GWR is expected to overcome the changing
curve pattern at certain sub intervals [11]. In contrast, the Fourier series estimator is
expected to model the repeating data pattern [6]. This study aims to create a Geographically
Weighted Nonparametric Regression (GWNR) model with a mixed truncated spline and
Fourier series estimator, to determine the parameter estimate of the GWNR model with the
Weighted Maximum Likelihood Estimator method, and evaluate the properties the mixed
GWNR model.

The following discussion in this paper is divided into three main topics. Section 2
discusses the GWNR Model and method estimation of WMLE. Section 3 presents the
estimation parameter model GWNR; unbiased and linear estimator properties; and data
application. Section 4 is the conclusions.

2. Materials and Methods
2.1. Geographically Weighted Nonparametric Regression (GWNR)

The GWNR model is a development of GWR in nonparametric regression. Provided
paired data

(
x1i, . . . , xPi, z1i, . . . , zQi, yi

)
and assumed relationships between predictor vari-

ables
(

x1i, . . . , xPi, z1i, . . . , zQi
)

with response variables (yi) following a multivariable re-
gression model [11] are as follows:

yi = µ
(
x1i, . . . , xPi, z1i, . . . , zQi

)
+ εi, i = 1, 2, . . . , n (1)

where, yi is a response variable, µ
(
x1i, . . . , xPi, z1i, . . . , zQi

)
is a regression curve of unknown

shape, P is the predictor variables with a truncated spline function, Q is the predictor
variables approached with Fourier series functions, and n is a number of observations and
is assumed to be additive. If the function µ

(
x1i, . . . , xPi, z1i, . . . , zQi

)
is approached with

truncated spline functions and Fourier series, then Equation (1) can be written:

yi = µ
(
x1i, . . . , xPi, z1i, . . . , zQi

)
+ εi

yi =
P

∑
p=1

fp
(
xpi
)
+

Q

∑
q=1

gq
(
zqi
)
+ εi, i = 1, 2, . . . , n

where,
P
∑

p=1
fp
(
xpi
)
= f1(x1i) + . . . + fP(xPi)

= X1β1(ui, vi) + . . . + XPβP(ui, vi)

=
[

X1 . . . XP
] β1(ui, vi)

...
βP(ui, vi)


= Xβ(ui, vi)
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is a truncated spline component with P predictor variables and

Q
∑

q=1
gq
(
zqi
)
= g1(z1i) + . . . + gQ

(
zQi
)

= Z1a1(ui, vi) + . . . + ZQaQ(ui, vi)

=
[

Z1 · · · ZQ
] a1(ui, vi)

...
aQ(ui, vi)


= Za(ui, vi)

is a Fourier series component with Q other predictor variables. By matrix notation, it can
be written with:

y = Xβ(ui, vi) + Za(ui, vi) + ε (2)

where:

y =

y1
...

yn

, ε =

ε1
...

εn


X =

[
X1

... · · ·
... XP

]
Z =

[
Z1

... · · ·
... ZQ

]
β(ui, vi) =

[
β1

T(ui, vi)
... · · ·

... βP
T(ui, vi)

]T

a(ui, vi) =
[
a1

T(ui, vi)
... · · ·

... aQ
T(ui, vi)

]T

(ui, vi)= (longitude, latitude), i = 1, 2, . . . , n

2.2. Weighted Maximum Likelihood Estimator (WMLE)

Maximum likelihood estimation from the parameters µ and σ2 with a distributed
n-sized sample yi ∼ N(µ, σ2), i = 1, 2, . . . , n can be written with:

f (y1, y2, . . . , yn) =
n

∏
i=1

1√
2πσ2

exp
(
−1

2

(
yi − µ

σ

))2

so that the likelihood function for yi, i = 1, 2, . . . , n is

L
(

µ, σ2|yi

)
= (2π)−

n
2
(

σ2
)− n

2 exp

(
− 1

2σ2

n

∑
i=1

(yi − µ)2

)
(3)

