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Abstract: The use of IoT technology in several applications is hampered by security and privacy
concerns with IoT edge nodes. Security flaws can only be resolved by implementing cryptographic
protocols on these nodes. The resource constraints of the edge nodes make it extremely difficult to
implement these protocols. The majority of cryptographic protocols’ fundamental operation is finite-
field multiplication, and their performance is significantly impacted by their effective implementation.
Therefore, this work mainly focuses on implementing low-area with low-energy and high-speed one-
dimensional bit-parallel semi-systolic multiplier for the Montgomery multiplication algorithm. The
space and delay complexity analysis of the proposed multiplier structure reveals that the proposed
design has a significant reduction in delay and a marginal reduction in the area when compared to the
competitive one-dimensional multipliers. The obtained ASIC synthesis report demonstrates that the
suggested multiplier architecture saves a marginal amount of space as well as a significant amount of
time, area–delay product (ADP), and power–delay product (PDP) when compared to the competitive
ones. The obtained results indicate that the proposed multiplier layout is very appropriate for use in
devices with limited resources such as IoT edge nodes and tiny embedded devices.

Keywords: modular arithmetic; cryptography; ubiquitous computing; security; IoT applications;
systolic and semi-systolic multipliers; cyber-physical systems; embedded systems

MSC: 11T71

1. Introduction

Our daily lives are currently greatly impacted by the Internet of Things. They can
be applied to a variety of industries, including healthcare, transportation, entertainment,
commercial appliances, agriculture, and housing. The primary objective of the IoT network
is to gather data and send it to the cloud for additional analysis and decision-making.
Since the majority of IoT applications are sensitive, the data gathered by IoT devices need
to be secured at all IoT network layers. Implementing security mechanisms on most
IoT edge nodes is difficult because of their constrained resource availability. As a result,
numerous attempts have been made to find a solution to this difficult issue. There are
many security protocols available that can be implemented on IoT edge nodes with limited
resources. Elliptic Curve-Cryptography (ECC), among other cryptographic algorithms, are
optimized for use on these nodes. Finite-field arithmetic operations, specifically finite-field
multiplication, are the main foundation of the majority of optimized algorithms. In addi-
tion, finite-field multiplication is the fundamental operation for all other field operations,
including inversion, division, and exponentiation [1]. As a result, it has given a great
interest in supporting the implementation of small and extremely effective cryptographic
algorithms [2–12].
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1.1. Literature Review

The basis representations chosen for elements in GF(2m) have a great effect on the
efficiency of finite field multiplications. There are various basis representations, including
polynomial basis (PB), normal basis (NB), dual basis (DB), and redundant basis (RB) [13].
Each foundation has unique advantages of its own. Among these bases, polynomial basis
arithmetic is the most straightforward, regular, and scalable in hardware implementa-
tion [14–18]. In addition, it does not require a basis conversion like other ones. Therefore, it
has wide employment in a variety of cryptographic protocols. The irreducible polynomial
that is selected also affects the finite field multiplier’s efficiency. Generic polynomials,
All-One polynomials (AOP), trinomials, and pentanomials are different types of irreducible
polynomials used in cryptographic algorithms. Generic polynomial-based multipliers
are appropriate for a wider range of applications, but trinomial and pentanomial-based
multipliers are more efficient. Although irreducible AOPs are less common than irreducible
trinomials or pentanomials, they can be used to implement efficient multipliers [19–21].

Different multipliers can be created depending on the method of implementation.
Bit-serial multipliers are space-efficient and have significant savings in power consumption,
but they are slow and require m clock cycles to multiply two elements [2,22,23]. In contrast,
bit-parallel multipliers require excessive hardware cost and high power consumption, but
produce the result in one clock cycle [4,5,8,24–29]. Systolic/semi-systolic serial or parallel
multiplier architectures are more suitable for VLSI implementation than the other types
of conventional implementations. This is attributed to their defined characteristics of
regularity, modularity, local relatively homogenous interconnection, and concurrency. In
addition, the pipeline’s inherent characteristics of the systolic/semi-systolic arrays allow
for the use of a high clock frequency even when a lot of resources are being used.

