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Abstract: In the framework of traditional transferable-utility (TU) models, the participants are either
entirely involved or not involved in interactive processes with some other participants. Based on the
distribution notion of the equal allocation of non-separable costs (EANSC), all participants first receive
their marginal contributions and further distribute the remaining utilities equally. In real-world
situations, however, participants might adopt different participation levels to participate. Moreover,
participants might represent coalitions of different scales; participants might have corresponding
influences under different situations. Thus, in this paper we propose a generalization of the EANSC by
considering weights and replicated notions under conditions of multi-choice behavior simultaneously.
In order to dissect the mathematical accuracy and the applied rationality of this expanded EANSC, a
specific reduction is introduced to present an axiomatic result and a dynamic process, respectively.
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1. Introduction

In transferable-utility (TU) models, the participants are either entirely involved or
not involved in the operation with some other participants. In multi-choice TU models,
participants can operate with different activity levels. Van den Nouweland et al. [1]
reported several applied situations related to multi-choice TU models, such as a large
architecture plan with a deadline and an amercement for each day if this deadline is missed.
The completion date relies upon the efforts that all the participants put into the plan: the
more they apply themselves, the earlier the completion of the plan. This situation gives rise
to a multi-choice model. The worth of a coalition in which each participant operates at a
certain working level is defined as the negative value of the amercement which needs to be
paid in association with the date of completion of the plan when every participant makes a
relative effort. Based on the notion of replicated behavior in multi-choice models, Calvo
and Santos [2] reported that the extended Shapley value [3], due to the findings of van den
Nouweland et al. [1], corresponds with the solution concept defined by Moulin [4]. Later,
Hwang and Liao [5] adopted axiomatic results to analyze this extended Shapley value.
However, Hwang and Liao [6] applied the replicated notion to introduce an extended core
and achieved comparable results.

Consistency, initially investigated by Harsanyi [7] via the designation of bilateral
equilibrium, is a critical characteristic in the axiomatic processes for solutions. The notion
behind this type of consistency is as follows. In a given model, participants might expand
their expectations of the model and be willing to permit the calculation of its payments
to rely upon these expectations. A solution concept is said to be consistent if it affords
duplicate payments to participants in the initial model, as it does for participants in the
hypothetical reduced situation. Hence, consistency could be regarded as a qualification
of reconciliation’s internal “robustness.” Consistency has been examined in relation to
various concerns by employing reduced models of analysis, such as bankruptcy and taxation,
negotiation, cost distribution, fair assignments of indivisible goods, resource allocation,
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and other criteria. Different definitions of a reduction have been introduced, depending on
how the participants outside of the sub-coalition should be handed in. The equal allocation
of non-separable costs (EANSC) (Ransmeier [8]) is an advanced allocation rule. Moulin [9]
utilized a particular reduction and a corresponding concept of consistency to demonstrate
that the EANSC is a consistent and reasonable allocating concept. The criteria proposed
by van den Brink and van der Lann [10], Driessen and Funaki [11], Ju and Wettstein [12],
Moulin [9], as well as other criteria, have shown similar effects.

The influence arising from units might vary, relying on various objective and subjective
elements in real-world situations, such as the weight of the electoral district carried by a
member of congress, the dedication arising from a member of a company, or the varying
negotiating abilities of the members of a business team. Furthermore, a lack of symme-
try might be generated when different haggling abilities for distinct units are modeled.
In accordance with the previous observations, one may expect the resource to be shared
in proportion to weights determined by the units and its energy classes. Weights emerge
naturally in resource-allocation scenarios. For instance, one may be concerned about re-
source distribution among funding strategies. Therefore, the weights may be provided for
the profitability of the various options in all plans. Liao et al. [13] developed the concept of
the weighted allocation of non-separable costs (WANSC).

Based on the discussion presented, our research was motivated by the question of
whether the WANSC and its related results could be extended to multi-choice TU models
by applying replicated behavior.

The study was aimed at responding to this question. The three main results were
as follows.

1. We have introduced a novel generalization of the EANSC, the replicated WANSC,
by taking weights and replicated behavior into consideration in multi-choice TU
models. We propose that the replicated WANSC of a multi-choice model corresponds
to the WANSC of the corresponding “replicated” TU model.

2. A solution concept can be given an axiomatic justification. Inspired by Moulin [9], Hart
and Mas-Colell [14] and Liao et al. [15], a specific reduction is defined to characterize
the replicated WANSC.

3. Moreover, dynamic processes lead the participants to that solution, starting from an
arbitrarily efficient payoff vector. In the framework of multi-choice TU models, we
aimed to introduce a dynamic process leading to the replicated WANSC via the
application of reduced models.

