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Abstract: With the aim of mitigating the damage caused by the coronavirus disease 2019 (COVID-19)
pandemic, it is important to use models that allow forecasting possible new infections accurately
in order to face the pandemic in specific sociocultural contexts in the best possible way. Our first
contribution is empirical. We use an extensive COVID-19 dataset from nine Latin American coun-
tries for the period of 1 April 2020 to 31 December 2021. Our second and third contributions are
methodological. We extend relevant (i) state-space models with score-driven dynamics and (ii)
nonlinear state-space models with unobserved components, respectively. We use weekly seasonal
effects, in addition to the local-level and trend filters of the literature, for (i) and (ii), and the negative
binomial distribution for (ii). We find that the statistical and forecasting performances of the novel
score-driven specifications are superior to those of the nonlinear state-space models with unobserved
components model, providing a potential valid alternative to forecasting the number of possible new
COVID-19 infections.
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1. Introduction

In the work of Barrado [1], the author presents that the sanitary (health) crisis produced
by the coronavirus disease 2019 (COVID-19) pandemic generated by the Sars-CoV-2 (severe
acute respiratory syndrome coronavirus 2) is not the first zoonotic disease (i.e., rabies in
the seventeenth century; 1918 influenza pandemic; pandemic of AIDS/HIV—acquired
immune deficiency syndrome/human immunodeficiency virus—infection of 1981 to date)
and, unfortunately, it will not be the last that humanity will face. Diseases, in fact, have
been powerful levers of historical change; they have the ability to change a society.

The plagues in Egypt (1570 to 1440 BC, before Christ) caused notable changes in the
way of life of the population, since they affected the characteristics of social relations [2].
The Black Death, a pandemic that ravaged Europe between 1347 and 1351, gave rise to an
epidemic reaching all the European continent geographically, causing the death of about
one-third of its population [3] and changing its socioeconomic structure. The encounter
between Europeans and Native Americans (1770s to 1850) caused epidemics that devastated
the native society, being one of the main causes of the destruction of their culture [4]. In all
three examples, for both political structures and individuals involved, the changes were
dramatic and left multiple victims, but new opportunities were also opened up.

During the emergence of the modern states, statistics began to be used to know
precisely the forces of the state, starting with the birth, mortality, and disease records. In
this way, the health statistics kept an accurate record of the cases of illness and death of the
population emerged. Those records made possible the study of epidemic phenomena by
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using modern scientific tools [5]. The work of [6] presents models to predict the evolution of
the COVID-19 pandemic and the impact of the measures for its control. The work of [7] also
presents that there are many models developed to understand the dynamics of the COVID-
19 disease. However, the different sociocultural contexts of different countries make it
necessary to specifically adjust those models to each scenario [7]. The first contribution of
our paper is empirical. To the best of our knowledge, our paper provides the most complete
analysis on COVID-19 forecasting for Latin American countries in the literature. We study
the forecasting performances of new time series models in the sociocultural contexts of
nine Latin American countries for the period of April 2020 to December 2021. In Table A1
of Appendix A, we cite several works from the literature on COVID-19 forecasting.

In the present paper, we use two classes of time series models for COVID-19 fore-
casting. For the first class of time series models, we use score-driven models which are
introduced in the works of [8,9]. In those papers, score-driven models are named general-
ized autoregressive score (GAS) and dynamic conditional score (DCS) models, respectively.
Score-driven models are observation-driven state-space models [10], in which the dynamic
parameters are observable and updated by past observations. For reviews on score-driven
models, we refer to [11,12]. For the statistical inference of score-driven models, we refer to
the works of [11,13–19]. From the literature, the most relevant works for us are [20,21], in
which one of the models for the log of new COVID-19 cases is a score-driven model for
the negative binomial distribution using score-driven local-level and trend components.
The second contribution of our paper, in relation to score-driven models, is methodological.
We extend the works of [20,21] by adding a weekly seasonal component for new COVID-
19 cases. In addition, we also refer to relevant works in which score-driven seasonal
components are used for macroeconomic data: [22–26].

For the second class of time series models, we use space-state models with unobserved
components [11,27–30], which are also called structural models [30]. The most relevant
papers for us are [20,21], in which one of the models for the log of new COVID-19 cases is a
Gaussian linear state-space model with unobserved components of local level and trend.
The third contribution of our paper, in relation to state-space models with unobserved
components, is methodological. We extend the state-space model with unobserved compo-
nents of [20,21] at two points: (i) We add a weekly seasonal component for new COVID-19
cases that we observe at the daily frequency. (ii) We assume that the data-generating
process (DGP) for the state-space model with unobserved components is the negative
binomial distribution, and we use the estimation method of [31]. The use of the negative
binomial distribution is motivated by the works of [20,21] due to robustness to possible
small numbers of new COVID-19 cases in the data series.

By using the new state-space model with unobserved components for the negative
binomial distribution, we separately model the trend, seasonality, and seasonal components
of new COVID-19 cases, and we study the out-of-sample forecasting accuracy for COVID-
19 cases using alternative forecasting horizons. Our estimation results indicate that the
COVID-19 forecasting performances of the score-driven models are superior to those of the
state-space models with unobserved components.

In the remainder of this paper, Section 2 presents the statistical models, Section 3
presents the results, and Section 4 concludes.