Next, by multiplying by the weighting matrix W = diag(w1i∗ , w2i∗ , . . . , wni∗), the log
likelihood function is obtained in terms of weighted function wii∗ as [15]:

ln L∗
(

µ, σ2(ui∗, vi∗)|yi

)
=

n

∑
i=1

wii∗ ln

(
1√

2πσ2(ui∗, vi∗)
exp

(
−1

2

(
yi − µ

σ(ui∗, vi∗)

)2
))

, i = 1, 2, . . . , n (4)

The role of weights in the GWNR model is very important because the weighting
values will represent the location of observational data from one another. One method
that can be used is the Gaussian Kernel function [8]. Equation (4) estimates the GWNR
parameter with the WMLE method.

Furthermore, steps are given in estimating the parameters of a mixed GWNR model
with the WMLE Method as follows:
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1. Defining a mixed GWNR model
2. Assuming distribution ε
3. Determining the distribution of y
4. Forming a likelihood function
5. Forming a weighted likelihood function
6. Specifying the first partial derivative of the likelihood function against the mixed

GWNR model parameter
7. Getting an estimate of mixed GWNR model parameters.

3. Results
3.1. Parameter Estimation

Estimation of parameters on GWNR models with mixed estimators uses Weighted
Maximum Likelihood Estimator (WMLE). The WMLE method is obtained by knowing the
distribution of the response variable yi, i = 1, 2, . . . , n in advance. Then, it is determined by
the weighting matrix for each location to i, i = 1, 2, . . . , n. The weighting used is a Fixed
Gaussian Kernel function. Next, it is given the form of a distribution of the GWNR model
that is presented on Lemma 1.

Lemma 1. Given the GWNR model in Equation (2), with εi, i = 1, 2, . . . , n is normally distributed
with mean equal to zero and variance σ2(ui, vi), hence yi, i = 1, 2, . . . , n is normally distributed
with mean

β0(ui, vi) +
P

∑
p=1

M

∑
m=1

βmp(ui, vi)xm
pi +

P

∑
p=1

R

∑
r=1

β(r+M)p(ui, vi)
(
xpi − tpp

)m
+

+
Q

∑
q=1

(
γq(ui, vi)zqi +

1
2

θ0q(ui, vi) +
H

∑
h=1

θhq(ui, vi) cos
(
hzqi

))

and variance, σ2(ui, vi).

where:

P: number of spline components
M: polynomial degree of spline
R: number of knot points
Q: number of Fourier components
H: number of oscillation parameters.

Lemma 1 has been proven in Appendix A.

Theorem 1. If given a model on Equation (2) with εi, i = 1, 2, . . . , n normally distributed with
mean zero and variance σ2(ui, vi) and the weighted likelihood function given to (4), by the MLE
method, an estimator is obtained β̂(ui, vi) and â(ui, vi) as follows:

β̂(ui, vi) = A(t, h)y

â(ui, vi) = B(t, h)y

where:
A(t, h) = R

(
XTW(ui, vi)X

)−1[XTW(ui, vi)− XTW(ui, vi)Z(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)
]

B(t, h) = S
(
ZTW(ui, vi)Z

)−1[ZTW(ui, vi)− ZTW(ui, vi)X(
XTW(ui, vi)X

)−1XTW(ui, vi)
]

t = knot point for spline component
h = oscillation parameter component.
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Proof of Theorem 1. Is given to Appendix B. �

3.2. Unbiased and Linear Estimator Properties

Lemma 2. If β̂(ui, vi) is a truncated spline component parameter estimator of the GWNR model
with a mixed estimator approach that follows Equation (4), so β̂(ui, vi) is an unbiased estimator
and belongs to the class of linear estimators in observation y.

Furthermore, it can be seen in Appendix C which is the proof of Lemma 2.