2. Replicated WANSC

Let U be the universe of all potential participants, for example, the collection of people
on the Earth. Any p ∈ U is said to be an element, for example, a person on the Earth.
For p ∈ U, ∆p = {0, 1, · · · , δp} can be regarded as the participation level collection of
participant p, where 0 indicates that they are not participating. Suppose that Ξ ⊆ U \ {∅}
is the grand collection of total participating elements of a specific interactive process,
for example, all people in a country. For Ξ ⊆ U \ {∅}, let ∆Ξ = ∏p∈Ξ ∆p be the product set
of the level collections for participants Ξ. We denote the zero vector under RΞ as 0Ξ.

A multi-choice TU model is denoted by (Ξ, δ, v), where Ξ 6= ∅ is a finite collection
of participants, δ = (δp)p∈Ξ is the vector that shows the number of participation levels for
each participant, and v : ∆Ξ → R is a function which assigns to each participating vector
η = (ηp)p∈Ξ ∈ ∆Ξ the value that the participants can gain if each participant p operates
at participation level ηp ∈ ∆p with v(0Ξ) = 0. In multi-choice TU models, different
participants may take on different levels of participation, and the value that a coalition
can gain relies upon the participation level at which each participant in the coalition has
decided to operate. We denote the class of all multi-choice TU models as MTM.

Let (Ξ, δ, v) ∈ MTM. A unit level payoff vector of (Ξ, δ, v) is a vector x = (xp)p∈Ξ
where xp indicates the unit payoff that participant p obtains for each p ∈ Ξ; hence, δp · xp
is the accumulation payoff that participant p obtains at (Ξ, δ, v). For simplicity, one could
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write “payoff vector” instead of “unit level payoff vector”.A solution on MTM is a mapping
ψ appointing to every (Ξ, δ, v) ∈ MTM an element

ψ(Ξ, δ, v) =
(
ψp(Ξ, δ, v)

)
p∈Ξ ∈ RΞ.

For convenience, one could stipulate that ψp(Ξ, δ, v) = 0 for each p ∈ Ξ with δp = 0.
Given that (Ξ, δ, v) ∈ MTM, η ∈ ∆Ξ and H ⊆ Ξ, |H| is the number of elements in H

and ηH ∈ RH is the restriction of η to H, η(H) = ∑p∈H ηp, and N(η) = {k ∈ Ξ | ηk 6= 0}.
Letting η, κ ∈ RΞ, we define κ ≤ η if κp ≤ ηp for all p ∈ Ξ.

Let (Ξ, δ, v) ∈ MTM. We say that a function w : Ξ → R+ is a weight function if w
is a non-negative mapping. Furthermore, we define ‖H‖w = ∑p∈H w(p) for all weight
functions w and for all H ⊆ Ξ. Under different conditions, participants in Ξ could be
appointed different weights via weight functions. Weights could be considered as a priori
measures of importance; they are adopted to represent considerations that are not identified by
means of the characteristic mapping process. For instance, in apportioning travel expenses
among specific sites, weights could be regarded as the number of days consumed at each
one (cf., Shapley [3]).

A standard TU model is a pair (Ξ, V) where Ξ 6= ∅ is a finite coalition of participants
and V is a function V : 2Ξ −→ R with V(∅) = 0. We denote the class of all standard TU
models as TM. A solution on TM is a map Ψ which appoints to every (Ξ, V) ∈ TM an
element Ψ(Ξ, V) of RΞ.

Given that (Ξ, δ, v) ∈ MTM, let Ξδ be a collection of replicated participants as follows:

Ξδ =
⋃

p∈Ξ
Ξδ

p,

where for all p ∈ N(δ), Ξδ
p = {p1, . . . , pδp} and for all p /∈ N(δ), Ξδ

p = ∅. Now, for any
H ⊆ Ξδ, we define the action vector ΛH ∈ ∆Ξ as follows: for all p ∈ Ξ,

ΛH
p = |H ∩ Ξδ

p|.

Then, we define the replicated TU mode
(
Ξδ, Vr) as follows: for all H ⊆ Ξδ,

Vr(H) = v(ΛH).

Definition 1. The WANSC Φw value is defined by

Φw
p (Ξ, V) =

[
V(Ξ)−V(Ξ \ {p})

]
+

w(p)
‖Ξ‖w

·
[
V(Ξ)− ∑

q∈Ξ
[V(Ξ)−V(Ξ \ {q})]

]
(1)

for each (Ξ, δ, v) ∈ MTM, for each weight function w, and for each p ∈ Ξ. Based on the allocation
concept expressed by Φw, participants first partake in marginal contributions, and then distribute
the rest of the utility proportionally according to the weights. Furthermore, the replicated WANSC
φw is defined by

φw
p (Ξ, δ, v) = Φw

q
(
Ξδ, Vr) = 1

δp
· ∑

t∈Ξδ
p

Φw
t
(
Ξδ, Vr) (2)

for each (Ξ, δ, v) ∈ MTM, for each weight function w, for each p ∈ Ξ, and for each q ∈ Ξδ
p, where(

Ξδ, Vr) is the corresponding replicated TU model (without the loss of generality, one could suppose
that N(δ) = Ξ). Equations (1) and (2) assert that the replicated WANSC of a multi-choice TU
model is the WANSC of a corresponding replicated TU model.