2. Materials and Methods

We use COVID-19 data from Latin American countries for which data are available
to us, and we discuss in detail the results for Chile. The first cases of the COVID-19
pandemic in Chile were confirmed on 3 March 2020, when a 33-year-old man from the
commune of San Javier (Maule Region) and a passenger of a flight from Singapore were
hospitalized in the Regional Hospital of Talca [32]. From these first proven cases, the
epidemic outbreak spread to sixteen regions of the country. By April 2020, Chile was
the country that performed the most PCR (polymerase chain reaction) tests per million
inhabitants in Latin America.
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The data of the present paper are from the COVID-19 Data Repository of the Center for
Systems Science and Engineering (CSSE) at Johns Hopkins University [33] for the period
of 1 April 2020 to 31 December 2021 of nine Latin American Countries for which daily
data were available in the study period. For the data under study, various specifications of
state-space models with unobserved components and score-driven models are estimated,
and in-sample model fits are compared.

Out-of-sample forecasts of COVID-19 cases are also performed for the alternative
forecasting windows of 7, 14, and 28 days. By evaluating the alternative state-space models,
we find that the in-sample statistical and out-of-sample forecasting performances of a
score-driven model with dynamic local-level, trend, and seasonal components are superior
to those of the nonlinear state-space model with unobserved components. The novel
score-driven model may be used to decide on alternative actions, such as quarantines and
vaccination processes, to control the current COVID-19 or other future pandemics.

Next, we present the score-driven model of location, trend, and seasonality for the
negative binomial distribution. Then, we review the corresponding nonlinear state-space
model for the same probability distribution.

2.1. Score-Driven Models

In the score-driven models of new COVID-19 cases of the present paper, the score-
driven parameter ft and the constant parameters of the vector Θ influence the conditional
density of the dependent variable yt ∼ py(yt|y1, . . . , yt−1, ft, Θ), where yt denotes the
number of new COVID-19 cases in period t. Similar to the work of [20], we assume that the
DGP for new COVID-19 cases is the negative binomial distribution. Hence, the conditional
density of yt is defined in Equation (1) next,

p(yt|y1, . . . , yt−1, ft, Θ) =
Γ(υ + yt)

yt! Γ(υ)
f yt
t (υ + ft)

−yt(1 + ft/υ)−υ, (1)

where Γ(x) is the gamma function, n! = (1× 2× · · · × n) denotes factorial, υ is the shape
parameter, the conditional mean of new COVID-19 cases is E(yt|y1, ..., yt−1) = ft, the
conditional variance of new COVID-19 cases is Var(yt|y1, ..., yt−1) = ft + ( f 2

t )/υ, and the
dynamics of ln ft are driven as formulated in Equations (2)–(7) follows:

ln ft = δt + st (2)

δt = δt−1 + βt−1 + κ1ut−1 (3)

βt = βt−1 + κ2ut−1 (4)

st = Dtγt (5)

Dt = (DMonday,t, . . . , DSunday,t) (6)

γt = γt−1 + κtut−1 (7)

where δt (1× 1) is the local level component, βt (1× 1) is the trend component, and st
(1× 1) is the seasonality component. The score-driven model can be extended by adding
strictly exogenous variables to Equation (2) ([11], p. 56), which influence the new cases of
COVID-19. Moreover, γt is a (7× 1) vector of seasonality filter, where its elements are of
the form of Equation (8):

γt = (γMonday,t, . . . , γSunday,t)
>, (8)

where κt is a (7× 1) vector, where each element of κt is parameterized as in Equation (9):

κj,t =

{
κj, if Dj,t = 1;

− κj
7−1 , if Dj,t = 0.

(9)
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where j ∈ {Monday, Tuesday, . . . , Sunday}. Hence, parameters κj where j ∈ {Monday,
Tuesday, . . . , Sunday} are time-invariant parameters which are jointly estimated with the
rest of the parameters. Finally, the conditional score of the log-likelihood with respect to ft
(i.e., score function) is given by Equation (10):

∂ ln p(yt|y1, . . . , yt−1, ft, Θ)

∂ ft
=

υ(yt − ft)

ft(υ + ft)
. (10)

In the literature on score-driven models (e.g., [11,13]), in many cases, the conditional
score is scaled by the inverse information matrix. Hence, following the work of [20], the
scaled score function updating term in Equations (3), (4) and (7) is given by ut = yt/ ft − 1,
which is the score function divided by the information quantity.

We consider alternative specifications of the general score-driven model of this section;
the specification presented in this section is denoted by SD 1 (score-driven 1). An alternative
specification assumes that all seasonality parameters are identical, i.e., κj = κ for all j,
which we denote by SD 2 (score-driven 2). Moreover, another alternative specification
assumes that only local-level and trend components are included in the model, i.e., st = 0
for t = 1, . . . , T. We denote the latter specification by SD WS (score-driven, without
seasonality), which coincides with the score-driven models of [20,21].

2.2. State-Space Model

We use the exponential family state-space model and apply it to the negative binomial
distribution, as seen in the work of [31]. We use the same conditional density for yt as for
the score-driven model; see Equation (1). The estimation method uses a Gaussian model
which approximates the negative binomial model. Then, the estimation is performed by
using the Kalman filter procedure. The log-mean of yt is formulated by Equations (11)–(17):

ln ft = δt + st (11)

δt = δt−1 + βt−1 + εδ,t (12)

βt = βt−1 + εβ,t (13)

st = Dtγt (14)

Dt = (DMonday,t, . . . , DSunday,t) (15)

γt = γt−1 + εγ,t (16)

εγ,t = (εMonday,γ,t, . . . , εSunday,γ,t)
′ (17)

where δt (1× 1) is the local level component, βt (1× 1) is the tend component, st (1× 1) is
the seasonality component, and γt (7× 1) is the seasonality filter of time-varying parame-
ters. We assume that εδ,t ∼ N(0, σ2

δ ) and εβ,t ∼ N(0, σ2
β). Moreover, we also assume that

εγ,t has a seven-dimensional multivariate normal distribution where the mean is a zero
vector and the variance is specified as follows: Var(εγ,t) = σ2

γ(I7− (1/7)i7i′7) where I7 is the
identity matrix and i7 is a (7× 1) vector of ones. This specification of the covariance matrix
ensures that the sum of each column of that matrix is zero, i.e., the sum of the seasonality
filters is zero in each period. The nonlinear state-space model with unobserved components
for the negative binomial distribution of this section is denoted SS (state-space).