Lemma 3. If â(ui, vi) is a Fourier series component parameter estimator of the GWNR model with
a mixed estimator approach that follows Equation (4), so â(ui, vi) is an unbiased estimator and
belongs to the class of linear estimators in observation y.

Lemma 3 is the last proven lemma and is described in Appendix D.

Lemma 4. If β̂(ui, vi) and â(ui, vi) are given by Theorem 1, hence the estimator for f̂, ĝ and µ̂ is
hence given by:

f̂ = Xβ̂(ui, vi)

ĝ = Zâ(ui, vi)

so that the following is obtained:

µ̂ = Xβ̂(ui, vi) + Zâ(ui, vi) = C(t, h)y

Proof. Next, to determine the function estimator f̂, ĝ and µ̂(ui, vi) are described as follows.
Based on Theorem 1, it can be substituted β̂(ui, vi) and â(ui, vi) so that it is obtained:

f̂ = Xβ̂(ui, vi)

= XA(t, h)y

and
ĝ = Zâ(ui, vi)

= ZB(t, h)y

As a result, obtained estimator µ̂ be

µ̂ = f̂ + ĝ
= Xβ̂(ui, vi) + Za(ui, vi)
= XA(t, h)y + ZB(t, h)y

= C(t, h)y

where C(t, h) = XA(t, h) + ZB(t, h) is a hat matrix containing knot points t and the param-
eter of the h oscillation on the mixed GWNR model with the approach of truncated spline
and Fourier series estimator. �

3.3. Data Application

The data used are secondary data from [16–21] with research variables, percentage
of the poor population (y), CPI (x1), TPT (x2), longitude and latitude coordinates (ui, vi),
and as many as 81 districts/cities on Sulawesi Island.

The following steps for applying the estimated parameters of the GWNR model to
poverty data on Sulawesi Island in 2020 are as follows:

1. Making a scatter plot between the variables x1 and y, as well as x2 and y
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2. Defining the initial model
3. Selecting optimum knots and oscillation parameters
4. Estimating parameters of global model with the OLS method based on the initial

model formed
5. Testing assumptions of spatial heterogeneity on residual values on global models
6. Determining the weighting matrix
7. Estimating parameters of the GWNR model with the WMLE method
8. Choosing the best model based on MSE and R2

9. Making conclusions

Based on the above step, the variable x1 as a component of the Fourier series and
the variable x2 as the spline component are obtained based on the scatter plot shown.
Furthermore, the test of spatial assumptions is obtained that the assumption of spatial
heterogeneity is met, so the global model is less suitable for use because the residual
properties are not homogeneous. One alternative model that can be used is the GWNR
model. Use of this GWNR model is expected to overcome heteroskedasticity by generating
a local model for each location. Here are some local models generated:

ŷken = 47.59− 0.5x1 − 0.17x2 + 0.43 cos(x1) + 0.22(x2 − 8.55) (5)

ŷmks = 49.9− 0.58x1 − 0.07x2 + 0.08 cos(x1) + 0.47(x2 − 8.55) (6)

ŷman = 44.19− 0.46x1 − 0.15x2 + 0.11 cos(x1) + 0.19(x2 − 8.55) (7)

ŷpal = 40.79− 0.47x1 + 0.3x2 − 0.48 cos(x1)− 0.27(x2 − 8.55) (8)

ŷgor = 44.12− 0.3x1 − 2.25x2 − 0.05 cos(x1) + 2.38(x2 − 8.55) (9)

ŷmaj = 39.88− 0.43x1 + 0.04x2 + 0.02 cos(x1) + 0.22(x2 − 8.55) (10)

where:

yken = estimated poverty percentage for Kendari City
ymks = estimated poverty percentage for Makassar City
yman = estimated poverty percentage for Manado City
ypal = estimated poverty percentage for Palu City
ygor = estimated poverty percentage for Gorontalo City
ymaj = estimated poverty percentage for Mamuju City.