Next, a numerical example is provided. Let (Ξ, δ, v) ∈ MTM, with the participant
coalition Ξ = {i, j} and participation vector δ = (2, 1). Define v(2, 1) = 7, v(1, 0) = −3,
v(1, 1) = 4, v(0, 1) = −1, v(2, 0) = −3, and v(0, 0) = 0 as the indicators of the efficacy
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that the participants can produce by means of an interactive process. Depending on
definitions presented in Section 1, Ni = {i1, i2}, N j = {j1} and N(2,1) = {i1, i2, j1}. Further-
more, Vr({i1}) = Vr({i2}) = v(1, 0), Vr({i1, j1}) = Vr({i2, j1}) = v(1, 1), Vr({i1, i2}) =
v(2, 0), Vr({i1, i2, j1}) = v(2, 1), Vr({j1}) = v(0, 1), and Vr(∅) = v(0, 0). Assume that
w(i1) = w(i2) = 1 and w(j1) = 3. According to Definition 1, φw

i (Ξ, δ, v) = Φw
i1
(Ξ, Vr) =

Φw
i2
(Ξ, Vr) = 1.6, and φw

j (Ξ, δ, v) = Φw
j1
(Ξ, Vr) = 3.8.

3. Axiomatic Result

Based on a reduced model, several axiomatic results of the replicated WANSC are
provided in this section.

Given a solution ψ, (Ξ, δ, v) ∈ MTM, and K ⊆ Ξ, the reduced model
(
K, δK, vψ

K
)

with
respect to ψ and K is defined as follows: for all η ∈ ∆K,

vψ
K(η) =

 0 , if η = 0K,
v(η, δΞ\K)− ∑

p∈Ξ\K
δp · ψp(Ξ, δ, v) , otherwise.

The consistency requirement can be stated as follows. For every coalition of participants
in a model, one can define a “reduced model” among them by predicting the amounts
remaining after the rest of the participants are rendered the payoffs provided via a solution
ψ. ψ is consistent if it always begets payoffs coincident with those in the initial model
when applied to every reduced model. Formally, a solution ψ satisfies the requirement
of consistency (CON) if ψp

(
K, δK, vψ

K
)
= ψp(Ξ, δ, v) for each (Ξ, δ, v) ∈ MTM, for each

K ⊆ Ξ, and for each p ∈ K.

Remark 1.

1. Moulin [9] defined the reduction of the TM as follows. Given solution Ψ, (Ξ, V) ∈ TM and
K ⊆ Ξ, the standard reduced mode

(
K, (V)Ψ

K
)

is defined as follows: for each H ⊆ K,

(V)Ψ
K (H) =

 0 , if H = ∅,
V
(

H ∪ (Ξ \ K)
)
− ∑

t∈Ξ\K
Ψt
(
Ξ, V

)
, otherwise.

Moulin [9] considered the standard reduction
(
K, (V)Ψ

K
)

as that in which every coalition in
the subgroup K can achieve payoffs to its participants only if they are consistent with the
initial payoffs to “whole” group of participants in Ξ \ K.

2. Ψ satisfies M-consistency (MCON) if Ψp(Ξ, V) = Ψp
(
K, (V)Ψ

K
)

for each (Ξ, V) ∈ TM,
for each K ⊆ Ξ, and for each p ∈ K. Moulin [9] showed that the EANSC satisfies MCON.

3. Let (Ξ, δ, v) ∈ MTM, K ⊆ Ξ, and ψ be a solution on MTM. In the reduction (K, δK, vψ
K),

the participants in K are gathered to perform an operation. If every participant in K did not
participate in the operation, the value that could be achieved is zero. If some participants
in K exhibit nonzero participation levels in the operation, the participants in Ξ \ K would
be asked to make all-out effort. Clearly, the reduction defined in this paper is a multi-choice
generalization of the Moulin reduction.

Let ψ be a solution in the MTM and Ψ be a solution in the TM. Suppose that for all
(Ξ, δ, v) ∈ MTM and the corresponding replicated TU models

(
Ξδ, Vr), for all p ∈ Ξ and

for all q ∈ Ξδ
p,

ψp(Ξ, δ, v) = Ψq
(
Ξδ, Vr) = 1

δp
· ∑

t∈Ξδ
p

Ψt
(
Ξδ, Vr). (3)
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In fact, “the corresponding replicated TU model of the reduction of a multi-choice
model” coincides with “the standard reduction of the corresponding replicated TU model
of a multi-choice model”, i.e., the order of the “reduction” and “replication” does not
matter.