2.3. Parameter Estimation and Statistical Performance

All models are estimated by using the maximum likelihood (ML) method, in which the
following log-likelihood (LL) function is maximized with respect to the parameter vector
Θ as is defined in (18):

Θ̂ = argmaxΘLL(y1, . . . , yT , Θ) = argmaxΘ

T

∑
t=1

ln p(yt|y1, . . . , yt−1, ft, Θ). (18)
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For the estimation of the nonlinear state-space model, we refer to the work of [31]. For the
estimation of the score-driven model, we refer to the works of [11,13,14].

The statistical performances of different models are compared by using the following
likelihood-based model performance metrics defined as Equations (19)–(21):

AIC = 2K− 2L̂L (19)

AICc = AIC +
2K2 + 2K
T − K− 1

(20)

BIC = K ln(T)− 2L̂L (21)

where L̂L is the maximum value of the log-likelihood, K is the number of time-invariant
parameters, and T denotes the sample size. Moreover, AIC denotes Akaike information
criterion, AICc is a corrected AIC which is robust to small sample size, and BIC denotes
Bayesian information criterion. The use of these model selection metrics for score-driven
models is motivated by the work of [11] (p. 56).

3. Results

To evaluate the in-sample and out-of-sample performances of the models, a time series
of new daily infections of COVID-19 in nine Latin American countries, for the period of
1 April 2020 to 31 December 2021, with a total of T = 640 observations, is considered [33].
Table 1 presents summary statistics of the data and the p-values of the Jarque–Bera (JB) [34]
and augmented Dickey–Fuller (ADF) tests [35]. For the JB test, the null hypothesis of
normal distribution is rejected for all countries at the 1% level of significance. This supports
the use of the negative binomial distribution for the score-driven model. For the ADF test,
the null hypothesis of unit root process cannot be rejected for any of the countries, which
supports the use of the unit root specifications for δt in Equations (3) and (12).

Table 1. Descriptive statistics, JB test, and ADF test for new COVID-19 cases.

Mean SDev Minimum Maximum Skewness Kurtosis JB p-Value ADF p-Value

Argentina 8833.3656 8478.1008 0.0000 50,506.0000 1.5262 5.6897 0.0000 0.8786
Brazil 10,490.3422 9139.8157 0.0000 63,523.0000 1.6401 6.6768 0.0000 0.5559
Chile 2820.9703 2168.6074 265.0000 13,990.0000 1.2857 4.6445 0.0000 0.7233
Colombia 8057.0844 7314.7682 67.0000 33,594.0000 1.2759 4.2166 0.0000 0.6428
Cuba 1509.0906 2618.5288 0.0000 9907.0000 1.9932 5.5462 0.0000 0.8492
Guatemala 981.7516 1090.4835 0.0000 5826.0000 2.0654 7.0469 0.0000 0.9058
Jamaica 146.6938 190.1864 0.0000 1430.0000 2.2203 8.8093 0.0000 0.4927
Panama 765.6219 723.4916 0.0000 5186.0000 2.4510 10.8399 0.0000 0.5985
Uruguay 645.6234 1072.7704 0.0000 7289.0000 2.2389 8.0831 0.0000 0.8074

For the full sample period, parameter estimates for SD 1, SD2, SD WS, and SS are
reported in Tables A2–A10 of Appendix B for all countries. To evaluate the predictive
capacity, first, the sample was divided into two equal parts, each of 320 observations. The
last 7, 14, and 28 observations were removed from the initial half of the data, which were
predicted using the fitted model for the remaining data, and measures were calculated
to evaluate the predictive capacity of the models considered. Then, the next observation
was included, having now a total of 321 observations. Again, the last 7, 14, and 21 final
observations were removed, the prediction of these was made and measurements of the
quality of the prediction quality were calculated. The procedure described above was
repeated until the total set of available observations was considered.

In Figure 1 (graph of the analyzed time series of Chile), it is possible to see five periods
of significant increase in the number of new cases of infection with COVID-19.
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Figure 1. New cases of infection with COVID-19 in Chile (1 April 2020 to 31 December 2021).

The quality of predictions is compared by using the following mean absolute percent-
age error (MAPE), mean absolute error (MAE), and mean square error (MSE) loss functions
presented in Equations (22)–(24).

MAPE =
1
T

T

∑
t=1

|yt − y f ,t|
yt

(22)

MAE =
1
T

T

∑
t=1
|yt − y f ,t| (23)

MSE =
1
T

T

∑
t=1

(yt − y f ,t)
2 (24)

The precision of the forecasts is studied for models SD 1, SD 2, SD WS, and SS.
Table 2 shows the mean values of AIC, AICc, BIC, MSE, MAE, and MAPE of different

models for the estimation window of the countries used in the present study by excluding
the last seven observations, which are used to evaluate the predictive capacity of the models
in question. Table 3 also presents the same results when the last 14 observations were
excluded from the sample. Table 4 presents similar result for the estimation window by
excluding the last 28 observations which are used to evaluate the predictive capacity of the
models in question.

According to the tables, in which the best values have been highlighted in bold,
the SD 1 or SD 2 model has a superior performance according to all in-sample model
performance metrics and out-of-sample loss functions. Furthermore, when the prediction
horizon increases, the prediction quality values decrease, and in the particular case of Chile,
the values of MAPE is 12.4% for the forecast by the next seven days, 16.2% by 14 days and
26.8% by 28 days. The other countries present similar conducts.