Many authors in the literature have attempted to provide effective implementations of
the systolic/semi-systolic multipliers over the binary extension field GF(2m). Most of them
made an effort to construct their structures using a particular irreducible polynomial. An
error-detecting semi-systolic array multiplier was presented by Lee et al. [30] and Chiou
et al. [2]. An effective semi-systolic array multiplier was suggested by Huang et al. [3] to
reduce the time and space costs. For unified multiplication and squaring with minimal
hardware overhead, Choi and Lee [5] created a highly area-time efficient serial and parallel
systolic array. This makes fast modular exponentiation possible as it has the feature of
computing multiplication and squaring simultaneously. The proposed LSB-first multi-
plication and exponentiation algorithms reinforce the performance of this architecture.
A Chiou et al. [31] semi-systolic array multiplier was presented to reduce the time com-
plexity. In a recent work, Lee [32,33] proposed new semi-systolic Montgomery Modular
multipliers with two levels of systolic computation. The proposed multiplier structures are
efficient in area and delay. A parallel and serial input are both available for the multiplier in-
troduced by Mathe and Boppana [34]. Ibrahim [12] introduced an efficient one-dimensional
bit-serial and bit-parallel systolic array structures to perform both multiplication and squar-
ing operations over GF(2m). The suggested trinomials for field sizes m = 233 and m = 409 are
included in a recent GF(2m) polynomial basis systolic multiplier proposed by Pillutla and
Boppana [16]. GF(2m)-based multipliers have been developed for a number of applications,
but their high hardware complexity and lengthy delay times are significant drawbacks for
security applications. Thus, there is a need for additional study on effective multiplication
architectures with minimal space and time requirements.

The equally spaced and AOP polynomials were used as the foundation for bit-parallel’s
systolic multiplier structure proposed by Lee et al. [24,25]. In 2005, Lee et al. [26] suggested
a mapping approach in order to reduce the complexity of the AOP-based bit-parallel
systolic multiplier. The mapping approach changed the multiplier’s foundation from
AOP to trinomials. The stated Montgomery-based bit-parallel multiplier’s complexity was
lowered by applying the Toeplitz matrix-vector representation suggested by Lee et al. [27].
Sarmadi [28] offered a low space with high performance two-dimensional parallel systolic
multiplier that is based on Montgomery algorithm. Mathe [29] adopted an interleaving
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multiplication algorithm over GF(2m) to implement a two-dimensional parallel systolic
multiplier layout with low space complexity.

1.2. Paper Contribution

This work develops a one-dimensional bit-parallel semi-systolic implementation of
the field Montgomery multiplication algorithm suggested by [33]. The offered algorithm
performs the multiplication operation over GF(2m) and uses as a base the general irreducible
polynomial. In contrast to many other algorithms, the adopted Montgomery algorithm has
the advantage of reducing latency. In addition, it has the advantage of reducing the time
and area overhead by using the same architecture to execute its two iterative parts [33].
Previous works in the literature used ad hoc approaches to extract the hardware structure
with no thought given to how the structure might be altered to improve system performance
factors such as latency, throughput, power, and area. In this work, we offer a mathematical
approach for obtaining the proposed multiplier structure. The proposed approach has
the advantage of selecting appropriate scheduling and projection functions to extract the
optimal architecture that suits the required application.

To be able to extract the dependency graph (DG) for the adopted multiplication algo-
rithm, we presented it in the bit-level form. By selecting the appropriate time-scheduling
and node-projection functions, the DG will assist us in extracting the proposed low complex-
ity one-dimensional bit-parallel semi-systolic multiplier structure. The proposed multiplier
structure differs from the majority of those previously reported two-dimensional ones in
that it exhibits area complexity of order O(m) as opposed to order O(m2) for the majority
of those structures. As a result, the suggested multiplier structure significantly reduces both
the complexity of the physical space and the amount of consumed power. The performance
of the suggested multiplier structure is unaffected by the area reduction because it exhibits
the same timing delays as the two-dimensional ones. Furthermore, the modular structure
and local connectivity between the constituting PEs of the proposed multiplier structure
make it more suitable for VLSI implementation. In addition, local interconnection between
the PEs improves the multiplier structure’s overall performance by reducing wire delays.
The suggested multiplier structure is better suited for use in tiny embedded devices or IoT
edge nodes due to the significant space and power savings it offers.