GWNR mixed with oscillation parameters k =1 and linear spline t =1 resulted in MSE
and R2 values of 3.65 and 74.65 per cent, respectively. Based on several local models above,
it shows that poverty in Sulawesi Island is influenced by HDI and TPT, where the increasing
HDI will result in a decrease in the percentage of poverty. Conversely, an increase in TPT
will increase the percentage of poverty.

4. Conclusions

Estimation of GWNR using the truncated spline and Fourier series was successfully
formulated. It was found that:

1. The GWNR model using a mixed estimator of truncated spline and Fourier series is
y = Xβ(ui, vi) + Za(ui, vi) + ε
Where f = Xβ(ui, vi) is a truncated spline component, g = Za(ui, vi) is a component
of a Fourier series, and ε is a residual component.

2. Estimators of GWNR are β̂(ui, vi) = A(t, h)y, â(ui, vi) = B(t, h)y, and µ̂ = C(t, h)y.
The estimator is an unbiased and linear estimator to observe the response variable.
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Appendix A

From the Equation (2), it is assumed that εi ∼ N
(
0, σ2(ui, vi)

)
so that the probability

function ε1, ε2, . . . , εn written with

f (ε1, ε2, . . . , εn) =
n

∏
i=1

{
1

2πσ2(ui, vi)
exp

(
− 1

2σ2(ui, vi)
ε2

i

)}
Therefore, the likelihood function for εi, i = 1, 2, . . . , n is as follows:

L
(
β(ui, vi), a(ui, vi), σ2(ui, vi) | ε

)
=

n
∏
i=1

[
1

2πσ2(ui ,vi)
exp

[
− 1

2σ2(ui ,vi)[
yi −

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi

P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+
+

Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi)+

H
∑

h=1
θhq(ui, vi) cos(hzi)

))]2
]]

Due to the fact that εi ∼ N
(
0, σ2(ui, vi)

)
, therefore

E(y) = E

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − tpp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

)
+ εi

)

= E

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

))
+ E(εi)

= β0(ui, vi) +
P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

)
and

var(y) = var

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

))
+ var(εi)

= σ2(ui, vi)
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Consequently,

yi ∼ N

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+
+

Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

)
, σ2(ui, vi)

) (A1)

Appendix B

Equation (A1) obtained the likelihood function of yi, i = 1, 2, . . . , n and at its location is

L
(
β(ui, vi), a(ui, vi), σ2(ui, vi) | ε

)
=

n
∏
i=1

f
(
yi | β(ui, vi), a(ui, vi), σ2(ui, vi)

)
=

n
∏
i=1

[
1

2πσ2(ui ,vi)
exp

[
− 1

2σ2(ui ,vi)

[
yi −

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi+

P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+
+

Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi)+

H
∑

h=1
θhq(ui, vi) cos(hzi)

))]2
]]

= (2π)−
n
2
(
σ2(ui, vi)

)− n
2 exp

[
− 1

2σ2(ui ,vi)

[
yi −

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi+

P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − tpp

)M
+
+

Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi)+

H
∑

h=1
θhq(ui, vi) cos(hzi)

))]2
]

(A2)

The geographical location factor is the weighting factor in the GWR model, so Equation (A2)
is given a weighting wi(j) to obtain the local model of GWNR, then a natural logarithm
operation is performed as follows:

L∗
(
β(ui, vi), a(ui, vi), σ2(ui, vi) | y

)
=

n
∏
i=1

(
f
(
yi | β(ui, vi), a(ui, vi), σ2(ui, vi)

))wi(λ)

=
n
∏
i=1

[
1

2πσ2(ui ,vi)
exp

[
− 1

2σ2(ui ,vi)
[yi − (β0(ui, vi)+

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − tpp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

))]2
wi(j)

(A3)
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ln
(

L∗
(
β(ui, vi), a(ui, vi), σ2(ui, vi) | y

))
=

=
n
∑

i=1
wij ln

(
1

2πσ2(ui ,vi)
exp

[
− 1

2σ2(ui ,vi)
[yi − (β0(ui, vi)+

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − tpp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

