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Abstract: The success of image classification depends on copious annotated images for training. An-
notating histopathology images is costly and laborious. Although several successful self-supervised
representation learning approaches have been introduced, they are still insufficient to consider the
unique characteristics of histopathology images. In this work, we propose the novel histopathology-
oriented self-supervised representation learning framework (HistoSSL) to efficiently extract repre-
sentations from unlabeled histopathology images at three levels: global, cell, and stain. The model
transfers remarkably to downstream tasks: colorectal tissue phenotyping on the NCTCRC dataset
and breast cancer metastasis recognition on the CAMELYON16 dataset. HistoSSL achieved higher
accuracies than state-of-the-art self-supervised learning approaches, which proved the robustness of
the learned representations.

Keywords: digital pathology; self-supervised learning; histopathology image classification; con-
trastive learning; knowledge distillation

MSC: 68T07; 68U10; 92C32; 92C50

1. Introduction

In the past decade, deep neural network-based supervised learning has outperformed
human experts in classifying histopathology images. However, such success depends on a
large amount of annotated training data [1]. Unlike natural images, which can be annotated
via crowd-sourcing, histopathology can only be annotated by proficient pathologists. To
address this issue, several self-supervised representation learning methods have been
introduced. Although these approaches have demonstrated decent performance on natural
images, they are still insufficient to consider the unique characteristics of histopathology
images. We hope to incorporate the domain knowledge of histopathology into the suc-
cessful self-supervised learning approaches to train more robust representations for the
downstream classification task.

Recently, contrastive learning has been widely studied as a promising method for
learning image representations. Contrastive learning is based on the premise that the
features of positive sample pairs correspond to each other, and the features between positive
and negative samples are distinct. The quality of sampling plays a crucial role in contrastive
learning. For natural images, researchers generate positive samples through stochastic
combinations of random augmentations, and negative samples are other instances within
the dataset [2–6]. These approaches are insufficient for histopathology images for two
reasons: (1) positive samples generated by random augmentation are less challenging, and
(2) negative samples are noisy [7]. Several approaches have been proposed to increase the
quality of sampling for histopathology images [8,9]. However, they introduce additional
data preprocessing, clustering, or top-k searching over a memory bank. Meanwhile, the
unique characteristics of histopathology images are still insufficiently leveraged.
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Histopathology images hold hierarchical information at different levels. Pathologists
can discriminate global-level semantic information (e.g., tumor presence [1]) for an image
with a size of around 256× 256 pixels under 20× magnification. At the cell-level view,
which is around 32× 32 pixels, fine-grained morphological features such as nuclear atypia
and cell size can be discerned [10]. For natural images, one study [5] leveraged the “local–
global” feature correspondence by using multi-crop training. For histopathology images,
the authors of [11] pointed out that the Simple Contrastive Learning of Representations
(SimCLR) framework [3] is able to distinguish aggressive small crops as positive samples.
Therefore, we argue that correspondence exists for a histopathology image between its
global-level and cell-level features.

Hematoxylin and eosin (H&E) staining has stood as the most commonly used staining
protocol in medical examination since its development in 1876 [12]. Hematoxylin is a
cationic compound that highlights basophilic cell structures (nuclei, rough endoplasmic
reticula, and ribosomes) with blue stains. Meanwhile, eosin is anionic and stains acidophilic
cell structures (cytoplasm and extracellular matrix) with pink color [13]. In addition to H&E,
pathologists use diaminobenzidine (DAB) in immunohistochemistry (IHC) to highlight
specific biomarkers (e.g., Ki-67 and HER2) in brown [14]. The basophilic, acidophilic,
and IHC-specific structures are different views of the same tissue. We argue that feature
correspondence exists between the tissue and each of its structures.

Motivated by the above discussion, we propose the Histopathology-Oriented Self-
Supervised Learning Framework (HistoSSL) to learn salient representations by incorporat-
ing this histopathology domain knowledge. HistoSSL employs knowledge distillation [5]
to learn from the correspondence between positive pairs and does not need negative
samples. Unlike conventional self-supervised learning frameworks that only learn from
global-level feature correspondence, HistoSSL further leverages the inherent cell-level
and stain-level feature correspondence in histopathology images to generate meaningful
and challenging positive pairs, encouraging the model to learn more robust and compre-
hensive representations. Our proposed framework is backbone-agnostic and has been
tested on both convolutional neural networks (CNNs) and vision transformers (ViTs). We
performed extensive experiments on the NCTCRC [15] and CAMELYON16 [16,17] datasets
to demonstrate the effectiveness of our proposed framework.

Our main contributions are summarized below:

1. We propose HistoSSL, a histopathology-oriented self-supervised learning framework
to learn representations from unannotated images.

2. By incorporating domain knowledge, HistoSSL leverages the cell-level and stain-level
feature correspondence in histopathology images to learn more robust representations.

3. The pre-trained model transfers remarkably to the downstream colorectal tissue
phenotyping and breast cancer metastasis recognition task.

4. HistoSSL achieved state-of-the-art accuracy compared with recent self-supervised
representation learning approaches.

The rest of the article is organized as follows. Section 2 summarizes the related works,
including generative, predictive, and contrastive self-supervised learning approaches for
both natural and histopathology images. In Section 3, we describe the proposed method in
detail, including the overall self-supervised knowledge-distillation approach to learn from
global-level feature correspondence and how to generate meaningful positive samples for
histopathology images from cell-level and stain-level feature correspondence. In Section 4,
we introduce the datasets used and the evaluation protocols. Comparisons with other
state-of-the-art methods and ablation studies are provided in Section 5.