Lemma 1. Let (Ξ, δ, v) ∈ MTM and
(
Ξδ, Vr) be the corresponding replicated TU model. Let ψ

be a solution on MTM and Ψ be a solution on TM. Suppose that ψ and Ψ satisfy Equation (3). Let
K ⊆ Ξ and

⋃
p∈K Ξδ

p = Kδ = KδK . Then

(
KδK , (vψ

K)
r
TU

)
=
(
Kδ, (Vr)Ψ

Kδ

)
, (4)

where
(
KδK , (vψ

K)
r
TU

)
is the corresponding replicated TU model of

(
K, δK, vψ

K
)
. Furthermore, for all

p ∈ N(δK) and for all pq ∈ Ξδ
p,

ψp
(
K, δK, vψ

K
)
= Ψpq

(
Kδ, (Vr)Ψ

Kδ

)
=

1
δp
· ∑

pk∈Ξδ
p

Ψpk

(
Kδ, (Vr)Ψ

Kδ

)
. (5)

Proof. To verify Equation (4), let K ⊆ Ξ and
⋃

p∈K Ξδ
p = Kδ = KδK . Let H ⊆ Kδ. Two

situations can be distinguished:

• Situation 1: if H = Kδ, then

(vψ
K)

r
TU(K

δ) = vψ
K(Λ

Kδ
)

= vψ
K(δK)

= v(δ)− ∑
p∈Ξ\K

δp · ψp(Ξ, δ, v)

= Vr(Ξδ)− ∑
p∈Ξ\K

δp · [ 1
δp

∑
pk∈Ξδ

p

Ψpk (Ξ
δ, Vr)]

= Vr(Ξδ)− ∑
t∈Ξδ\Kδ

Ψt(Ξδ, Vr)

= (Vr)Ψ
Kδ(Kδ).

• Situation 2: if H ⊆ Kδ, H 6= Kδ, then

(vψ
K)

r
TU(H) = vψ

K(Λ
H)

= v(ΛH , δΞ\K)− ∑
p∈Ξ\K

δp · ψp(Ξ, δ, v)

= Vr(H ∪ (Ξδ \ Kδ))− ∑
p∈Ξ\K

δp · [ 1
δp

∑
pk∈Ξδ

p

Ψpk (Ξ
δ, Vr)]

= Vr(H ∪ (Ξδ \ Kδ))− ∑
t∈Ξδ\Kδ

Ψt(Ξδ, Vr)

= (Vr)Ψ
Kδ(H).

Finally, Equation (5) follows via Equations (3) and (4).

Lemma 2. The replicated WANSC φw is consistent.

Proof. This lemma immediately follows via Definition 1 and Lemma 1 since Φw satisfies
MCON.

To characterize the replicated WANSC, one can make use of some more properties.
Let ψ be a solution in the MTM. ψ satisfies the requirement of efficiency (EFF) if for
each (Ξ, δ, v) ∈ MTM, ∑p∈Ξ δp · ψp(Ξ, δ, v) = v(δ). ψ satisfies the requirement of weak
efficiency (WEFF) if for each (Ξ, δ, v) ∈ MTM with |Ξ| = 1, ψ satisfies the requirement of
EFF under (Ξ, δ, v). ψ satisfies the weighted standard for two-person models (WSTM) if
for each (Ξ, δ, v) ∈ MTM with |Ξ| = 2, ψp(Ξ, δ, v) = φw

p (Ξ, δ, v).
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EFF asserts that all participants allot the total utility in its entirety. WEFF simply
states that one-person models should be solved efficiently. WSTM is an analogue of the
two-person standard according to the work of Hart and Mas-Colell [14]. WSTM asserts that
all participants allot the total utility via the solution φw under two-person models. Based
on Definition 1, the replicated WANSC satisfies EFF and WSTM absolutely.

Remark 2. It is easy to observe that a solution ψ satisfies WEFF if ψ satisfies WSTM and CON.
Indeed, for each ({p}, δp, v) ∈ MTM, δp · ψ({p}, δp, v) = v(δp) = δp · φw({p}, δp, v). The con-
cept of this proof is similar to that expressed by Hart and Mas-Colell [14], page 599.

Inspired by Hart and Mas-Colell [14], the replicated WANSC can be characterized by
consistency and weighted two-person standardness.

Lemma 3. A solution ψ satisfies EFF in the MTM if it satisfies WEFF and CON.

Proof. Let (Ξ, δ, v) ∈ MTM, and ψ be a solution in the MTM satisfying WEFF and CON.
It is trivial if |Ξ| = 1 via WEFF. Assume that |Ξ| ≥ 2. Let q ∈ Ξ, considering the reduction(
{q}, δq, vψ

{q}
)

of (Ξ, δ, v). Based on the definition of vψ

{q},

vψ

{q}(δq) = v(δ)− ∑
p∈Ξ\{q}

δp · ψp(Ξ, δ, v).