1.3. Paper Organization

Following is a summary of the paper’s arrangement: The mathematical modeling of
the chosen Montgomery multiplication algorithm is presented, along with its bit-level repre-
sentation, in Section 2. The produced DG of the adopted algorithm is described in Section 3.
The process for obtaining the suggested one-dimensional bit-parallel semi-systolic multi-
plier layout is described in Section 4. The analysis of space and time complexities of the
suggested multiplier and the currently used effective multipliers is shown in Section 5.
Additionally, this section offers a real assessment of the suggested multiplier design’s
performance and competing one-dimensional multiplier designs based on ASIC synthesis.
Section 6 provides conclusions for the offered work.

2. Montgomery Multiplication in GF(2m)

Suppose the irreducible polynomial creating the finite field GF(2m) is F = ∑m
j=0 f j · αj,

where fm = f0 = 1 for 1 ≤ j ≤ m − 1. Each component of GF(2m) is a distinct linear
combination made up of polynomials with degrees less than m. Adding two polynomials
in GF(2m) can easily be performed using bitwise exclusive-OR (XOR). On the other hand,
multiplying two polynomials in GF(2m) is a little more challenging because the intermediate
result requires additional modular reduction by αm = ∑m−1

j=0 fi · αi.
Assume ζ and γ are two of the GF(2m) elements that will be multiplied. In addition,

assume C and D are the Montgomery residues of ζ and γ, respectively, and R is a spe-
cial element satisfying gcd(R, G) = 1. The Montgomery Modular Multiplication (MMM)
of C = ζR mod F = ∑m−1

j=0 cj · αj and D = γ R mod F = ∑m−1
j=0 dj · αj is computed by
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P = CDR−1 mod F = γR mod F = ∑m−1
j=0 pj · αj. The final result T is then obtained by com-

puting Montgomery multiplication using inputs P and 1, i.e., T = PR−1 mod F = ζ γ mod F.
Because of the requirements for pre- and post-transformation, Montgomery multiplication
is advantageous in many applications utilizing repeated multiplications, such as inversion,
exponentiation, and elliptic curve point multiplication [32].

The Montgomery multiplication, P = CDR−1 mod F, can be expressed as follows
using R = α(m−1)/2 [33]:

P =C(d0 + d1α + · · ·+ d(m−1)/2α(m−1)/2+

· · ·+ dm−1αm−1)α−(m−1)/2 mod F

We can arrange Equation (1) to be as follows:

P =C(d(m−1)/2 + d(m+1)/2α1 + · · ·+ d(m−1)α
(m−1)/2)

+ C(d0α−(m−1)/2 + d1α−(m−3)/2+

· · ·+ d(m−3)/2α−1) mod F

(1)

It is worth noting that the most practical applications employ odd m. As a result, we will
focus on using odd m when designing the multiplier.

Equation (1) can be represented as the summation of two polynomials A and B as:

A =Cd(m−1)α
(m−1)/2 + Cd(m−2)α

(m−3)/2 + · · ·

+ Cd(m+1)/2α1 + Cd(m−1)/2 mod F
(2)

B =Cd0α−(m−1)/2 + Cd1α−(m−3)/2 + · · ·
+ Cd(m−5)/2α−2 + Cd(m−3)/2α−1 mod F

(3)

We can arrange Equations (2) and (3) as follows to be able to derive their recurrence forms:

A =(· · · ((Cd(m−1))α mod F + Cd(m−2))α mod F + · · ·+
Cd(m+1)/2)α mod F + Cd(m−1)/2

(4)

B =(· · · (((Cd0)α
−1 mod F + Cd1)α

−1 mod F + · · ·+
Cd(m−5)/2α−1 mod F + Cd(m−3)/2)α

−1 mod F
(5)

Suppose Ai and Bi are the outcomes of the (i)th iteration of Equations (4) and (5),
respectively, that can be calculated iteratively from the outcomes of (i− 1)th pair of iterators.
The iterative equation of (4) at step i for 1 ≤ i ≤ (m + 1)/2 can be written as:

Ai = Ai−1α mod F + Cd(m−i) (6)

where A0 = 0.
Equation (5) can be expressed recursively in the same way as Equation (4):

Bi = Bi−1α−1 mod F + Cd(i−1) (7)

where B0 = d(m−1)/2 = 0.
It should be noted that, in order to compute the final B(m+1)/2, the value d(m−1)/2 = 0

is necessary. There is no data dependency between Ai and Bi, so they can be computed
concurrently, as shown by Equations (6) and (7). The reduced form of Ai for 1 ≤ i ≤
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(m + 1)/2 can be obtained using the bit-level representation by replacing the expansion of
αm in Equation (6). The resulting bit-level expression of Ai can be given as follows:

Ai =ai−1
m−2αm−1 + · · ·+ ai−1

1 α2 + ai−1
0 α+

ai−1
m−1( fm−1αm−1 + · · ·+ f1α + f0)+

dm−i(cm−1αm−1 + · · ·+ c1α + c0)

(8)

The recursive representation of A at step i can be expressed as follows:

ai
m−1−j =ai−1

m−2−j + ai−1
m−1 fm−1−j + dm−icm−1−j (9)

where a0
j = ai−1

−1 = 0 and 0 ≤ j ≤ m− 1.
Since α is a root of F and f0 = fm = 1 for any irreducible polynomial, we can obtain

α−1 = ∑m
j=1 f jα

j−1 by multiplying each side of F by α−1.
By replacing the expansion of α−1 on Equation (7), Bi can be rewritten similarly to

Equation (8) as follows:

Bi =bi−1
m−1αm−2 + · · ·+ bi−1

1 + bi−1
0 ( fmαm−1 + · · ·+

f2α + f1) + di−1(cm−1αm−1 + · · ·+ c1α + c0)
(10)

The recursive representation of B at step i can be expressed as follows:

bi
j = bi−1

j+1 + bi−1
0 f j+1 + di−1cj (11)

where b0
j = bi−1

m = d(m−1)/2 = 0 for 0 ≤ j ≤ m− 1.

Finally, m 2-input XOR gates should be used to add A(m+1)/2 and B(m+1)/2 to obtain
the final product P.

The algorithm structure of the previously described formulas is represented by
Algorithms 1 and 2. Algorithm 2 is the bit-level variant of Algorithm 1.

Algorithm 1 Montgomery Multiplication Algorithm in GF(2m)

Input: C, D, R−1 = α−(m−1)/2, and F
Output: P
Initialization:
A0 ← 0, B0 ← 0
Algorithm:

1: for 1 ≤ i ≤ (m + 1)/2 do
2: Ai = Ai−1α mod F + Cd(m−i)

3: Bi = Bi−1α−1 mod F + Cd(i−1)
4: end for
5: P = A(m+1)/2 + B(m+1)/2
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Algorithm 2 Montgomery Multiplication Algorithm in the bit-level formate

Input: C = (cm−1cm−2 · · · c0), D = (dm−1dm−2 · · · d00), F = ( fm fm−1 · · · f0)
Output: P = (pm−1 pm−2 · · · p0)
Initialization:
A0 = (a0

m−1a0
m−2 · · · a0

0)← (00 · · · 0)
B0 = (b0

0b0
1 · · · b0

m−1b0
m)← (00 · · · 00)

Algorithm:
1: for 1 ≤ i ≤ (m + 1)/2 do
2: ai−1

−1 = 0
3: bi−1

m = 0
4: for 0 ≤ j ≤ m− 1 do
5: ai

m−1−j = ai−1
m−2−j + ai−1

m−1 fm−1−j + dm−icm−1−j

6: bi
j = bi−1

j+1 + bi−1
0 f j+1 + di−1cj

7: end for
8: end for
9: for 0 ≤ j ≤ m− 1 do

10: pj = a(m+1)/2
m−1−j + b(m+1)/2

j
11: end for

3. Dependency Graph

The iterative portion of the Montgomery multiplication algorithm is described by the
two recursive Equations (9) and (11). As we notice, the two equations have an identical and
independent computation structure. Therefore, they can be represented using a unified
dependency graph (DG). The extracted dependency graph is shown in Figure 1 for m = 5.
The DG is represented in a two-dimensional integer domain D with indices i and j. The
DG has m× (m + 1)/2 nodes that compute the operations represented by the recursive
Equations (9) and (11). As we notice, the coefficients of A and B are computed in sequence
starting with the coefficients of A. We arranged the coefficients of D, C, and F to be able to
use the same processing node when computing the coefficients of B.

The initial locations of all inputs are as follows: Input signals dm−i and di,
1 ≤ i ≤ (m + 1)/2 are entered in sequence from the left direction. The input signals cm−1−j
and cj are entered in sequence from the top of the DG. In addition, fm−1−j and f j+1 are
entered in sequence from the top of the DG. The initial values of input signals a0

m−2−j and

b0
j+1 are equal to 0 and entered in sequence using the slanted red lines shown at the right

corners of the input nodes. These signals are computed in each node and passed to the
nodes of the next row to compute the intermediate partial products. The final result P is
the summation of the coefficients of A(m+1)/2 and B(m+1)/2, where A(m+1)/2 is delayed by
one clock cycle relative to B(m+1)/2. The summation is implemented using 2-input XOR
gates, and delay is implemented by using two Latches, indicated by the red boxes, at the
bottom of the DG as shown in Figure 1.
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Figure 1. DG of the Montgomery algorithm for m = 5.