2. Related Work
2.1. Self-Supervised Representation Learning for Natural Images

The goal of self-supervised representation learning is to learn discriminative feature
representations from unannotated data [18]. Generally, self-supervised representation learn-
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ing approaches for computer vision can be categorized into three paradigms: generative,
predictive, and contrastive [19].

Generative self-supervised learning trains the network to learn a content generation
task. Autoencoders are a series of generative tasks that aim to generate an approximate
reconstruction of the input [20]. Several methods have been proposed to improve autoen-
coders, such as image inpainting [21] and cross-channel autoencoders [22]. Inspired by the
success of self-supervised masked language model [23] learning on natural language pro-
cessing (NLP), researchers have proposed the masked pixel method [24] and patch-based
masked autoencoders (MAE) [25].

Predictive self-supervised learning defines classification pretext tasks that can work
as surrogate supervision signals. Noroozi et al. proposed a jigsaw puzzle-solving pretext
task by predicting the indices of the chosen permutations [26]. Gidaris et al. claimed that a
model needs to understand the objects in the image before correctly predicting its rotation [27].
Therefore, they proposed an image rotation prediction task to learn image representations.

Contrastive learning frameworks learn representations by contrasting positive samples
against negative samples in the representation space [3]. For a robust model, the represen-
tations of positive pairs are close, and the negative pairs are distinct. The positive samples
can be generated from different random augmented views of the same image [2,3,18] or
from the output of an autoregressive model [28]. Negative samples serve as regularizers
to prevent the model from collapsing [29]. Experiments have shown that a large number
of consistent negative samples results in better representations [2]. Therefore, several ap-
proaches have been proposed to improve negative sampling. In-batch sampling approaches
use the other instances within a minibatch as the negative samples [3,18,30]. This approach
has the best consistency, but the number of negative samples is restricted by the batch
size. Therefore, large batch size is preferred. Other approaches decouple the number of
negative samples from batch size by caching the embeddings of negative samples [2,6,31].
Specifically, to reduce the feature inconsistency caused by caching, Wu et al. introduced
proximal regularization [31]. He et al. built the cache using a momentum encoder and a
memory queue to improve feature consistency and to ensure the samples with the least
consistency are removed first [2,6].

Contrastive learning can also be performed without negative samples, i.e., only based
on the premise that the representations of positive pairs correspond to each other [4,5].
These two approaches use the mean-teacher method [32] to build a slow-moving teacher
network to produce stable outputs for the online student network. In particular, Grill et
al. introduced a prediction head on top of the student to avoid collapse and minimize the
mean-square error between the online network’s prediction and the target [4]. Caron et al.
formulated the training as a knowledge distillation process and introduced centering and
sharpening operations to avoid collapse [5].

2.2. Self-Supervised Representation Learning for Histopathology Images

Since there exists a large domain discrepancy between histopathology images and
natural images [33], the aforementioned self-supervised learning approaches designed
and tested on natural images need to be re-evaluated for their applicability [11]. Recent
works mainly focus on two aspects: (1) designing histopathology-specific pretext tasks and
(2) improving existing self-supervised frameworks.

For generative self-supervised learning, researchers applied the colorization pretext
task in histopathology-specific hematoxylin-eosin-DAB (HED) color space to build cross-
stain autoencoders [34–36]. Other researchers improved the masked autoencoder with
contrastive loss [37] and knowledge distillation [38].

For predictive self-supervised learning, the aforementioned “rotation prediction”
method is not viable for histopathology images, since the objects in histopathology images
(i.e., cells and extracellular structures) are not orientational [11]. Based on the finding
that histopathology images scanned at different magnification levels can be discerned by
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the size and texture of their nuclei, Sahasrabudhe et al. proposed a magnification-level
prediction task specially designed for histopathology images [39].

However, these handcrafted predictive and generative learning approaches only
concentrate on ad hoc pretext tasks and thus lack generality [3]. Therefore, contrastive
learning approaches which form the training objective on the fly [2] have attracted the
attention of recent researchers. The proposed HistoSSL is a contrastive learning framework
that generates positive views at the beginning of each training iteration. HistoSSL exploited
the domain knowledge of histopathology images to generate positive views at three levels:
global, cell, and stain.

For the application of contrastive self-supervised learning to histopathology images,
recent research has focused on increasing the diversity of positive samples and reducing
the noise of negative samples (i.e., false negative samples). One study [8] employed whole
slide image (WSI) data preprocessing to mark spatially adjacent negative instances from
the same histopathology slide as positive. However, spatially adjacent sampling could
yield more false positives. Therefore, similarity-based sampling in the representation space
was introduced. The authors of [8] also utilize clustering to mine positive samples. The
authors of [7] performed top-k sorting over a large memory bank to mine similar samples
and treat them as pseudo-positive samples. Apart from the above success, self-supervised
contrastive learning for histopathology images is still an open problem, and there are issues
that have not been sufficiently addressed:

1. To reduce the noise of negative samples, the above approaches require WSI data
preprocessing or similarity-based sampling, which involves additional computational
and memory overheads.

2. Since similarity-based sampling is performed in the representation space, their quality
relies on the model’s representation ability. Meanwhile, the model’s representation
ability highly depends on sampling quality, which forms a circular dependency.

3. These pseudo-positive samples do not belong to the same instance but are visually
similar instances within the dataset, which are less challenging and less meaningful.