Since ψ satisfies CON,

ψq(Ξ, δ, v) = ψq
(
{q}, δq, vψ

{q}
)
.

Then, based on WEFF,
ψq(Ξ, δ, v) = vψ

{q}(δq).

Hence, ∑
p∈Ξ

δp · ψp(Ξ, δ, v) = v(δ), i.e., ψ satisfies EFF.

Theorem 1. A solution ψ on MTM satisfies WSTM and CON if and only if ψ = Φw.

Proof. Clearly, Φw satisfies WSTM. Furthermore, Φw satisfies CON according to Lemma 2.
In order to represent uniqueness, suppose that ψ satisfies WSTM and CON. Let

(Ξ, δ, v) ∈ MTM. If |Ξ| ≤ 2, then, based on Remark 2 and WSTM of ψ, ψ(Ξ, δ, v) =
Φw(Ξ, δ, v). The condition |Ξ| > 2: Let p ∈ Ξ and K = {p, k} for some k ∈ Ξ \ {p}. Then,
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ψp(Ξ, δ, v)− φw
p (Ξ, δ, v)

= ψp(K, δK, vψ
K)− φw

p (K, δK, vφw

K )
(

by CON of ψ
)

= φw
p (K, δK, vψ

K)− φw
p (K, δK, vφw

K )
(

by WSTM of ψ
)

= 1
δp

∑
pq∈Ξδ

p

Φw
pq(K

δ, (Vr)Ψ
Kδ)− 1

δp
∑

pq∈Ξδ
p

Φw
pq(K

δ, (Vr)Φw

Kδ )
(

by Lemma 1
)

= 1
δp

∑
pq∈Ξδ

p

[
[(Vr)Ψ

Kδ(Kδ)− (Vr)Ψ
Kδ(Kδ \ {pq})]

+
w(pq)

‖Kδ‖w
·
[
(Vr)Ψ

Kδ(Kδ)− ∑
t∈Kδ

[(Vr)Ψ
Kδ(Kδ)− (Vr)Ψ

Kδ(Kδ \ {t})]
]]

− 1
δp

∑
pq∈Ξδ

p

[
[(Vr)Φw

Kδ (Kδ)− (Vr)Φw

Kδ (Kδ \ {kl})]

+
w(pq)

‖Kδ‖w
·
[
(Vr)Φw

Kδ (Kδ)− ∑
t∈Kδ

[(Vr)Φw

Kδ (Kδ)− (Vr)Φw

Kδ (Kδ \ {t})]
]]

(
based on the definition of Φw

)
= 1

δp
∑

pq∈Ξδ
p

w(pq)

‖Kδ‖w

[
(Vr)Ψ

Kδ(Kδ)− (Vr)Φw

Kδ (Kδ)
]
.(

based on the definitions of (Vr)Ψ
Kδ and (Vr)Φw

Kδ

)
=

‖Ξδ
p‖w

δp ·‖Kδ‖w
·
[
(Vr)Ψ

Kδ(Kδ)− (Vr)Φw

Kδ (Kδ)
]
.

Similarly,

ψk(Ξ, δ, v)− φw
k (Ξ, δ, v) =

‖Ξδ
k‖w

δk · ‖Kδ‖w
·
[
(Vr)Ψ

Kδ(Kδ)− (Vr)Φw

Kδ (Kδ)
]
.

Clearly, ψ and Φw satisfy EFF via Lemma 3 and Remark 2. Based on the EFF of ψ and
φw, [

ψp(Ξ, δ, v)− φw
p (Ξ, δ, v)

]
· ∑

k∈Ξ

δk
‖Ξδ

k‖w
=

δp

‖Ξδ
p‖w

∑
k∈Ξ

[
ψk(Ξ, δ, v)− φw

k (Ξ, δ, v)
]

=
δp

‖Ξδ
p‖w

[
v(δ)− v(δ)

]
= 0.

Hence, ψp(Ξ, δ, v) = φw
p (Ξ, δ, v) for all p ∈ Ξ.

4. Dynamic Approach

Under standard TU models, Maschler and Owen [16] introduced an X-reduced model
to represent dynamic processes that lead participants to the Shapley value [3] as follows.

• Let (Ξ, V) ∈ TM. A payoff vector of (Ξ, V) is a vector (Xp)p∈Ξ ∈ RΞ where Xp

denotes the payoff to the participant p for all p ∈ Ξ. A payoff vector X ∈ RΞ is
efficient under (Ξ, V) if ∑p∈Ξ Xp = V(Ξ). Define E(Ξ, V) = {X ∈ RΞ|X as efficient
under (Ξ, V)}. Let (Ξ, V) ∈ TM, K ⊆ Ξ, and X ∈ E(Ξ, V). The X-dependent
standard reduced mode

(
K, (V)X

K
)

is defined as follows: for each H ⊆ K,

(V)X
K (H) =

 V(Ξ)− ∑
p∈Ξ\K

Xp , if H = K,

(V)Φw

K (H) , otherwise.