Figure 2 shows the 28-day ahead forecasts for SD 1. The filtered estimate of ft and
the 28-day out-of-sample ahead forecast y f ,t are presented. The thick red line indicates
the forecasting period for this example. The figures for the other econometric models of
this paper are similar and are available from the authors upon request. When comparing
Figures 1 and 2, it can be seen that the prediction is close to the real value and the fit follows
the behavior of the data.
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Figure 2. Filtered estimates and forecasts of new cases of infection with COVID-19 in Chile (1 April
2020 to 31 December 2021). Note: The thick red line indicates the forecasting period for this example.

Table 2. AIC, AICc, BIC, and loss functions (forecasting window: last 7 days).

Country Model AIC AICc BIC MSE MAE MAPE

SD 1 8296.3733 8297.9455 8370.9011 2301.2016 1946.0298 18.8640
SD 2 8377.7886 8378.4967 8427.4559 2316.1415 1974.9102 19.0833
SD WS 8535.3791 8535.5133 8556.0693 34,343,289.6112 3551.2989 40.0326

Argentina

SS 8498.8841 8499.3802 8540.2884 13,108,686.9670 2017.2896 22.0692

SD 1 8768.5371 8770.1093 8843.0649 2274.6951 1911.7838 19.9625
SD 2 8767.4572 8768.1673 8817.0885 2602.3998 2228.8968 22.7865
SD WS 8534.4407 8534.5821 8554.8778 42,251,093.3462 4151.6625 49.4397

Brazil

SS 8998.2551 8998.7500 9039.6803 16,851,638.8005 2361.7759 25.4773

SD 1 7001.2412 7002.8134 7075.7690 415.3421 339.2591 12.4051
SD 2 7049.7117 7050.4198 7099.3798 405.6187 336.4485 12.2171
SD WS 7492.7113 7492.8451 7513.4124 749,400.2033 622.5042 22.9498

Chile

SS 7097.0747 7097.5709 7138.4791 348,105.9045 414.0706 16.4325

SD 1 7775.4984 7776.2069 7825.1567 1499.3427 1306.5852 14.8406
SD 2 7748.3902 7749.9624 7822.9179 1467.6770 1292.4946 14.4201
SD WS 7854.5344 7854.6684 7875.2237 6,187,717.7639 1472.9147 16.4635

Colombia

SS 7833.7131 7834.2092 7875.1174 5,658,909.4517 1473.1866 17.9121

SD 1 5194.5309 5196.1031 5269.0587 523.5462 464.6705 19.5876
SD 2 5233.4356 5234.1439 5283.0955 699.1034 637.0687 21.9416
SD WS 5192.3540 5192.4877 5213.0588 1,546,392.2398 563.7378 18.7016

Cuba

SS 5032.0991 5032.5952 5073.5034 641,855.0899 454.5395 21.3560

SD 1 6293.7668 6294.4892 6343.1756 374.9546 288.7362 26.0893
SD 2 6270.1159 6271.7105 6344.3708 368.5360 282.5509 27.0558
SD WS 6461.8271 6461.9663 6482.3146 1,062,506.0989 754.4205 95.6340

Guatemala

SS 6588.5849 6589.0859 6629.8826 1,266,745.7849 635.2117 52.7323
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Table 2. Cont.

Country Model AIC AICc BIC MSE MAE MAPE

SD 1 4658.5020 4660.0741 4733.0297 97.2971 81.5668 38.4807
SD 2 4704.6173 4705.3228 4754.3235 105.9428 89.4866 40.5211
SD WS 4705.8447 4705.9785 4726.5435 18,850.7210 80.7728 42.7940

Jamaica

SS 4837.9013 4838.4036 4879.1967 107,479.4776 171.1706 75.7571

SD 1 6569.8656 6571.4378 6644.3934 134.0009 108.6573 21.8896
SD 2 6571.3742 6572.0812 6621.0594 136.3494 110.4343 22.2704
SD WS 6850.5974 6850.7311 6871.2995 42,451.3021 139.0089 28.3498

Panama

SS 6222.0811 6222.6217 6262.5795 28,495.6600 111.9751 22.9152

SD 1 4884.0880 4884.7952 4933.7672 329.8169 271.7384 24.2383
SD 2 4784.3311 4785.9033 4858.8589 320.9517 261.6523 23.6438
SD WS 4842.6633 4842.7969 4863.3720 335,154.0779 292.6989 28.2122

Uruguay

SS 4737.7469 4738.2430 4779.1512 298,958.1937 279.8100 26.9180

Table 3. AIC, AICc, BIC, and loss functions (forecasting window: last 14 days).

Country Model AIC AICc BIC MSE MAE MAPE

SD 1 8175.2700 8176.8691 8249.5185 3197.9468 2639.5945 24.1452
SD 2 8271.6612 8272.3811 8321.1430 3371.1225 2809.3709 25.2801
SD WS 8406.7033 8406.8398 8427.3150 49,140,353.3414 4196.7107 45.3911

Argentina

SS 8379.6315 8380.1359 8420.8807 18,184,571.1667 2578.3910 30.0359

SD 1 8647.7178 8649.3169 8721.9664 2894.9226 2384.5114 25.6791
SD 2 8637.4367 8638.1589 8686.8794 3065.6126 2554.0550 27.6030
SD WS 8838.0213 8838.1575 8858.6376 30,982,304.8005 3506.3766 43.2434