))]2


=
n
∑

i=1
wi(j)

(
− 1

2

)
ln(2π)−

n
∑

i=1
wi(j)

(
1
2

)
ln
(
σ2(ui, vi)

)
− 1

2σ2(ui ,vi)

n
∑

i=1
wi(j)(

yi −
(

β0(ui, vi) +
P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

)))2

=
n
∑

i=1
wi(j)

(
− 1

2

)
ln(2π)−

n
∑

i=1
wi(j)

(
1
2

)
ln
(
σ2(ui, vi)

)
− 1

2σ2(ui ,vi)
T∗

(A4)

where:

T∗ =
n
∑

i=1
wi(j)

(
yi −

(
β0(ui, vi) +

P
∑

p=1

M
∑

m=1
βmp(ui, vi)xm

pi +
P
∑

p=1

R
∑

r=1
β(r+M)p(ui, vi)

(
xpi − trp

)M
+

+
Q
∑

q=1

(
γq(ui, vi)zqi +

1
2 θ0q(ui, vi) +

H
∑

h=1
θhq(ui, vi) cos(hzi)

))2

= (y− Xβ(ui, vi)− Za(ui, vi))
TW(ui, vi)(y− Xβ(ui, vi)− Za(ui, vi))

Parameter estimations of β̂(ui, vi) and â(ui, vi) are obtained by maximizing ln L∗

on Equation (A3). Estimator β̂(ui, vi) is obtained by deriving the Equation (A4) against
β̂(ui, vi), which then equates to zero so that it is obtained:

∂ ln L∗
∂β(ui ,vi)

=
∂

(
n
∑

i=1
wi(j)(− 1

2 ) ln(2π)−
n
∑

i=1
wi(j)( 1

2 ) ln(σ2(ui ,vi))− 1
2σ2(ui ,vi)

T∗
)

∂β(ui ,vi)

0 = ∂(y−Xβ(ui ,vi)−Za(ui ,vi))
TW(ui ,vi)(y−Xβ(ui ,vi)−Za(ui ,vi))
∂β(ui ,vi)

0 = −2XTW(ui, vi)y + 2XTW(ui, vi)Za(ui, vi) + 2XTW(ui, vi)Xβ(ui, vi)

β̂(ui, vi) =
(
XTW(ui, vi)X

)−1(XTW(ui, vi)y− XTW(ui, vi)Za(ui, vi)
)

Therefore, the estimation of the parameters β(ui, vi) is

β̂(ui, vi) =
(

XTW(ui, vi)X
)−1(

XTW(ui, vi)y− XTW(ui, vi)Zâ(ui, vi)
)

(A5)

Furthermore, parameter estimation is carried out for a(ui, vi). To obtain an estimator
â(ui, vi) and then derive Equation (A4) against a(ui, vi) which then equates to zero, is the
following is thus obtained:

∂ ln L∗
∂a(ui ,vi)

= ∂(y−Xβ(ui ,vi)−Za(ui ,vi))
TW(ui ,vi)(y−Xβ(ui ,vi)−Za(ui ,vi))
∂a(ui ,vi)

0 = −2ZTW(ui, vi)y + 2ZTW(ui, vi)Xβ(ui, vi) + 2ZTW(ui, vi)Za(ui, vi)

â(ui, vi) =
(
ZTW(ui, vi)Z

)−1(ZTW(ui, vi)y− ZTW(ui, vi)Xβ(ui, vi)
)

Therefore, the estimation of the parameters a(ui, vi) is

â(ui, vi) =
(

ZTW(ui, vi)Z
)−1(

ZTW(ui, vi)y− ZTW(ui, vi)Xβ̂(ui, vi)
)