In the following, the X-dependent standard reduced model is extended to multi-choice
TU models.
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• Let (Ξ, δ, v) ∈ MTM. A vector x ∈ RΞ is efficient under (Ξ, δ, v) if ∑p∈Ξ δpxp = v(δ).
Define E(Ξ, δ, v) = {x ∈ RΞ|x as efficient under (Ξ, δ, v)}. Let (Ξ, δ, v) ∈ MTM,
K ⊆ Ξ, and x ∈ E(Ξ, δ, v). The x-dependent reduced model

(
K, δK, vx

K
)

is defined as
follows: for each η ∈ ∆S,

vx
K(η) =

 v(δ)− ∑
p∈Ξ\K

δp · xp , if η = δK,

vφw

K (η) , otherwise.

Lemma 4. Let (Ξ, δ, v) ∈ MTM, x ∈ E(Ξ, δ, v), and
(
Ξδ, Vr) be the corresponding replicated

TU model. Furthermore, let X ∈ E(Ξδ, Vr) with Xpq = xp for all p ∈ Ξ and for all pq ∈ Ξδ
p. Let

K ⊆ Ξ and
⋃

p∈K Ξδ
p = Kδ = KδK . Then,(

KδK , (vx
K)

r
TU
)
=
(
Kδ, (Vr)X

Kδ

)
,

where
(
KδK , (vx

K)
r
TU
)

is the corresponding replicated TU model of
(
K, δK, vx

K
)
. That is,

(
Kδ, (Vr)X

Kδ

)
be the corresponding replicated TU model of

(
K, δK, vx

K
)
.

Proof. The proof is similar to Lemma 1; therefore, we omit it.

Similarly to Maschler and Owen [16], Hwang and Liao [17] presented a dynamic
process leading to the EANSC. First, we recall the results of Hwang and Liao [17].

Given that (Ξ, V) ∈ TM with |Ξ| ≥ 3 and X ∈ E(Ξ, V), define the TU-correction
function F : E(Ξ, V)→ E(Ξ, V) as follows: for each p ∈ Ξ,

Fp(X) = Xp + λ · ∑
q∈Ξ\{p}

(
Φw

p
(
{p, q}, (V)X

{p,q}
)
− Xp

)
. (6)

Consider the dynamic sequences {Xq}∞
q=1; for each q ∈ N,

X0 = X, X1 = F(X0), X2 = F(X1), · · · , Xq = F(Xq−1).

Theorem 2 (Hwang and Liao [17]). If 0 < λ < 2
|Ξ| , then for each X ∈ E(Ξ, V), the above

dynamic sequence {Xq}∞
q=1 converges to Φw(Ξ, V).

Based on Lemma 1, it is known that the replicated WANSC φw of a multi-choice TU
model is the WANSC Φw of a corresponding replicated TU model. In order to provide a
relative dynamic result for φw, it is reasonable that the TU-correction function could be
extended to the multi-choice TU models as follows. Let (Ξ, δ, v) ∈ MTM with |Ξ| ≥ 3 and
x ∈ E(Ξ, δ, v). One can define the correction function f : E(Ξ, δ, v) → E(Ξ, δ, v) as follows:
for each p ∈ Ξ,

fp(x) = xp + λ · ∑
q∈Ξ\{p}

δp + δq

2
(
φw

p
(
{p, q}, δ{p,q}, vx

{p,q}
)
− xp

)
. (7)

Based on the definition of the x-dependent reduced model and the EFF of Φw,

δpφw
p
(
{p, q}, δ{p,q}, vx

{p,q}
)
+ δqφw

q
(
{p, q}, δ{p,q}, vx

{p,q}
)
= δpxp + δqxq, (8)

and it is easy to verify that f (x) ∈ E(Ξ, δ, v) if x is EFF.
Consider the dynamic sequences {xq}∞

q=1; for each q ∈ N,

x0 = x, x1 = f (x0), x2 = f (x1), · · · , xq = f (xq−1).
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Based on the notion of the replication and Lemma 1, it is clear that the number of
participation levels for each participant in a multi-choice TU model can be treated as
the number of replicated participants in a corresponding replicated TU model, and the
replicated WANSC of a multi-choice TU model is the WANSC of a corresponding replicated
TU model. Thus, it is reasonable that Theorem 2 can be extended to express the dynamic
result for the replicated WANSC as follows.

Theorem 3. Given that (Ξ, δ, v) ∈ MTM with |Ξ| ≥ 3, if 0 < λ < 2
δ(Ξ) , then for each

x ∈ E(Ξ, δ, v), the above dynamic sequence {xq}∞
q=1 converges geometrically to φw(Ξ, δ, v).