Brazil

SS 8876.8100 8877.3134 8918.0787 26,819,716.2958 3169.0974 36.5192

SD 1 6900.4569 6902.0560 6974.7054 569.6145 462.6948 16.1672
SD 2 6947.1479 6947.8681 6996.6269 570.1986 467.3224 16.1924
SD WS 7382.4926 7382.6286 7403.1159 1,067,731.3998 735.1098 26.8141

Chile

SS 6994.4527 6994.9572 7035.7019 691,370.5675 583.3890 24.0062

SD 1 7636.0628 7637.6619 7710.3113 2041.0238 1760.6786 19.5618
SD 2 7644.9216 7645.6422 7694.3920 2020.2438 1731.1616 19.1392
SD WS 7739.3255 7739.4618 7759.9365 10,868,589.6806 1987.7646 21.5616

Colombia

SS 7719.2850 7719.7895 7760.5342 11,493,721.1180 2106.8066 26.9954

SD 1 5087.1428 5088.7419 5161.3913 685.2727 601.0140 24.4800
SD 2 5155.6897 5156.4089 5205.1788 961.0687 857.5462 27.9208
SD WS 5086.2412 5086.3770 5106.8676 2,245,995.6206 723.6386 23.9827

Cuba

SS 4933.7971 4934.3016 4975.0463 1,476,321.3263 707.0039 37.1587

SD 1 6274.8259 6276.4240 6349.0671 432.2001 322.0076 33.8236
SD 2 6344.1386 6344.8575 6393.6230 439.7635 333.0616 35.3578
SD WS 6231.7189 6231.8619 6252.0626 1,238,553.6801 831.8914 93.8069

Guatemala

SS 6396.6383 6397.1523 6437.6775 2,093,344.2267 826.1275 64.7631

SD 1 4577.2449 4578.8440 4651.4934 127.0198 106.1333 45.8103
SD 2 4627.4318 4628.1483 4676.9655 136.2133 114.0903 47.4340
SD WS 4634.5638 4634.6997 4655.1884 29,838.2604 101.3054 49.0764

Jamaica

SS 5202.6202 5203.0954 5244.4736 138,632.3748 187.4398 76.6255
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Table 3. Cont.

Country Model AIC AICc BIC MSE MAE MAPE

SD 1 6470.3736 6471.9727 6544.6222 150.5995 119.7430 25.3388
SD 2 6471.8290 6472.5479 6521.3280 153.2067 121.4780 25.5953
SD WS 6703.3882 6703.5243 6724.0094 45,059.8159 148.5483 30.9317

Panama

SS 5994.4678 5995.0285 6034.6011 49,498.3959 149.1045 29.7651

SD 1 4739.2554 4740.8554 4813.4939 392.8616 322.5024 28.8932
SD 2 4843.9065 4844.6268 4893.3837 409.2816 334.2830 31.5082
SD WS 4806.4207 4806.5566 4827.0487 426,375.0069 351.6242 33.1181

Uruguay

SS 4649.3840 4649.8886 4690.6331 494,822.8223 369.7121 37.6505

Table 4. AIC, AICc, BIC, and loss functions (forecasting window: last 28 days).

Country Model AIC AICc BIC MSE MAE MAPE

SD 1 7933.59216 7935.2480 8007.2728 5189.7655 4219.0258 36.2552
SD 2 8046.926927 8047.6706 8096.0505 5367.0909 4366.9248 38.2809
SD WS 8136.394036 8136.5355 8156.8363 82,370,566.8139 5322.1663 54.2638

Argentina

SS 8088.467599 8088.9933 8129.3335 32,170,702.1469 3753.4018 44.5420

SD 1 8396.9131 8398.5706 8470.5747 4007.0473 3318.6124 37.0109
SD 2 8384.3370 8385.0852 8433.3866 4134.1578 3442.6450 38.8869
SD WS 8534.4407 8534.5821 8554.8778 42,251,093.3462 4151.6625 49.4397

Brazil

SS 8536.3283 8536.8557 8577.1623 75,839,238.9418 5397.3759 55.1246

SD 1 6758.694984 6760.3524 6832.3550 996.1884 805.6067 26.8196
SD 2 6760.079588 6760.8265 6809.1586 1012.6425 820.0937 27.3999
SD WS 7130.248944 7130.3902 7150.6921 2,689,008.2871 1070.7300 37.1054

Chile

SS 6788.432479 6788.9545 6829.3637 1,681,886.1884 908.0762 40.4911

SD 1 7409.855313 7411.5113 7483.5314 3857.9707 3264.2294 36.3053
SD 2 7429.951682 7430.6957 7479.0645 3636.0051 3041.9816 33.2373
SD WS 7507.145544 7507.2866 7527.5960 31,129,971.4861 3367.9660 36.2210

Colombia

SS 7477.488416 7478.0112 7518.4103 28,223,384.5131 3245.6306 41.7716

SD 1 4850.0780 4851.7383 4923.7095 1008.8684 861.4322 35.6252
SD 2 4942.4274 4943.1732 4991.5171 1236.3509 1068.8652 40.0612
SD WS 4849.2351 4849.3760 4869.6902 4,131,481.9817 968.8769 36.2243

Cuba

SS 4244.8179 4245.3741 4285.0725 3,133,873.0682 1062.5131 39.7491

SD 1 6034.6615 6036.3211 6108.2611 604.4476 463.1176 44.4914
SD 2 6058.5938 6059.3445 6107.5678 592.5558 454.5504 39.5764
SD WS 6013.4898 6013.6373 6033.6838 1,449,870.5471 912.3629 92.5962

Guatemala

SS 8798.9832 8799.3545 8843.0131 134,451.6239 232.2018 97.9899

SD 1 4345.2526 4346.9332 4418.6825 146.7090 119.2289 57.5685
SD 2 4451.0057 4451.7509 4500.1125 143.1995 114.7898 53.4278
SD WS 4531.9877 4532.1268 4552.5144 35,160.6978 105.0457 51.1179

Jamaica

SS 6034.1902 6034.5985 6077.3523 65,056.8814 130.9791 91.3099

SD 1 6273.7113 6275.3673 6347.3874 192.1973 151.0401 30.7112
SD 2 6274.8232 6275.5673 6323.9407 194.7002 153.1452 31.1234
SD WS 6403.5157 6403.6567 6423.9690 60,999.7748 175.9676 35.3154

Panama

SS 5635.3098 5635.9036 5674.8490 105,743.2413 210.5126 41.5893
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Table 4. Cont.