4. Exploration of the Semi-Systolic Multiplier Layout

This section discusses the methodology used to explore the one-dimensional parallel
semi-systolic multiplier architecture. We will focus on the scheduling and node projection
techniques offered in [35–37] and applied to the DG to develop the recommended parallel
multiplier structure from the chosen Montgomery algorithm.

4.1. Scheduling Function

Suppose point p(i, j) = [i j] defines any DG node. In addition, assume scheduling
vector s = [s0 s1] is used to determine the time scheduling of each node by using the
following scheduling function:

G(p) = s p− v = is0 + js1 − v (12)

where the scalar value v was incorporated in the previous equation to prevent assigning
any node of the DG with negative time values. In our situation, selecting v ≡ 0 would
ensure that only positive time values be allocated to the DG nodes depicted in Figure 1.

There are constraints on the scheduling vector, and it can only have a certain range of
values. For instance, the nodes allocated at p = [i, j] must be executed after nodes allocated
at p = [i− 1, j], i.e.,

G(p = [i, j]) > G(p = [i− 1, j]) (13)

The equation above can be written as follows using the coordinate values of s:

is0 + js1 > (i− 1)s0 + js1

s0 > 0 (14)
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Using the iterations in Equations (9) and (11), we can obtain further timing restriction.
According to these equations, it is necessary to perform operations allocated at nodes
p = [i, j + 1] after operations allocated at nodes p = [i− 1, j], i.e.,

G(p = [i, j + 1]) > G(p = [i− 1, j]) (15)

The equation above can be written as follows using the coordinate values of s:

is0 + js1 + s1 > is0 − s0 + js1

s1 > −s0 (16)

We can select appropriate scheduling vectors using the inequalities (14) and (16). We
could use the following scheduling vector s as one option for a legitimate scheduling
vector:

s = [ 1 0 ] (17)

The accompanying DG for this scheduling vector is displayed in Figure 2. As we notice,
the input signals c−1

m−1−j, fm−1−j, cj, and f j+1 are fed in parallel. After (m + 1)/2 + 3 clock
cycles, the output signals pm−1−j, 0 ≤ j ≤ m− 1 are gained in parallel.
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Figure 2. Node timing for m = 5.

4.2. Projection Function

In accordance with [35], the projection function converts a large number of DG nodes
or points p(i, j) into a single processing element p. The systolic/semi-systolic array is
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developed by connecting the resulting processing elements together. One way to express
the projection function is as follows:

p = H p (18)

where H represents a projection matrix. In order to find the projection matrix, the projection
vector V should be located first. As discussed [35], the projection vector V is the null space
of projection matrix H. The restriction listed below ought to be applied to the projection
vector, as per the discussion in [35]:

sV 6= 0 (19)

This restriction makes sure that each PE completes the assigned tasks at various times. In
addition, a more effective utilization of PE is produced by this multiplexing.

Using the restrictions imposed on V, Equation (19), the scheduling vector s = [1 0],
and the projection vector that produces the bit-parallel semi-systolic structure is provided
by:

V = [ 1 0 ] (20)

Because V is the null space of H, we can write the projection matrix H as follows:

H = [ 0 1 ] (21)

4.3. Semi-Systolic Multiplier Architecture

For each DG node or point, p[i, j], we can acquire the G(p) and p(p) functions by
including vectors s = [1 0] and H = [0 1] in Equations (12) and (18). The resultant
functions can be defined as follows:

G(p) = i

p(p) = j
(22)