HistoSSL differs from the above approaches in the following:

1. By employing mean-teacher knowledge distillation to avoid collapse [5], HistoSSL does
not need negative samples. There is no need to consider the quality of negative samples.

2. HistoSSL uses global-level augmentation, cell-level cropping, and stain decomposi-
tion to generate positive views for histopathology images at the beginning of each
forward pass. There is no need for additional WSI data preprocessing or similarity-
based sampling.

3. Based on the histopathology domain prior, positive samples are generated for each input
image from global-, cell- and stain-level features; they are challenging and meaningful.

3. Method

This section elaborates on the details of HistoSSL. As delineated in Figure 1, HistoSSL
learns representations from feature correspondence by aligning the student distributions
with the teacher distribution. Our framework leverages the feature correspondence in
histopathology images and performs knowledge distillation at three levels: global-, cell-,
and stain-level, encouraging the network to learn more robust representations. More details
are discussed next.

3.1. Learning from Global-Level Feature Correspondence

The global-level feature is the augmentation-invariant representation of a given image.
Global-level feature correspondence serves as a fundamental part of self-supervised learn-
ing frameworks [2–6]; i.e., for an input image, the representations of its different augmented
views correspond to each other. Specifically, we use the knowledge-distillation loss [5] as
the metric for the feature correspondence.
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Figure 1. Illustration of our proposed framework, HistoSSL. HistoSSL learns representations from
the feature correspondence by performing knowledge distillation. The student model is trained by
aligning the student’s output distribution with the teacher’s distribution. Knowledge distillation is
performed at three levels: global-, cell-, and stain-level. Global-level views are generated via random
augmentations, cell-level views are generated by extracting cell-level patches, and stain-level views
are generated from stain decomposition. The parameters of the teacher network are an exponential
momentum average (EMA) of the student.

Take the student network S parameterized by θs and the teacher network T parame-
terized by θt with the same structure. For an image x ∈ RH×W×3, two random augmented
views x1 ∈ RH×W×3 and x2 ∈ RH×W×3 are sent to the student and teacher, respectively.
The prediction of the student network is a K-dim probability distribution denoted as
pS(x1) = softmax(S(x1)/τs), where τs > 0 is the temperature hyper-parameter that con-
trols the sharpness of pS. Similarly, the teacher outputs a K-dim distribution pT(x2).

The augmentation-invariant representations are learned by minimizing the distance
between pS and pT . We define the loss function as:

Lg = H
(

pT(x2), pS(x1)
)

(1)

where H(·, ·) refers to cross-entropy loss. By swapping x1 with x2, we can define a sym-
metrized loss as:

Lg = H
(

pT(x1), pS(x2)
)
+ H

(
pT(x2), pS(x1)

)
(2)

The parameters of the student network θs are updated by minimizing Lg using gra-
dient descent. Moreover, the parameters of the teacher are updated by an exponential
momentum-averaged mean-teacher paradigm [32]:

θt ← mθt + (1−m)θs (3)

3.2. Learning from Cell-Level Feature Correspondence

As discussed in Section 1, since histopathology images hold hierarchical information
at different fields of view, we argue that feature correspondence exists for a histopathology
image between its global-level view and cell-level views. Therefore, for an input image x,
we can extract n cell-level augmented patches x′j. This operation is an improved version of
the multi-crop training [5] by cropping and augmenting patches that are small enough to
capture cell-level views.
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We put these patches into the student network, generating a series of student distributions:

pS(x′j) = softmax
(

S(x′j)/τs

)
(4)

where j ∈ [1, n]. It is worth noticing that to ensure the stability [4] of the training target
(i.e., teacher distribution), we do not put cell-level patches into the teacher network [5].
Accordingly, we perform knowledge distillation by minimizing the following loss:

Lc =
2

∑
i=1

n

∑
j=1

H
(

pT(xi), pS(x′j)
)

(5)

3.3. Learning from Stain-Level Feature Correspondence

Different stains used in histopathology imaging highlight different cellular and ex-
tracellular structures. Since histopathology slides are thin and transparent to allow light
to pass through, these different stains with known absorption spectra can overlap, affect-
ing the RGB value in a non-linear way. In HistoSSL, we employ color deconvolution to
decompose histopathology images into separated hematoxylin, eosin, and diaminoben-
zidine stains that represent basophilic, acidophilic, and IHC-specific structures. These
structures are different views of the same tissue. We argue that feature correspondence
exists between the tissue and each of its structures. Therefore, our HistSSL treats the
separated stains as positive samples. To the best of our knowledge, this is the first attempt
at utilizing stain decomposition to generate meaningful positive samples in self-supervised
contrastive learning.

Histopathology imaging employs RGB sensors to capture and quantify light passed
through tissue slides. The value for each of the RGB channels represents the brightness:

r =
Tr

Ir
, g =

Tg

Ig
, b =

Tb
Ib

(6)

where I is the incident light and T is the transmitted light. For each RGB channel, the light
transmitted through the tissue slide with the amount of stain A and absorption factor C is
defined by the Beer–Lambert Law [40]:

T = I · exp(−AC). (7)

In histopathology imaging, there are three types of stains: hematoxylin, eosin, and
diaminobenzidine with corresponding amounts: h, e, and d; and absorption factors: Ch, Ce,
and Cd. We have:

AC = hCh + eCe + dCd. (8)

Therefore, we have:

T = I · exp(−hCh − eCe − dCd). (9)

Hence, the relation between RGB and HED values can be expressed by the transfor-
mation matrix described in Equation (10):