Country Model AIC AICc BIC MSE MAE MAPE

SD 1 4509.681247 4511.3419 4583.3386 528.6854 426.8793 38.0930
SD 2 4635.014697 4635.7589 4684.1502 512.4454 415.3082 38.3145
SD WS 4568.527711 4568.6686 4588.9937 777,495.0436 454.9869 41.2574

Uruguay

SS 4464.8041 4465.3277 4505.7387 734,336.1219 430.1770 39.5965

4. Conclusions

In this paper, we apply new score-driven and state-space models for the negative
binomial distribution for new cases of infection with COVID-19 to a specific dataset of nine
Latin American countries. We use daily data for the period of 1 April 2020 to 31 December
2021 and control for weekly seasonal effects in new cases of infection with COVID-19. We
use the same econometric specifications for these countries, because they have similar
geographical and social structures.

The in-sample model fits and out-of-sample forecasting performances of alternative
models for predicting the number of new COVID-19 infections are compared. Assuming
that data are generated by the negative binomial distribution, the predictive accuracies of
(i) different specifications of score-driven models and (ii) a nonlinear state-space model
with unobserved components are analyzed. We extend the relevant literature on score-
driven models by considering a weekly seasonality component for the daily COVID-19
observations for both (i) and (ii) and the use of the negative binomial distribution for (ii).

We find that the score-driven model provides the most accurate forecast of COVID-
19 cases. This has the potential to motivate the future use of score-driven models for
forecasting daily cases during pandemics. The novel statistical models of the present
work may be used by authorities to decide on alternative actions, such as quarantines and
vaccination processes, to control the current COVID-19 or other future pandemics.

Our results are robust as we find that the forecasting performance of the score-driven
model is superior to that of the nonlinear state-space model with unobserved components
for all countries. For the sociocultural context of Latin American countries, the score-driven
models for forecasting new cases of infection with COVID-19 seem to work well. A scientific
implication of our paper is the potential future use of the new score-driven models for
forecasting new COVID-19 cases for other countries.

The limitations of our paper include the use of the negative binomial distribution
and the specific dataset for nine Latin American countries for which data are available
for us. Future work may consider other score-driven discrete probability distributions as
alternatives to the score-driven negative binomial distribution. Moreover, future work may
use a more complete dataset that includes further Latin American countries.
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Abbreviations

ANFIS Adaptive neuro-fuzzy inference system
AIC Akaike information criterion
AICc Corrected Akaike information criterion
AIDS Acquired immune deficiency syndrome
ADF Augmented Dickey–Fuller
ARIMA Autoregressive integrated moving average
AI Artificial intelligence
SARIMA Seasonal ARIMA
BC Before Christ
BIC Bayesian information criterion
COVID-19 Coronavirus disease 2019
CSSE Center for Systems Science and Engineering
DCS Dynamic conditional score
DGP Data generating process
DL Deep learning
GAS Generalized autoregressive score
HIV Human immunodeficiency virus
JB Jarque–Bera
LL Log-likelihood
LSTM Long short-term memory
MAPE Mean Absolute Percentage Error
MAE Mean Absolute Error
MSE Mean Square Error
PCR Polymerase chain reaction
Sars-CoV-2 Severe acute respiratory syndrome coronavirus 2
SDev Standard deviation
SD 1 Score-driven 1
SD 2 Score-driven 2
SD WS Score-driven, without seasonality
SS State space
SEIR Susceptible, exposed, infected, and recovered
SIR Susceptible, infected, recovered
SIRD SIR deceased

Appendix A

Table A1. COVID-19 forecasting models from the literature.

Forecasting Model Citation

Adaptive neuro-fuzzy inference system (ANFIS) [36]
Artificial intelligence (AI) [37]
Autoregressive integrated moving average (ARIMA) model [38–42]
Ecological Niche models [43]
Flower pollination algorithm [36]
Genetic programming [41,42,44–46]
Hybrid approaches that include ARIMA and wavelet model [40,41]
Iteration method [47]
Logistic growth model [48–50]
Long short-term memory (LSTM) network [51]
Machine learning [52]
Models based on growth curves [20]
Moving average (MA) model [53]
Neural network [42,54]
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Table A1. Cont.

Forecasting Model Citation

Phenomenological model [55]
Polynomial neural network [56]
Predictive models based on the Gompertz curves [57]
Prophet algorithm [58]
Random forest [52]
Regression methods [52,59–61]
Regression tree algorithm [40]
SARIMA (seasonal ARIMA) model [62]
Support vector Kuhn–Tucker [63]
Support vector machine [52,56,63]
Susceptible, exposed, infected, and recovered (SEIR) [64,65]
Susceptible, infected, recovered (SIR) model [66,67]
Susceptible, infected, recovered, and deceased (SIRD) [68,69]
SutteARIMA method [70]

Appendix B

Table A2. Parameter estimates for Argentina.