By applying the derived functions of G(p) and p(p) to the DG points (nodes), we can
extract the one-dimensional bit-parallel semi-systolic multiplier structure displayed in
Figure 3. As depicted in Figure 3, the semi-systolic structure is composed of m regular
PEs. The PEs’ internal logic is displayed in Figure 4. We can reduce the area and time
complexities by modifying the PE logic by replacing the MUX component with an AND
gate as shown in Figure 5. This modification will reduce the critical pass delay of the
semi-systolic array to be represented as the summation of the delays of the 2-input AND
gate and the 3-input XOR gate instead of 2-input MUX and 3-input XOR.
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Figure 3. Semi-systolic bit-parallel multiplier structure.
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The proposed semi-systolic multiplier differs from the previously published two-
dimensional parallel systolic designs in that it has an area complexity of order O(m) as
opposed to O(m2). Additionally, the semi-systolic array’s final output is accessible after
a latency of (m + 1)/2 + 3 clock cycles, just like with the Montgomery two-dimensional
parallel semi-systolic structures that have been recently published [32,33]. The resulting
semi-systolic multiplier structure is superior to them in terms of space complexity. More-
over, the proposed multiplier structure outperforms the parallel multipliers that are based
on the conventional field multiplication, [3,4,28,29,31,38,39], in terms of area and latency,
as will be presented in the Results section.
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By examining Figures 3 and 4, we can describe the developed parallel semi-systolic
multiplier’s layout as follows: The input signals cm−1−j, fm−1−j, cj, and f j+1 are assigned
to each PE. The initial values of input signals am−2−j and bj+1, 0 ≤ j ≤ m− 1, are equal
to zero. Therefore, the inputs at the right corners of the PEs are assigned zero values as
shown in Figure 3. In addition, the initial values of input signals am−1 and b0 are equal to
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zero as indicated by the zero input shown on the left side of the semi-systolic array. The
input signals dm−i and di−1, 1 ≤ i ≤ (m + 1)/2 are fed in sequence and go through all
the PEs. Each PE generates the intermediate signals of ai

m−1−j and bi
j, 1 ≤ i ≤ (m + 1)/2

and 0 ≤ j ≤ m− 1, in sequence and pipelined them through the D latch (the solid red box
shown in Figures 4 and 5) to the next PE. After (m + 1)/2 clock cycles, the resulting bits
of a(m+1)/2

m−1−j and b(m+1)/2
j , 0 ≤ j ≤ m− 1 will be available in parallel at the outputs of all

the PEs. Signals of a(m+1)/2
m−1−j are delayed by one clock cycle relative to signals of b(m+1)/2

j ,
0 ≤ j ≤ m− 1. This is implemented by using the latches (red boxes) shown at the output of
the semi-systolic array shown in Figure 3. The final product bits pm−1−j, 0 ≤ j ≤ m− 1 is
obtained at clock cycle (m + 1)/2 + 3 from adding (using 2-input XOR gates) the bits of
a(m+1)/2

m−1−j and b(m+1)/2
j , 0 ≤ j ≤ m− 1.

Following is an explanation of how the investigated bit-parallel semi-systolic multi-
plier structure functions:

1. Through the first two clock periods, select signal S is deactivated (S = 0) to enforce
the zero input bits of am−2−j and bj+1, 0 ≤ j ≤ m− 1, to be localized in each PE. When
S is equal to zero, the AND gate output will equal zero, which represents the initial
values of am−2−j and bj+1, 0 ≤ j ≤ m− 1. When S activates to one, the AND gate

output will represent the intermediate values of the partial results of ai−1
m−2−j and bi−1

j+1,
0 ≤ j ≤ m− 1. At the same clock periods, the input bits of dm−1 and d0 are fed in
sequence to go through all the PEs.

2. The PEs produce the internal bit values ai
m−1−j and bi

j, 2 ≤ i ≤ (m + 1)/2 and 0 ≤ j ≤
m− 1, sequentially, over the forthcoming (m + 1)/2− 1 clock periods. Additionally,
all PEs receive input bits in a bit sequence from dm−i and di−1, 2 ≤ i ≤ (m + 1)/2.

3. The resultant output bits of the product P, pm−1−j, 0 ≤ j ≤ m− 1 are produced in
parallel at the outputs of XOR gates shown in Figure 3. They are generated at the last
clock period (m + 1)/2 + 3.

5. Results and Discussion

In this part, we compare the suggested one-dimensional bit-parallel semi-systolic mul-
tiplier to the previous impactful systolic/semi-systolic multiplier structures
of [3,4,28,29,31–33,38,39] in addition to the competitive sequential multiplier of [34]. This
section is divided into two subsections: The first one discusses in detail the area and time
complexities of the proposed design and compares them to that of the competitive designs.
The second subsection verifies the complexity analysis results using real implementation.