[
− log r − log g − log b

]
=
[
h e d

]Chr, Chg, Chb
Cer, Ceg, Ceb
Cdr, Cdg, Cdb


=
[
h e d

]
M

(10)

where M here is called the normalized optical density (OD) matrix [14].
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Based on the above discussions, for each pixel in the input image, we perform the
color deconvolution [14] described in Equation (11) to get the values of hematoxylin, eosin,
and diaminobenzidine.[

h e d
]
=
[
− log r − log g − log b

]
M−1

=
[
− log r − log g − log b

] 1.88 −0.07 −0.60
−1.02 1.13 −0.48
−0.55 −0.13 1.57

 (11)

For each type of separated stain, we convert its value back to the RGB color
space independently: 

xh = exp
(
−
[
h 0 0

]
M
)

xe = exp
(
−
[
0 e 0

]
M
)

xd = exp
(
−
[
0 0 d

]
M
) (12)

where xh ∈ RH×W×3, xe ∈ RH×W×3, and xd ∈ RH×W×3 are the decomposed hematoxylin,
eosin, and diaminobenzidine stains. We omitted the height H and width W dimensions
in the above derivations for brevity. Similarly to 3.2, we put these separated stains in the
student network and minimize the knowledge distillation loss:

Ls = I(h) ·
2

∑
i=1

H
(

pT(xi), pS(xh)
)

+ I(e) ·
2

∑
i=1

H
(

pT(xi), pS(xe)
)

+ I(d) ·
2

∑
i=1

H
(

pT(xi), pS(xd)
)

(13)

where I(·) is the function indicating if the specified stains were used, e.g., I(d) is 0 for H&E
stained images.

The overall training objective is to minimize the losses from the global level, cell level,
and stain level, which are defined in Equations (2), (5) and (13). Since Lg, Lc, and Ls
are all summations of cross-entropy losses, the final training loss is the average of all the
summation terms.

L =
Lg + Lc + Ls

2× [1 + n + I(h) + I(e) + I(d)] (14)

where n is the number of cell-level patches discussed in Section 3.2.

3.4. Model Architecture

As illustrated in Figure 2, the teacher and student models share the same architecture,
which consists of a backbone and a header. The backbone is a function f : RH×W×3 → RF

that takes an H ×W × 3 sized image as the input and outputs a F-dim vector as its repre-
sentation. The head is a learnable non-linear transformation between the representation
and the K-dim probability space where to perform knowledge distillation [5]. The head is
discarded after training, we use the trained backbone for downstream recognition tasks.
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Figure 2. Overview of the network model. The backbone takes an image as input and outputs a F-dim
vector as its representation. The head projects the representation vector into a K-dim distribution for
knowledge distillation.

The backbone can be a ResNet [41] without the last fully connected layer or a vision
transformer [42] without a classification head. As described in Section 3.2, the cell-level
patches have a smaller size than the original image. To properly perform contrastive learn-
ing, the backbone needs to generate a fixed F-dim vector from images with different sizes.

ResNet-based backbones are fully convolutional and thus can handle variable input
sizes. By adding a global average pooling layer after the residual blocks, the dimensions of
the output vector only depend on the number of channels of the last convolution layer.

Vision transformers, on the other hand, leverage a patch embedding layer to convert
2D images into a sequence of tokens. A learnable positional encoding is added to the
flattened tokens to preserve their spatial relations. A [CLS] token is prepended to the
token sequences to capture the image representation through the multi-head self-attention
(MHSA) mechanism. To handle variable input sizes, we interpolate the positional em-
bedding at the beginning of each forward pass to match the number of tokens, which is
illustrated in Figure 3. The output dimension of the ViT-based backbone is the size of [CLS]
token of the last ViT block, which is independent of the input size.

Large Input

Small Input

Positional
Encoding

split patches

flatten

linear projection

bicubic interpolation

tokens

tokens

addition

Figure 3. Vision transformers split input images into non-overlapping patches and use linear pro-
jection to convert these patches into a 1-dim token sequence. To handle variable input sizes, we
interpolate the positional encoding to match the number of tokens. The flattened positional encodings
are then added to the token sequence.
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The head starts with a 3-layer MLP with GELU activations [5], following an L2
normalization layer normalizing the output of the MLP onto the surface of a 256-dim unit
sphere. The last linear layer outputs K-dim logits, and softmax projects these logits from
RK onto the probability simplex. We evaluated the impact of different values of K, which is
the model’s output distribution dimension. The results are in Section 5.5.2.

4. Experiments

In this section, we first introduce the datasets used in our study. Then, we describe the
setup of the experiments and the evaluation metrics.

4.1. Datasets

Our proposed framework was evaluated on two tasks: colorectal tissue phenotyping
on the NCTCRC dataset [15] and breast cancer metastasis recognition on the CAMELYON16
dataset [16]. We chose these two tasks to cover both binary and multi-class classification
tasks. From the medical perspective, these two tasks cover the diagnosis of both in situ and
metastatic carcinoma.

4.1.1. NCTCRC Dataset

A colonoscopy is an effective way to screen for colorectal cancer. For polyps and
hyperplastic tissue seen under endoscopy, a pathological biopsy is required to clarify its
nature. Pathologists need to search a large number of tissue specimens for tiny lesions. To
advance computer-aided colorectal cancer diagnosis research, Kather et al. published the
NCTCRC dataset [15] in 2018. The NCTCRC dataset contains 107, 180 non-overlapping
histopathology image tiles extracted from H&E stained slides in nine classes. Each tile has
224× 224 resolution, representing a 112 µm× 112 µm tissue area. The dataset includes
two subsets: NCT-CRC-HE-100K for self-supervised pre-training and CRC-VAL-HE-7K for
evaluation. Details are shown in Table 1.