SD 1 SD 2 SD WS SS

κ1 0.4810 *** (0.0250) 0.4245 *** (0.0422) 0.6822 *** (0.0738) NA
κ2 0.0563 *** (0.0111) 0.0387 *** (0.0093) 0.0178 (0.0111) NA
κMonday 0.0530 *** (0.0166) 0.1499 *** (0.0301) NA NA
κTuesday 0.2202 *** (0.0141) NA NA NA
κWednesday 0.0191 (0.0268) NA NA NA
κThursday 0.4169 *** (0.0861) NA NA NA
κFriday 0.0000 (0.0165) NA NA NA
κSaturday 0.3287 * (0.1779) NA NA NA
κSunday 0.1711 *** (0.0455) NA NA NA
υ 13.6133 *** (0.8289) 12.9432 *** (0.7937) 6.6132 *** (0.3795) NA
σ2

δ NA NA NA 0.0092 *** (0.0002)
σ2

β NA NA NA 0.0049 *** (0.0004)
σ2

γ NA NA NA 0.0003 (0.0005)
Notes: Standard deviations are in parentheses. *** and * is parameter significance at the 1% and 10% levels,
respectively. For SD 2, κj = κMonday,t for j = Tuesday, . . . , Sunday.

Table A3. Parameter estimates for Brazil.

SD 1 SD 2 SD WS SS

κ1 0.6955 *** (0.0445) 0.6792 *** (0.0488) 0.7908 *** (0.0462) NA
κ2 0.0155 ** (0.0070) 0.0142 (0.0088) 0.0000 (0.0008) NA
κMonday 0.0000 (0.0307) 0.0598 *** (0.0109) NA NA
κTuesday 0.0248 (0.0185) NA NA NA
κWednesday 0.0000 (0.0223) NA NA NA
κThursday 0.0000 (0.0246) NA NA NA
κFriday 0.0000 (0.0227) NA NA NA
κSaturday 0.1071 ** (0.0525) NA NA NA
κSunday 0.1815 *** (0.0492) NA NA NA
υ 13.8207 *** (0.7742) 13.2981 *** (0.7523) 7.3978 *** (0.4104) NA
σ2

δ NA NA NA 0.0205 *** (0.0002)
σ2

β NA NA NA 0.0143 *** (0.0002)
σ2

γ NA NA NA 0.0001 (0.0006)
Notes: Standard deviations are in parentheses. *** and ** is parameter significance at the 1% and 5% levels,
respectively. For SD 2, κj = κMonday,t for j = Tuesday, . . . , Sunday.
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Table A4. Parameter estimates for Chile.

SD 1 SD 2 SD WS SS

κ1 0.3536 *** (0.0312) 0.3265 *** (0.0290) 0.1373 *** (0.0166) NA
κ2 0.0508 *** (0.0062) 0.0480 *** (0.0058) 0.0381 *** (0.0037) NA
κMonday 0.2165 *** (0.0763) 0.2599 *** (0.0298) NA NA
κTuesday 0.2138 *** (0.0689) NA NA NA
κWednesday 0.1546 *** (0.0478) NA NA NA
κThursday 0.0000 (0.0190) NA NA NA
κFriday 0.0097 (0.0162) NA NA NA
κSaturday 0.5496 *** (0.0784) NA NA NA
κSunday 0.3805 *** (0.0984) NA NA NA
υ 39.9089 *** (2.2882) 37.1677 *** (0.0171) 13.1141 *** (0.0218) NA
σ2

δ NA NA NA 0.0046 *** (0.0002)
σ2

β NA NA NA 0.0013 * (0.0006)
σ2

γ NA NA NA 0.0002 (0.0005)
Notes: Standard deviations are in parentheses. *** and * is parameter significance at the 1% and 10% levels,
respectively. For SD 2, κj = κMonday,t for j = Tuesday, . . . , Sunday.

Table A5. Parameter estimates for Colombia.

SD 1 SD 2 SD WS SS

κ1 0.6284 *** (0.0450) 0.5723 *** (0.0449) 0.7356 *** (0.0455) NA
κ2 0.0356 *** (0.0073) 0.0512 *** (0.0094) 0.0000 *** (0.0004) NA
κMonday 0.1836 *** (0.0534) 0.0000 (0.0287) NA NA
κTuesday 0.0000 (0.0147) NA NA NA
κWednesday 0.0000 (0.0185) NA NA NA
κThursday 0.1300 *** (0.0385) NA NA NA
κFriday 0.0000 (0.0177) NA NA NA
κSaturday 0.0264 * (0.0152) NA NA NA
κSunday 0.1600 *** (0.0417) NA NA NA
υ 42.4229 *** (0.0263) 42.5514 *** (2.4817) 33.0859 *** (1.9223) NA
σ2

δ NA NA NA 0.0006 *** (0.0002)
σ2

β NA NA NA 0.0005 * (0.0003)
σ2

γ NA NA NA 0.0000 (0.0211)
Notes: Standard deviations are in parentheses. *** and * is parameter significance at the 1% and 10% levels,
respectively. For SD 2, κj = κMonday,t for j = Tuesday, . . . , Sunday.

Table A6. Parameter estimates for Cuba.

SD 1 SD 2 SD WS SS

κ1 0.4972 *** (0.0373) 0.5128 *** (0.0391) 0.4451 *** (0.0450) NA
κ2 0.0074 *** (0.0024) 0.0094 *** (0.0036) 0.0131 * (0.0071) NA
κMonday 0.0000 (0.0142) 0.0180 (0.0110) NA NA
κTuesday 0.0192 * (0.0116) NA NA NA
κWednesday 0.0000 (0.0170) NA NA NA
κThursday 0.0000 (0.0143) NA NA NA
κFriday 0.0116 (0.0171) NA NA NA
κSaturday 0.0000 (0.0222) NA NA NA
κSunday 0.0757 *** (0.0272) NA NA NA
υ 17.7669 *** (1.3024) 18.6270 *** (1.4951) 18.7317 *** (1.5171) NA
σ2

δ NA NA NA 0.0162 *** (0.0002)
σ2

β NA NA NA 0.0087 *** (0.0004)
σ2

γ NA NA NA 0.0001 (0.0020)
Notes: Standard deviations are in parentheses. *** and * is parameter significance at the 1% and 10% levels,
respectively. For SD 2, κj = κMonday,t for j = Tuesday, . . . , Sunday.
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Table A7. Parameter estimates for Guatemala.