5.1. Complexity Analysis

As we notice from the offered semi-systolic structure depicted in Figure 3, it composed
of regular m PEs having 3m AND gates, m 3-input XOR gates that are equivalent to 2m
2-input XOR gates, 0 MUXes, and 3m Latches. Using m 2-input XOR gates, we added the
resulting bits of a(m+1)/2

m−1−j and b(m+1)/2
j , 0 ≤ j ≤ m− 1, to produce the output bits of the

final product pj. As a result, the overall number of used 2-input XOR gates ought to be
3m. As was previously mentioned, the suggested multiplier takes (m + 1)/2 + 3 clock
periods to generate the output results. By looking into the exact details of the PE logic,
we can calculate the critical path delay (CPD) of the offered multiplier as the sum of the
propagation delays of one 2-input AND gate (TA) and two 2-input XOR gates (2TX).

Table 1 estimates space in terms of the total number of utilized components (gates,
MUXes, and latches), latency, and CPD of the recommended semi-systolic multiplier
structure along with the currently available systolic/semi-systolic multiplier structures
of [3,4,28,29,31–33,38,39] and the competitive sequential multiplier structure of [34]. Table 1
shows that the designs of [3,4,28,29,31–33,38] have an area complexity of order O(m2),
whereas the designs of [34,39], and the proposed one have an area complexity of order
O(m). In addition, it indicates that all the designs have time complexity of order O(m).
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For IoT and embedded applications, the designs of [34,39] and the proposed one are more
suitable than the other designs. Therefore, we will concentrate on comparing the proposed
design to the competitive designs of [34,39]. In terms of area, we notice that the proposed
design has m more AND and XOR gates than the competitive ones, but it has zero MUXes
compared to them. In addition, the proposed design has the same latches compared to
the design of [34] and the design of [39] has less area by m latches than the proposed
one. On the other hand, the proposed design has significant less latency compared to the
competitive designs of [34,39] and almost the same critical path delay (CPD). The real
implementation results provided in Table 2 show that the proposed design has slightly
lower area complexity and significantly lower time complexity than the competitive ones
as we will discuss in the upcoming sections.

Table 1. Complexity analyses in terms of area and time of the suggested and the existing multipliers.

Design AND XOR MUX Latch Latency CPD Area
Complexity

Time
Complexity

Huang [3] 2m2 2m2 0 2m2 + m + 1 m + 1 TA + TX O(m2) O(m)

Chiou [31] m2 3m2 + 2m 0 3m2 + 4m m + 1 TA + 3TX O(m2) O(m)

Lee [32] m2 + m m2 + 2m 0 1.6m2 + 4m (m + 7)/2 TA + TX O(m2) O(m)

Lee [33] m2 + m m2 + (7m +
1)/2 0 2.1m2 + 6.5m (m + 7)/2 TA + TX O(m2) O(m)

Chiou [38] m2 m2 + m m 2m2 + 3m m + 1 TA + TX + TM O(m2) O(m)

Kim [4] 2m2 + 2m 2m2 + 3m 0 3m2 + 4m b m
2 c+ 1 TA + TX O(m2) O(m)

Sarmadi [28] (m2) ∗ 1.5m2 + 0.5m 1.5m2 − 2.5m
+3 1.5m2 + 2m− 1 m + 2 TN + TX O(m2) O(m)

Mathe [29] m m2 − 1 m2 −m m2 m TM + 2TX O(m2) O(m)

Mathe [34] 2m 2m 2m 3m m TA + TX + TM O(m) O(m)

Ibrahim [39] 2m 2m 3m 2m m TA + TX + TM O(m) O(m)

Proposed 3m 3m 0 3m (m + 7)/2 TA + 2TX O(m)
O(m)

(∗) 2-input NAND gates.

5.2. Implementation Results

To verify and assess the performance of the compared designs, we used VHDL pro-
gramming language to model the recommended semi-systolic multiplier structure and
the competing multiplier structures of [34,39]. The resultant code is synthesized by using
Synopsis design compiler with Nangate library (1.5 nm, 0.8 V). The multiplier structures
were tested using Modelsim’s functional verification tools before being synthesized. An
evaluation of the power usage occurs at a frequency of 10 MHz.