Table 1. The organization of the NCTCRC dataset [15].

Class Diagnosis 100 K for
Pre-Training 7 K for Evaluation

ADI adipose 10,407 1338
BACK background 10,566 847
DEB debris 11,512 339
LYM lymphocytes 11,557 634
MUC mucus 8896 1035
MUS smooth muscle 13,536 592
NORM normal colon mucosa 8763 741
STR cancer-associated stroma 10,446 421
TUM colorectal adenocarcinoma epithelium 14,317 1233

Total 100,000 7180

4.1.2. CAMELYON16 Dataset

Lymph-node metastasis is one of the most important prognostic factors for breast
cancer [17]. CAMELYON16 is a publicly available dataset composed of 398 annotated slides
(the dataset contains 399 slides in total; slide test_114 is not annotated) for detecting breast
cancer metastasis in sentinel lymph nodes [16]. Slides are categorized into two classes:
normal and tumor. Each slide has a size of around 100, 000× 100, 000 pixels. For tumor
slides, the pixel-level tumor annotations are provided in XML format. As shown in Table 2,
we employed OpenSlide [43] to randomly extract 500, 000 256× 256 sized non-overlapping
tiles from these slides to construct the train set and test set with balanced distributions
between the two classes. (Early researchers use the word “patch” to refer to the small
images extracted from the slides. Here we use the word “tile” to avoid confusion with the
concept “patch” in vision transformers.)
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Table 2. Details of the CAMELYON16 dataset [16,17].

Class Train Slides Test Slides Train Tiles Test Tiles

Normal 159 80 200,000 50,000
Tumor 111 48 200,000 50,000

Total 270 128 400,000 100,000

4.2. Experimental Setup

A set of experiments were conducted in this study. First, we built the teacher and the
student model by adding a head after the backbone, as described in Section 3.4. Then, we
performed self-supervised pre-training on the unannotated train set. After pre-training,
we discarded the head and evaluate the backbone on downstream tasks using k-nearest
neighbor (k-NN) and linear probing protocol. All the experiments were implemented in
PyTorch [44] on a server equipped with 2 Intel Xeon E5-2643 V4 CPUs, 128 GB RAM, and
4 NVIDIA Titan V GPUs with 12GB memory.

4.2.1. Self-Supervised Pre-Training

We performed experiments on various backbones, including both ConvNets and
vision transformers [42]. The detailed comparison of different backbones is in Section 5.4.
For ResNet-50 and ViT-T/16 backbones, the batch size per GPU was set to 32. We halved
the batch size when training larger models and used mixed precision with gradient scaling
to reduce the GPU memory consumption. A detailed summary of the hyper-parameters in
our experiment is listed in Table 3.

Table 3. Summary of the hyper-parameters in our self-supervised pre-training experiment.

Name Value Detail

epochs 100
optimizer AdamW
batch size 128 32 per GPU × 4 GPUs
learning rate (LR) 0.00025 when batch size = 128
lr warmup 10 epochs linear warmup
LR scheduler cosine decay to 0.000001
weight decay cosine schedule from 0.04 to 0.4
teacher temperature 0.04
student temperature 0.1
Mean-Teacher momentum cosine schedule from 0.997 to 1

We used a stochastic combination of random augmentations to generate global-level
and cell-level views for the given images. Table 4 summarizes the details of the random
augmentations and cell-level patch extraction.

Table 4. Details of the random augmentations used to generate global-level and cell-level views.

Method Parameters

Global-level cropping area scale ∈ [0.4, 1]
Cell-level patch extraction n = 8, area scale ∈ [0.01, 0.2]
Random color jitter p = 0.8, brightness = 0.4, contrast = 0.4, saturation = 0.2, hue = 0.1
Random grayscale p = 0.2
Random gaussian blur p = 0.5, radius ∈ [0.1, 2]

4.2.2. k-NN Evaluation

As the name suggests, k-NN classifiers predict a given sample by voting its top-k
nearest neighbors. Therefore, the k-NN classifier has only one hyper-parameter, k, and does
not have an explicit learning process. Compared with the linear evaluation introduced in
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Section 4.2.3, the accuracy of k-NN is not affected by the randomness introduced in the
neural network training, which makes it suitable for evaluating the representation ability of
the pre-trained backbone. For self-supervised learning, we used the pre-trained backbone
to embed both the training data and the testing data into the representation space and
perform k-NN classification. The hyper-parameter k was set to 20 empirically [5] We also
performed experiments to search for the value of k, as discussed in Section 5.5.1.

4.2.3. Linear Evaluation

Another widely used evaluation protocol for self-supervised learning is linear probing.
We froze the parameters of the backbone and trained a linear classifier g : RF → RC on the
top of the backbone, where C is the number of classes. We used an SGD optimizer with
momentum = 0.9 and no weight decay. A cosine-annealing learning rate scheduler decays
the learning rate from 0.0005 to 0 in 20 epochs. We employed early-stopping scheduling,
since linear probing has only one layer of trainable parameters and converges very fast.