(A6)
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Estimator β̂(ui, vi) in Equation (A5) still contains an estimator â(ui, vi). Like wise,
estimators â(ui, vi) in Equation (A6) still contain an estimator β̂(ui, vi). In order to obtain
a free form of an estimator, it is necessary to make a substitution. To obtain an estimator
β̂(ui, vi), which is free from â(ui, vi), it is then substituted Equation (A6) into Equation (A5)
as follows:

β̂(ui, vi) =
(
XTW(ui, vi)X

)−1(XTW(ui, vi)y− XTW(ui, vi)Zâ(ui, vi)
)

=
(
XTW(ui, vi)X

)−1(XTW(ui, vi)y− XTW(ui, vi)Z(
ZTW(ui, vi)Z

)−1
(

ZTW(ui, vi)y− ZTW(ui, vi)Xβ̂(ui, vi)
))

=
(
XTW(ui, vi)X

)−1XTW(ui, vi)y−(
XTW(ui, vi)X

)−1XTW(ui, vi)Z
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)y+(
XTW(ui, vi)X

)−1XTW(ui, vi)Z
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)Xβ̂(ui, vi)
)

Then, they are merged in the same field containing β̂(ui, vi), so that the following
is obtained:

β̂(ui, vi)−
(
XTW(ui, vi)X

)−1XTW(ui, vi)Z
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)Xβ̂(ui

=
(
XTW(ui, vi)X

)−1XTW(ui, vi)y−
(
XTW(ui, vi)X

)−1XTW(ui, vi)Z(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)y
β̂(ui, vi) = R

[(
XTW(ui, vi)X

)−1XTW(ui, vi)

−
(
XTW(ui, vi)X

)−1XTW(ui, vi)Z
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)
]
y

where:

R =

[
I−

(
XTW(ui, vi)X

)−1
XTW(ui, vi)Z

(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)Xβ̂(ui, vi)

)]−1

Therefore, the following is obtained:

β̂(ui, vi) = A(t, h)y (A7)

with

A(t, h) = R
[(

XTW(ui, vi)X
)−1XTW(ui, vi)−

(
XTW(ui, vi)X

)−1XTW(ui, vi)Z(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)
]

To obtain an estimator â(ui, vi) which is free from β̂(ui, vi), it is substituted Equation (A5)
to Equation (A6) as follows:

â(ui, vi) =
(
ZTW(ui, vi)Z

)−1
(

ZTW(ui, vi)y− ZTW(ui, vi)Xβ̂(ui, vi)
)

=
(
ZTW(ui, vi)Z

)−1(XTW(ui, vi)y− ZTW(ui, vi)X(
XTW(ui, vi)X

)−1(XTW(ui, vi)y− XTW(ui, vi)Zâ(ui, vi)
))

=
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)y−(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)y+(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)Zâ(ui, vi)
)
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Then, it is merged in the same field containing â(ui, vi), so that the following is obtained:

â(ui, vi)−
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1xTW(ui, vi)Zâ(ui, vi)
)

=
(
ZTW(ui, vi)Z

)−1zTW(ui, vi)y−
(
zTW(ui, vi)Z

)−1ZTW(ui, vi)X(
XTW(ui, vi)X

)−1xTW(ui, vi)y
â(ui, vi) = S

[(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)

−
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)
]
y

where:

S =

[
I−

(
ZTW(ui, vi)Z

)−1
ZTW(ui, vi)X

(
XTW(ui, vi)X

)−1
XTW(ui, vi)Zâ(ui, vi)

)]−1

Therefore, the following is obtained:

â(ui, vi) = B(t, h)y (A8)

with

B(t, h) = S
[(

ZTW(ui, vi)Z
)−1ZTW(ui, vi)−

(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X(
XTW(ui, vi)X

)−1XTW(ui, vi)
]

Appendix C

The unbiased nature of the parameter β̂(ui, vi) can be indicated by:

E
(
β̂(ui, vl)

)
= E(A(t, h)y)