For the recommended field sizes of m = 409 and m = 571, we obtained the synthesis
results of area, delay, and power consumption shown in Table 2. From the obtained
synthesis results, we computed the design metrics of area–delay product (ADP) and
power–delay product (PDP). Table 2 also illustrates the savings between the recommended
bit-parallel semi-systolic multiplier structure and its competitors [34,39] in terms of space,
consumed power, ADP, and PDP. The following can be seen by reading the results found in
Table 2:

• The suggested semi-systolic multiplier structure uses slightly less space and power
than competing designs [34,39]. The average savings of area for m = 409 are ranging
from 2% to 6.6% and ranging from 2.1% to 7.4% for m = 571. The achievable average
reduction in power consumptions for m = 409 of the developed multiplier structure
over the competitive multiplier structures are ranging from 4.9% to 13.4% and ranging
from 6.8% to 11.8% for m = 571. The reduction in area and power is mainly due
to the slightly lower gate counts and wire area of the proposed design over the
competitive ones.
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• The suggested semi-systolic multiplier structure has significant savings in delay over
the competitive designs of [34,39]. This is attributed to the significant reduction in
latency of the proposed designs over the competitive ones. The average savings of
delay for m = 409 are ranging from 49.2% to 50.0% and ranging from 45.9% to 46.4%
for m = 571;

• The ADP and PDP of the developed semi-systolic structure are significantly lower
than those of the rival designs of [34,39]; The average reductions of ADP at m = 409
are ranging from 50.2% to 53.3% and ranging from 47.0% to 50.4% for m = 571;
The achievable average reduction of PDP of the offered multiplier structure over the
competitive ones for m = 409 is ranging from 51.7% to 56.7% and ranging from 49.5%
to 52.8% for m = 571.

Table 2. Analyzing the performance of different multiplier structures for the values of m = 409 and
m = 571.

Multiplier Type m Area Delay Power ADP PDP Area
Saving

Delay
Saving

Power
Saving

ADP
Saving

PDP
Saving

[Kgates] [ns] [mW] (%) (%) (%) (%) (%)

Mathe [34] Sequential 409 10.6 13.4 6.7 142.0 89.8 6.6 50.0 13.4 53.3 56.7

571 14.9 18.3 9.3 272.7 170.2 7.4 46.4 11.8 50.4 52.8

Ibrahim [39] Systolic 409 10.1 13.2 6.1 133.3 80.5 2.0 49.2 4.9 50.2 51.7

571 14.1 18.1 8.8 255.2 159.3 2.1 45.9 6.8 47.0 49.5

Proposed Systolic 409 9.9 6.7 5.8 66.3 38.9 - - - -

571 13.8 9.8 8.2 135.2 80.4 - - - -

As we notice from the acquired results, the suggested one-dimensional bit-parallel
semi-systolic multiplier has marginal space and power savings. Additionally, it offers
significant savings in terms of delay, ADP, and PDP results compared to the competitor
ones. Therefore, the offered multiplier structure is more appropriate for use in devices with
limited resources, such as IoT edge nodes and other tiny embedded devices.

6. Summary and Conclusions

In this article, we derived a low complexity one-dimensional bit-parallel semi-systolic
array structure for polynomial-basis Montgomery multiplication in GF(2m). A dependency
graph can be used to depict the chosen algorithm, which is a standard iterative algorithm.
We were able to acquire the feasible bit-parallel semi-systolic multiplier architecture by
allocating the proper scheduling and node projection functions to each DG node. The
developed one-dimensional parallel structure differs from the previously published two-
dimensional parallel structures in that it has space complexity of order O(m) as opposed to
order O(m2) of later ones. The recommended multiplier structure, like other systolic struc-
tures, has a modular structure with local connectivity between its PEs. This feature makes
the recommended multiplier design more appropriate for VLSI implementation. According
to the space and time complexities analysis, the offered multiplier has a significant reduc-
tion in delay when compared to the majority of the parallel competitive multipliers, as well
as a comparable number of logic components. To confirm the findings of the complexity
analysis, we used the ASIC CMOS library to synthesize the suggested and the previously
described one-dimensional multiplier architectures to assess their performance. According
to the acquired results, the offered multiplier architecture has marginal space and power
savings compared to the competitive multiplier structures. In addition, it has significant
savings in delay, area–delay, and power–delay products. Therefore, we can conclude that
the offered multiplier architecture is appropriate for use in devices with limited resources,
such as IoT edge nodes and tiny embedded systems. We will merge the recommended
multiplier architecture into the ECC crypto-processor in the forthcoming project to quantify
the system’s overall space, time, and energy savings.
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