Proof. Let (Ξ, δ, v) ∈ MTM, x ∈ E(Ξ, δ, v), and
(
Ξδ, Vr) be the corresponding replicated

TU model. Furthermore, let X ∈ E(Ξδ, Vr) with Xpk = xp for all p ∈ Ξ and for all pk ∈ Ξδ
p.

Let p, q ∈ Ξ and Ξδ
p ∪ Ξδ

q = {p, q}δ = {p, q}δ{p,q} . Let p ∈ Ξδ
p and q ∈ Ξδ

q. We will show that

Φw
p
(
{p, q}, δ{p,q}, vx

{p,q}
)
− xp = Φw

p
(
{p, q}δ, (vx

{p,q})
r
TU

)
− xp

= Φw
p
(
{p, q}δ, (Vr)X

{p,q}δ

)
− xp

=
2δq

δp+δq
{Φw

p
(
{p, q}, ((Vr)X

{p,q}δ)
X
{p,q}

)
− xp}

=
2δq

δp+δq
{Φw

p
(
{p, q}, (Vr)X

{p,q}
)
− xp}.

(9)

If Equation (9) holds, then Equation (7) becomes

fp(x) = xp + λ · ∑
q∈Ξ\{p}

δp+δq
2
(
Φw

p
(
{p, q}, δ{p,q}, vx

{p,q}
)
− xp

)
= xp + λ · ∑

q∈Ξ\{p}
δq{φw

p
(
{p, q}, (Vr)X

{p,q}
)
− xp}.

(10)

Consider the corresponding replicated TU model
(
Ξδ, Vr) and the TU-correction

function F : E
(
Ξδ, Vr)→ E

(
Ξδ, Vr) by

Fp(X) = Xp + λ · ∑
q∈Ξδ\{p}

(
Φw

p
(
{p, q}, (V)X

{p,q}
)
− Xp

)
. (11)

It is easy to observe that Φw
p
(
{p, q}, (Vr)X

{p,q}
)
= xp if p, q ∈ Ξδ

p. So, Equation (10)
coincides with Equation (11). Therefore, Theorem 3 immediately follows via Theorem 2. It
remains to prove Equation (9). The proof of Equation (9) can be generated via the following
three steps.
Step 1: According to Lemma 4,(

{p, q}δ, (vx
{p,q})

r
TU

)
=
(
{p, q}δ, (Vr)X

{p,q}δ

)
. (12)

Based on Definition 1,

φw
p
(
{p, q}, δ{p,q}, vx

{p,q}
)
= Φw

p
(
{p, q}δ, (vx

{p,q})
r
TU

)
. (13)

Combining Equation (12) with Equation (13),

φw
p
(
{p, q}, δ{p,q}, vx

{p,q}
)
= Φw

p
(
{p, q}δ, (Vr)X

{p,q}δ

)
. (14)

Step 2: According to the MCON of Φw and the equal treatment property noted by Moulin
(1985),

Φw
p
(
{p, q}δ, (Vr)X

{p,q}δ

)
= Φw

p
(
{p, q}, ((Vr)X

{p,q}δ)
Φw

{p,q}
)
. (15)

Φw
q
(
{p, q}δ, (Vr)X

{p,q}δ

)
= Φw

q
(
{p, q}, ((Vr)X

{p,q}δ)
Φw

{p,q}
)
. (16)
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It is also straightforward to verify that(
{p, q}, ((Vr)X

{p,q}δ)
X
{p,q}

)
=
(
{p, q}, (Vr)X

{p,q}
)
, (17)

and
((Vr)X

{p,q}δ)
Φw

{p,q}({k}) = ((Vr)X
{p,q}δ)

X
{p,q}({k}) for k = p, q. (18)

Based on Equations (17) and (18),

Φw
p
(
{p, q}, ((Vr)X

{p,q}δ)
Φw

{p,q}
)
−Φw

q
(
{p, q}, ((Vr)X

{p,q}δ)
Φw

{p,q}
)

= Φw
p
(
{p, q}, ((Vr)X

{p,q}δ)
X
{p,q}

)
−Φw

q
(
{p, q}, ((Vr)X

{p,q}δ)
X
{p,q}

)
= Φw

p
(
{p, q}, (Vr)X

{p,q}
)
−Φw

q
(
{p, q}, (Vr)X

{p,q}
)
.

(19)

Based on Equations (14)–(16) and (19),

φw
p
(
{p, q}, δ{p,q}, vx

{p,q}
)
− φw

q
(
{p, q}, δ{p,q}, vx

{p,q}
)

= Φw
p
(
{p, q}, (Vr)X

{p,q}
)
−Φw

q
(
{p, q}, (Vr)X

{p,q}
)
.