SD 1 SD 2 SD WS SS

κ1 0.2173 *** (0.0257) 0.2454 *** (0.0262) 0.1447 *** (0.0265) NA
κ2 0.0075 ** (0.0031) 0.0000 (0.0215) 0.0028 ** (0.0012) NA
κMonday 0.2426 *** (0.0480) 0.1443 *** (0.0215) NA NA
κTuesday 0.1587 *** (0.0615) NA NA NA
κWednesday 0.0907 ** (0.0421) NA NA NA
κThursday 0.0358 (0.0452) NA NA NA
κFriday 0.0440 (0.0295) NA NA NA
κSaturday 0.0000 (0.0176) NA NA NA
κSunday 0.1493 ** (0.0585) NA NA NA
υ 5.4384 *** (0.3232) 5.2768 *** (0.3325) 2.0380 *** (0.1097) NA
σ2

δ NA NA NA 0.1427 *** (0.0002)
σ2

β NA NA NA 0.09732 *** (0.0009)
σ2

γ NA NA NA 0.0035 *** (0.0005)
Notes: Standard deviations are in parentheses. *** and ** is parameter significance at the 1% and 5% levels,
respectively. For SD 2, κj = κMonday,t for j = Tuesday, . . . , Sunday.

Table A8. Parameter estimates for Jamaica.

SD 1 SD 2 SD WS SS

κ1 0.1906 *** (0.0218) 0.1860 *** (0.0238) 0.1901 *** (0.0247) NA
κ2 0.0186 *** (0.0032) 0.0178 *** (0.0030) 0.0177 *** (0.0030) NA
κMonday 0.0000 (0.0146) 0.0000 (0.0118) NA NA
κTuesday 0.0692 * (0.0400) NA NA NA
κWednesday 0.0000 (0.0293) NA NA NA
κThursday 0.0000 (0.0137) NA NA NA
κFriday 0.0000 (0.0216) NA NA NA
κSaturday 0.0493 (0.0303) NA NA NA
κSunday 0.0000 (0.0207) NA NA NA
υ 2.4836 *** (0.1558) 2.4600 *** (0.1557) 2.3768 *** (0.1501) NA
σ2

δ NA NA NA 0.1025 *** (0.0005)
σ2

β NA NA NA 0.0284 *** (0.0001)
σ2

γ NA NA NA 0.0506 *** (0.0006)
Notes: Standard deviations are in parentheses. *** and * is parameter significance at the 1% and 10% levels,
respectively. For SD 2, κj = κMonday,t for j = Tuesday, . . . , Sunday.

Table A9. Parameter estimates for Panama.

SD 1 SD 2 SD WS SS

κ1 0.1515 *** (0.0281) 0.1523 *** (0.0284) 0.1354 *** (0.0273) NA
κ2 0.0186 *** (0.0048) 0.0185 *** (0.0048) 0.0171 *** (0.0040) NA
κMonday 0.0746 * (0.0451) 0.0453 *** (0.0165) NA NA
κTuesday 0.0486 (0.0410) NA NA NA
κWednesday 0.0403 (0.0377) NA NA NA
κThursday 0.0000 (0.0107) NA NA NA
κFriday 0.0000 (0.0145) NA NA NA
κSaturday 0.0000 (0.0081) NA NA NA
κSunday 0.0853 (0.0648) NA NA NA
υ 2.9190 *** (0.1732) 2.8883 *** (0.1730) 2.6564 *** (0.1569) NA
σ2

δ NA NA NA 0.0150 *** (0.0003)
σ2

β NA NA NA 0.0089 *** (0.0005)
σ2

γ NA NA NA 0.4780 *** (0.0001)
Notes: Standard deviations are in parentheses. *** and * is parameter significance at the 1% and 10% levels,
respectively. For SD 2, κj = κMonday,t for j = Tuesday, . . . , Sunday.
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Table A10. Parameter estimates for Uruguay.

SD 1 SD 2 SD WS SS

κ1 0.3761 *** (0.0224) 0.3810 *** (0.0219) 0.3202 *** (0.0217) NA
κ2 0.0106 *** (0.0020) 0.0110 *** (0.0027) 0.0136 *** (0.0032) NA
κMonday 0.0000 (0.0240) 0.0537 *** (0.0115) NA NA
κTuesday 0.0519 * (0.0302) NA NA NA
κWednesday 0.0000 (0.0183) NA NA NA
κThursday 0.0350 (0.0225) NA NA NA
κFriday 0.0499 *** (0.0147) NA NA NA
κSaturday 0.0000 (0.0161) NA NA NA
κSunday 0.1108 *** (0.0220) NA NA NA
υ 13.8626 *** (1.0409) 12.7228 *** (0.9896) 9.6245 *** (0.0136) NA
σ2

δ NA NA NA 0.0186 *** (0.0002)
σ2

β NA NA NA 0.0949 *** (0.0004)
σ2

γ NA NA NA 0.0002 (0.0008)
Notes: Standard deviations are in parentheses. *** and * is parameter significance at the 1% and 10% levels,
respectively. For SD 2, κj = κMonday,t for j = Tuesday, . . . , Sunday.
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