4.3. Evaluation Metrics

Given a testing set D containing N samples:

D = {(x1, y1), (x2, y2), · · · , (xN , yN)} (15)

where yi ∈ Y is the label of sample xi ∈ X . We evaluated classifier f : X → Y by
calculating its accuracy:

Accuracy =
1
N

N

∑
i=1

I( f (xi) = yi). (16)

We also report other common classification metrics: sensitivity, specificity, and area
under the receiver operating characteristic curve (AUC). For the confusion matrix of a
binary classifier, we have the number of true positives (TP) , false positives (FP), true
negatives (TN), and false negatives (FN). The expressions for sensitivity and specificity are
given by Equation (17) and (18):

Sensitivity =
TP

TP + FN
(17)

Speci f icity =
TN

FP + TN
(18)

5. Results and Discussion

In this section, we first compare HistoSSL with a series of representative self-supervised
learning frameworks on the tasks introduced in Section 4. Following that, we present ab-
lation studies to evaluate the effectiveness of cell-level and stain-level correspondence in
self-supervised learning for histopathology images. Furthermore, we report a detailed
comparison of different backbones and hyper-parameter settings.

5.1. Comparison with the State-of-the-Art Methods

We performed experiments using modern self-supervised learning frameworks [2–6,25]
on the NCTCRC and CAMELYON16 datasets. Experiments were conducted using the
same pre-training dataset and evaluation protocols to ensure fairness. For MoCo V1 [2],
MoCo V2 [6], SimCLR [3], and BYOL [4], we used ResNet-50 backbones, which was their
out-of-the-box configuration. For DINO [5] and MAE [25], which are designed for vision
transformers, we used the ViT-T/16 backbone. Our framework is backbone-agnostic.
Therefore, the results of our proposed framework, HistoSSL, with both ResNet-50 and
ViT-T/16 backbones are listed in Tables 5 and 6. The best results are highlighted in bold
font. We also report the sensitivity, specificity, and AUC metrics of the linear classifier in
Figure 4 and 5. For the NCTCRC dataset, we used One-vs-Rest to evaluate the average
sensitivity, specificity, and AUC for the nine classes.
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As demonstrated in Table 5 and Figure 4, our proposed HistoSSL achieves state-of-the-
art performance compared with mainstream contrastive learning counterparts using the
same backbone and the same evaluation protocols, which proves its effectiveness. Specif-
ically, by using ViT-T/16 as the backbone, the k-NN accuracy of HistoSSL is 94.09%; the
accuracy, sensitivity, specificity, and AUC of the linear probing are 96.18%, 95.31%, 99.53%,
and 99.82% respectively. The evaluations on the CAMELYON16 dataset are illustrated
in Table 6 and Figure 5, where it is shown that HistoSSL also achieved the best k-NN
accuracy (78.65%). During the linear evaluation, MAE [25] outperforms HistoSSL by 0.11%
in accuracy and 0.17% in AUC.

Table 5. Comparing our proposed method with the state-of-the-art frameworks on colorectal tissue
phenotyping using the NCTCRC dataset.

Method Year Backbone k-NN Accuracy
(%)

Linear Probing
Accuracy (%)

MoCo V1 [2] 2020 ResNet-50 87.67 92.02
SimCLR [3] 2020 ResNet-50 89.11 93.57
MoCo V2 [6] 2020 ResNet-50 90.18 93.15
BYOL [4] 2020 ResNet-50 90.74 93.93
DINO [5] 2021 ViT-T/16 93.23 94.34
MAE [25] 2022 ViT-T/16 92.60 94.42

HistoSSL-Res Ours ResNet-50 91.41 95.62
HistoSSL-ViT Ours ViT-T/16 94.09 96.18

Table 6. Comparing our proposed method with the state-of-the-art frameworks on breast cancer
metastasis recognition using the CAMELYON16 dataset.

Method Year Backbone k-NN Accuracy
(%)

Linear Probing
Accuracy (%)

MoCo V1 [2] 2020 ResNet-50 65.05 74.91
SimCLR [3] 2020 ResNet-50 71.12 76.97
MoCo V2 [6] 2020 ResNet-50 75.52 83.82
BYOL [4] 2020 ResNet-50 76.36 83.45
DINO [5] 2021 ViT-T/16 76.25 82.94
MAE [25] 2022 ViT-T/16 78.42 84.12

HistoSSL-Res Ours ResNet-50 78.21 83.60
HistoSSL-ViT Ours ViT-T/16 78.65 84.01
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Figure 4. Sensitivity, specificity, and AUC results (%) on the NCTCRC dataset.
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Figure 5. Sensitivity, specificity, and AUC results (%) on the CAMELYON16 dataset.

5.2. Comparison with the Recent Studies

The above experiment aimed at a fair comparison of contrastive learning frameworks
alone by using the same backbone and the same evaluation protocol. However, for the
NCTCRC dataset, there are recent studies [8,9,34,37,38] introducing improvements from
various aspects: introducing new backbones, exploiting large-scale pre-training sets, com-
bining multiple self-supervised learning tasks, and using fine-tuning instead of linear
probing to benefit from more trainable parameters. We present a comparison of these
works. The results are listed in Table 7. The best result is highlighted with bold font.

Table 7. Comparing our proposed method with recent self-supervised learning studies on the
NCTCRC dataset. The results are directly quoted from the corresponding literature.