= E
(

R
[(

XTW(ui, vl)X
)−1XτW(ui, vl)−

(
XTW(ul , vl)X

)−1

XτW(ui, vl)Z(ZτW(ui, vl)Z)
−1ZτW(ui, vl)

]
y
)

=
(

R
[
(XτW(ui, vi)X)

−1XτW(ui, vi)− (XτW(ui, vi)X)
−1

XτW(ui, vi)Z(ZτW(ui, vi)Z)
−1ZτW(ui, vl)

])
E(y)

=
(

R
[
(XτW(ui, vi)X)

−1XτW(ui, vl)− (XτW(ui, vl)X)
−1

XτW(ui, vi)Z(ZτW(ui, vi)Z)
−1ZτW(ui, vl)

])
(Xβ(ul , vi) + Za(ui, vi))

= R
(
XTW(ui, vi)X

)−1XTW(ui, vi)Xβ(ui, vi)+

R(XτW(ui, vl)X)
−1XτW(ui, vl)Za(ui, vi)−

R(XτW(ui, vi)X)
−1XτW(ui, vi)Z(ZτW(ui, vl)Z)

−1ZτW(ui, vl)Xβ(ui, vl)

−R(XτW(ui, vi)X)
−1XτW(ui, vi)Z(ZτW(ui, vi)Z)

−1ZτW(ui, vl)Za(ui, vi)

= Rβ(ui, vi)−R(XτW(ui, vi)X)
−1XτW(ui, vi)Z(ZτW(ui, vi)Z)

−1

ZτW(ui, vi)Xβ(ui, vi)

=
[
I− (XτW(ui, vl)X)

−1XτW(ui, vl)Z(ZτW(ui, vl)Z)
−1ZτW(ui, vl)X

]
Rβ(ui, vi)

=
[
I− (XτW(ui, vl)X)

−1XτW(ui, vl)Z(ZτW(ui, vl)Z)
−1ZτW(ul , vl)X

]
[
I−

(
xTW(ui, vi)X

)−1xTW(ui, vi)Z
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
]−1

β(ui, vi)
= β(ui, vi)

Since E
(
β̂(ui, vi)

)
= β(ui, vi), it can be said that β̂(ui, vi) is an unbiased estimator for

β(ui, vi). Next, it can be written that β̂(ui, vi) = A(t, h)y, and it is clearly seen that the
estimator β̂(ui, vi) is a linear estimator in observation y.
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Appendix D

The unbiased nature of the parameter â(ui, vi) can be indicated by:

E(â(ui, vi)) = E(B(t, h)y)
= E

(
S
[(

ZTW(ui, vi)Z
)−1ZTW(ui, vi)−

(
ZTW(ui, vi)Z

)−1

ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)
]
y
)

=
(

S
[(

ZTW(ui, vi)Z
)−1ZTW(ui, vi)−

(
ZTW(ui, vi)Z

)−1

ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)
])

E(y)

=
(

S
[(

ZTW(ui, vi)Z
)−1ZTW(ui, vi)−

(
ZTW(ui, vi)Z

)−1

ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)
])

(Xβ(ui, vi) + Za(ui, vi))

= S
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)Xβ(ui, vi)+

S
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)Za(ui, vi)−
S
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)Xβ(ui, vi)

−S
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)Za(ui, vi)

= Sa(ui, vi)− S
(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1

XTW(ui, vi)Za(ui, vi)

=
[
I−

(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)Z
]

Sa(ui, vi)

=
[
I−

(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)Z
]

=
[
I−

(
ZTW(ui, vi)Z

)−1ZTW(ui, vi)X
(
XTW(ui, vi)X

)−1XTW(ui, vi)Z
]−1

a(ui, vi)
= a(ui, vi)

Due to the fact that E(â(ui, vi)) = a(ui, vi), then it can be said that â(ui, vi) is an
unbiased estimator for a(ui, vi). Next, it can be written that â(ui, vi) = B(t, h)y and hence
it is clearly seen that the estimator â(ui, vi) is linear in observation y.
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