(20)

Based on Equations (8) and (20), it is easy to observe that

φw
p
(
{p, q}, δ{p,q}, vx

{p,q}
)

= 1
δp+δq

[δpxp + δqxq + δqΦw
p
(
{p, q}, (Vr)X

{p,q}
)
− δqΦw

q
(
{p, q}, (Vr)X

{p,q}
)
].

(21)

Step 3:

φw
p
(
{p, q}, δ{p,q}, vx

{p,q}
)
− xp

= 1
δp+δq

[δpxp + δqxq + δqΦw
p
(
{p, q}, (Vr)X

{p,q}
)
− δqΦw

q
(
{p, q}, (Vr)X

{p,q}
)
]− xp

( by Equation (21) )
= 1

δp+δq
[δqxq + δqΦw

p
(
{p, q}, (Vr)X

{p,q}
)
− δqΦw

q
(
{p, q}, (Vr)X

{p,q}
)
− δqxp]

=
δq

δp+δq
[xq + Φw

p
(
{p, q}, (Vr)X

{p,q}
)
−Φw

q
(
{p, q}, (Vr)X

{p,q}
)
− xp]

=
δq

δp+δq
[2(Φw

p
(
{p, q}, (Vr)X

{p,q}
)
− Xp)]

(by xp = Xp, xq = Xq, Φw
p
(
{p, q}, (Vr)X

{p,q}
)
+ Φw

q
(
{p, q}, (Vr)X

{p,q}
)
= Xp + Xq )

=
2δq

δp+δq
[Φw

p
(
{p, q}, (Vr)X

{p,q}
)
− Xp].

5. Discussion and Conclusions
5.1. Discussion and Comparisons

Inspired by some existing outcomes related to solution concepts for standard TU
models and multi-choice models, a different solution concept and its related outcomes are
presented in this paper. One should compare the outcomes of this paper with the outcomes
in the existing literature. Several significant differences can be noted as follows:

1. Traditional TU models have solely focused on non-participation or participation
among all participants. However, as previously indicated, it is equitable for each
participant to employ distinct levels of participation. Moreover, participants may
have corresponding influences in various situations.

• Therefore, in contrast from the solution concepts used in traditional TU models,
the replicated WANSC was generated here to extend the WEANSC by employing
weights and multi-choice considerations simultaneously.

• The axiomatic techniques adopted in this paper are multi-choice analogues of the
relative results introduced in the works of Moulin [9], Hart and Mas-Colell [14],
and Liao et al. [13].
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• The dynamic techniques presented by Hwang and Liao [17] and in this paper cor-
respond exactly to the related techniques presented by Maschler and Owen [16].
However, the main differences between the dynamic outcomes used in this paper
and those proposed by Maschler and Owen [16] are that the notion of the ‘partici-
pation level’ and ‘weight’ are not present in the work of Maschler and Owen [16].
The main differences between the dynamic outcomes used in this paper and
those proposed by Hwang and Liao [17] are that our dynamic outcomes (the
definition of the correction function and Theorem 3) are based on ‘participation
level vectors’, and Hwang and Liao’s [17] dynamic outcomes (the definition
of the TU-correction function and Theorem 2) are based on ‘participants and
coalitions’.

2. Several extensions of the EANSC have been proposed under the considerations of
the multi-choice TU model.

• By applying the maximal effects of participants among all participation levels
in multi-choice TU models, Liao [15] proposed the maximal EANSC. Unlike the
present study [15], the notion of weights and replicated behavior are not present
in the work of Liao [15].

• Under multi-choice TU considerations, Hwang and Liao [18] proposed an ex-
tended EANSC to increase the effect associated with a specific participant when
it is utilized at a specific participation level. In contrast with the work of Hwang
and Liao [18], in this study we focused on the overall value of a specific par-
ticipant by gathering the marginal effects of these participants among their
participation levels. The other central difference is that the notion of weights and
replicated behavior are not present in the work of Hwang and Liao [18].

5.2. Conclusions

In sum, the purpose of this study was to introduce a different solution concept by
applying the notion of weights and replicated behavior in a model of multi-choice consid-
eration. Our main findings were as follows.

1. A generalized analogue of the WANSC, the replicated WANSC, has been generalized
to increase the global value for a specific participant by gathering the marginal effects
of this participant at its participation level.

2. To convey the applied rationality and mathematical accuracy of the replicated WANSC,
an axiomatic result has been presented.

3. The corrective notion and relevant dynamic process have defined to show that the
replicated WANSC can be reached by participants who start from an arbitrary efficient
payoff vector.

One question providing a motivation for further research arises from the results of
this paper, which may be expressed as follows:

• To what extent could alternative solution ideas and their axiomatic characterizations be
utilized to generalize the most efficient suited notions in utility-allocating situations?

To the best of our knowledge, these relatied concerns remain unresolved.
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