Method Year BackBone Accuracy (%) Evaluation Protocol

CS-CO [34] 2021 ResNet-18 91.90 linear probing
SSLP [8] 2021 ResNet-18 95.20 linear probing
TransPath [9] 2021 CNN Transformer Hybrid 94.05 linear probing
TransPath [9] 2021 CNN Transformer Hybrid 95.85 fine-tuning
GC-MAE [37] 2022 ViT-B/16 89.22 fine-tuning
SD-MAE [38] 2022 ViT-S/16 95.04 fine-tuning

HistoSSL-Res Ours ResNet-50 95.62 linear probing
HistoSSL-ViT Ours ViT-T/16 96.18 linear probing

From row 3 and row 4 in Table 7, we can observe that better results can be obtained in
fine-tuning rather than linear probing for the same pre-trained backbone. This is because
the backbone is frozen during linear probing. Thus, the model only has one trainable
linear layer. While fine-tuning does not freeze the pre-trained backbone, the model benefits
from more trainable parameters. However, fine-tuning requires more training effort on
the downstream tasks and makes it difficult to solely evaluate the effectiveness of self-
supervised pre-training. In our experiments, a tiny HistoSSL pre-trained model (ViT-T/16)
can achieve state-of-the-art performance without the need for fine-tuning, which proves
that HistoSSL can extract more robust representations for histopathology images.

To further evaluate the effectiveness of pre-training, linear probing, and fine-tuning, we
report the results of the ResNet-50 model with the following settings: (a). supervised training
from scratch, (b). linear probing on an ImageNet-pre-trained backbone, (c). linear probing on
a HistoSSL-pre-trained backbone, (d). fine-tuning on an ImageNet-pre-trained backbone, (e).
fine-tuning on a HistoSSL-pre-trained backbone. The results are listed in Table 8.

In Table 8, we can observe that the accuracy of HistoSSL gets a 1% boost by employing
fine-tuning; it outperforms the supervised training baseline by 4.9%. HistoSSL pre-training
also outperforms supervised ImageNet pre-training in both linear probing and fine-tuning.
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Table 8. Results of the ResNet-50 model under different settings: a. supervised training from
scratch, b. linear probing on an ImageNet-pre-trained backbone, c. linear probing on HistoSSL pre-
trained backbone, d. fine-tuning on an ImageNet-pre-trained backbone, e. fine-tuning on HistoSSL
pre-trained backbone.

Experiments Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

Supervised training (baseline) 91.65 88.40 98.96 99.29
Linear probing (ImageNet) 91.88 89.35 98.98 99.42
Linear probing (HistoSSL) 95.62 93.44 99.45 99.74
Fine-tuning (ImageNet) 95.55 94.72 99.45 99.66
Fine-tuning (HistoSSL) 96.55 95.25 99.58 99.76

5.3. Ablation Study

Generating positive views plays a decisive role in contrastive learning. Noisy views
impair the model’s representation ability, whereas high-quality views can induce better
representations [11]. Our proposed framework, HistoSSL, leverages random augmenta-
tions, cell-level patch extraction, and stain decomposition to generate positive samples from
histopathology images. We performed ablated experiments with HistoSSL to verify the
effectiveness of each method. The experiments were performed on the NCTCRC dataset.
We used ViT-T/16 as the backbone. Results are listed in Table 9.

Table 9. Ablation experiments of HistoSSL. We report the accuracies of both k-NN and linear probing
under combinations of global-level, cell-level, and stain-level feature correspondence. The backbone
was ViT-T/16.

Global Cell Stain k-NN Accuracy (%) Linear Probing Accuracy (%)

X 91.27 93.31
X X 93.36 95.02
X X X 94.09 96.18

Global-level feature correspondence serves as a fundamental part of contrastive learn-
ing frameworks [2–6]. HistoSSL can achieve accuracies of 91.27% and 93.31% in k-NN and
linear probing with only global-level feature correspondence.

Contrastive learning is prone to learn trivial low-level image statistics rather than
holistic semantics if the low-level statistics are enough to contrast the positive from the
negative. Most natural images have a few salient objects occupying a large portion of the
area. Therefore, random crop-based augmentation can perturb the semantic information
and force the model to learn high-level semantics to correctly distinguish the positive
instances [2]. However, histopathology images are arrangements of relatively small and
repeating cells, thereby having lower information density than natural images [25]. Ran-
domly augmented views of histopathology images have a higher chance of sharing similar
image statistics [11] and thus are less challenging. By leveraging cell-level patch extraction
to incorporate cell-level views as positive samples, HistoSSL can have a performance gain
of 1% in k-NN and 1.7% in linear probing.

Moreover, color deconvolution can decompose histopathology images into separated
hematoxylin, eosin, and diaminobenzidine stains representing basophilic, acidophilic, and
IHC-specific structures. Unlike cropping pixels spatially, stain decomposition splits the
input image into different semantic entities. This simple yet effective method can generate
meaningful and challenging positive samples that encourage the model to understand the
image holistically. As demonstrated in Table 9, we observed a 1.1% performance gain in
linear probing and 0.7% improvement in k-NN evaluation.

5.4. Comparison of Different Backbones

We performed experiments on various backbones, including classic CNNs: ResNets [41]
and ResNeXT-50 [45]; a modern CNN: ConvNeXT-Small [46]; and vision transformers [42].
The results are listed in Table 10.
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Table 10. Comparison of different backbones. We report accuracy under k-NN and linear probing.
The inference speed was tested on one NVIDIA Titan V GPU with mixed precision enabled.

Backbone k-NN Accuracy (%) Linear Probing
Accuracy (%) Speed (im/s)

ResNet-18 [41] 91.97 95.15 3399
ResNet-50 [41] 91.41 95.62 1820
ResNet-152 [41] 93.16 95.29 754

ResNeXt-50 [45] 92.45 94.44 1145
ConvNeXt-Small [46] 91.62 95.37 405

ViT-T/16 [42] 94.09 96.18 3002
ViT-S/16 [42] 94.50 95.87 1515
ViT-B/16 [42] 94.12 95.38 591

ViT-T/8 [42] 91.98 94.26 442

Transformers were first used in the natural language processing domain, in which
self-supervised learning has been widely used. From Table 10, we can observe that a vision
transformer [42] with patch size 16 demonstrated significant advantages over convolutional
neural networks as the backbone in self-supervised learning. In our experiments, a ViT-
T/16 model outperformed CNNs in both k-NN and linear probing. At the same time,
ViT-T/16 has a comparable inference speed to ResNet-18, which is the fastest among the
CNNs used in the experiments. We did not observe significant improvements in ResNeXt
or ConvNeXt over standard ResNets. Meanwhile, their grouped convolution [45] and large
kernel sizes [46] reduced the inference speed on GPUs.

One paper [5] showed that reducing the patch size from 16 to 8 can trade speed for
performance. However, in our experiment, this approach impairs the accuracy in both
k-NN and linear probing experiments. Moreover, halving the patch size will result in
4× number of tokens, and the cost of computing self-attention scales quadratically with
the number of tokens. Therefore, the inference speed of ViT-T/8 is significantly lower
compared to that of ViT-T/16.

5.5. Comparison of Hyper-Parameters
5.5.1. Value of k in k-Nearest Neighbors

As introduced in Section 4.2.2, the k-NN classifier has only one hyper-parameter,
k, which was set to 20 empirically. In this experiment, we used the ViT-S/16 backbone
and performed a linear search for the proper value of k by 10-fold cross-validation. As
illustrated in Figure 6, for a small value of k, the model is sensitive to outliers. Therefore,
the accuracy is unstable. The model turned stable after k > 15. To be consistent with the
related works [5,6], and for brevity, we also set k = 20.

5.5.2. Dimensions of the Model Output

As discussed in Section 3.1, the teacher and student models generated a K-dimensional
probability distribution for each input image. We conducted experiments evaluating
different values of K using the ViT-S/16 backbone on the NCTCRC dataset and reported
k-NN accuracy. As illustrated in Table 11, we selected K = 4096 in our experiments.

Table 11. Comparison of different dimension size (K) using the ViT-S/16 backbone.

K 1024 2048 4096 10,240 20,480 40,960

Accuracy (%) 91.17 93.19 94.50 94.17 93.94 93.70
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Figure 6. Comparison of different k in k-NN classifiers.

5.6. Discussion

In this study, we proposed HistoSSL to learn representations from unlabeled histopathol-
ogy images. We evaluated HistoSSL on two tasks: colorectal tissue phenotyping on the
NCTCRC dataset [15] and breast cancer metastasis recognition on the CAMELYON16
dataset [16]. HistoSSL achieved state-of-the-art performance with both k-NN and linear
evaluation on the NCTCRC dataset (Tables 5 and 7 and Figure 4). On the CAMELYON16
dataset, HistoSSL also achieved state-of-the-art performance in k-NN evaluation (Table 6
and Figure 5). Recently, MAE rejuvenated generative self-supervised learning by leveraging
the power of multi-head self-attention and outperformed HistoSSL slightly in accuracy by
0.11%. We will investigate the way to incorporate histopathology domain knowledge into
the generative model in the future.

We conducted experiments comparing HistoSSL pre-training with ImageNet pre-
training and supervised learning from scratch (Table 8). We found that fine-tuning provides
a 1% performance gain over linear probing for the HistoSSL-pre-trained backbone. For the
ImageNet-pre-trained backbone, the performance gain was 3.67%. This is because Ima-
geNet is a dataset of natural images. Therefore, the pre-trained backbone lacks the domain
knowledge of histopathology images and needs to be further tuned when transferring to
the histopathology domain. Furthermore, we observe that supervised training from scratch
cannot reach the same level of performance compared with HistoSSL pre-training. In fact,
we observed that the model has a tendency of overfitting during supervised training. We
hypothesize the reason is that the size of the NCRCRC dataset is not large enough. Since
HistoSSL forms the training objective on the fly, the model is less prone to overfitting when
pre-training on small datasets.

A series of backbone models, including both ConvNets and vision transformers,
were tested in this study (Table 10). An interesting finding is that larger models do not
necessarily lead to more significant performance gains, which can be seen for both the
ResNet family [41] and the ViT family [42]. This does not fit the usual intuition about
using larger models for self-supervised pre-training. We hypothesize the reason is that the
pre-training dataset used in this experiment is not large enough (see Section 4.1). Therefore,
the potential of large models is not fully leveraged. Due to the limitation of the computing
resources we have available, we plan to investigate large models on bigger datasets in our
future work.
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6. Conclusions

In this study, we proposed a self-supervised representation learning framework, His-
toSSL, for unlabeled histopathology images. Unlike conventional self-supervised learning
approaches, HistoSSL leverages the cell-level and stain-level feature correspondence in
histopathology images to learn more robust representations. HistoSSL achieved higher
accuracies than the state-of-the-art self-supervised learning approaches on the NCTCRC
and CAMELYON16 datasets. In the future, we will investigate the effectiveness of large-
scale pre-training data with large models. Moreover, we aim to explore how to incorporate
histopathology domain knowledge into the generative masked image models.
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