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Abstract: The automatic handling of banknotes can be conducted not only by specialized facilities,
such as vending machines, teller machines, and banknote counters, but also by handheld devices, such
as smartphones, with the utilization of built-in cameras and detection algorithms. As smartphones
are becoming increasingly popular, they can be used to assist visually impaired individuals in daily
tasks, including banknote handling. Although previous studies regarding banknote detection by
smartphone cameras for visually impaired individuals have been conducted, these studies are limited,
even when conducted in a cross-dataset environment. Therefore, we propose a deep learning-based
method for detecting fake multinational banknotes using smartphone cameras in a cross-dataset
environment. Experimental results of the self-collected genuine and fake multinational datasets for
US dollar, Euro, Korean won, and Jordanian dinar banknotes confirm that our method demonstrates
a higher detection accuracy than conventional “you only look once, version 3” (YOLOv3) methods
and the combined method of YOLOv3 and the state-of-the-art convolutional neural network (CNN).

Keywords: deep learning; multinational fake banknote detection; smartphone camera; cross-dataset
environment; visually impaired people

MSC: 68T07; 68U10

1. Introduction

Counterfeit or fake banknote recognition is critical for the automatic handling of paper
money, which is mostly conducted by automated transaction facilities, such as counting or
vending machines. These specialized devices are equipped with various detection sensors,
such as visible light, infrared (IR), ultraviolet (UV), and magnetic sensors, to process
multiple anti-counterfeit features, including watermarks, security threads, anti-copier
patterns, and hologram patterns [1]. Frequently checking counterfeit notes is generally
difficult owing to the significant number of notes in recirculation, and specialized devices
are not always accessible, especially for general users. This can be resolved by applying
electronic financial transaction methods; however, owing to their simplicity and reliability,
banknotes largely remain in recirculation.

The recent development of smartphones and handheld devices has made these devices
available to nearly every individual and they can assist users in various daily tasks. On
the other hand, advanced technologies in imaging devices have made it easy to reproduce
counterfeit banknotes from genuine banknotes. These types of fake banknotes can be easily
recognized by specialized devices that consist of multiple built-in counterfeit detection
sensors; however, they may not be recognized in recirculation by general users, especially
visually impaired individuals. Moreover, detection devices are unavailable to certain
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users, unlike smartphones that are becoming more common. Therefore, we propose a
multinational fake banknote detection method using smartphone cameras in a cross-dataset
environment, which aims to recognize fake banknotes reproduced from genuine banknotes
by general-purpose imaging devices. Compared to previous studies, our proposed method
is novel considering the following four features:

(1) This is the first study of multinational fake banknote detection using smartphone
cameras in a cross-dataset environment.

(2) We propose a two-stage classification model, including a “you only look once, version 3”
(YOLOv3)-based detector and an additional convolutional neural network (CNN)
classifier. The input images for the detector were retinex-filtered, which helped
enhance the detection results. To enhance the overall detection results, we tested the
model by using various scores and feature-lever fusion methods.

(3) Multinational and cross-dataset environments were considered to confirm the gener-
ality of the proposed model without retraining. To enhance the generality, sharpness-
aware minimization (SAM) optimization was adopted for the training of our model.

(4) Our trained CNN models and algorithms are made available, as shown in [2], for a
fair comparison by other researchers.

The following section presents related studies regarding fake banknote detection. The
proposed method is explained in Section 3. The experimental results and analyses are
reported in Section 4, followed by the conclusions in Section 5.

2. Related Works

Most previous studies regarding the detection of fake banknotes used multiple imaging
sensors to detect the various implemented features and patterns on banknotes; these
sensors have been applied to automated sorting devices, such as counting machines or
vending machines. Considering the visible-light imaging method, banknote detection
can be conducted either by transaction machines, as already indicated, or by general
users. The previously presented methods are categorized as follows: detection-based,
classification-based, and a combination of detection- and classification-based methods.
These are explained in the following subsections.

2.1. Detection-Based Methods

In banknote detection studies, a local feature description can be utilized to detect
the presence of banknotes in an input image as one approach. Costa reported a method
for the recognition of Euro banknotes using several detection algorithms and keypoint
descriptors, such as scale-invariant feature transform (SIFT) and speeded-up robust features
(SURF), on important features of reference banknote images [3]. This method was reported
to detect banknotes under various conditions, including being partially visible, folded,
wrinkled, or worn-out in complex environments [4]. SURF was also used in the study
by Hasanuzzaman et al. to automatically recognize banknotes to assist visually impaired
individuals [5]. Another recent approach includes utilizing localization algorithms to
determine whether a banknote is presented in the input image. Zhang and Yan proposed a
method for detecting and recognizing paper currency using a CNN as the feature extractor
under the framework of a single-shot multibox detector (SSD) model [6]. For the ban-
knote detection and recognition system for visually impaired individuals proposed in [7],
Joshi et al. employed the YOLOv3 CNN model and conducted experiments on a self-built
Indian banknote dataset. Since all methods consider only detection-based methods without
additional classifiers, the accuracy can be improved by using an additional classifier.

2.2. Classification-Based Methods

In addition to detection-based approaches, studies regarding automatic banknote
handling can be identified as using classification-based approaches; that is, banknote im-
ages or regions of interest (ROIs) are captured in specialized devices or extracted from
the original captured image to reduce the effect of the background and are subsequently
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classified into specified categories using a classification algorithm. When using visible-
light images of banknotes in classification-based approaches for counterfeit verification,
a combination with additional imaging sensors, such as ultraviolet (UV) [8] and infrared
(IR) [9,10] sensors, is generally considered. Bhavani and Karthikeyan [11] transformed
banknote images into YIQ color space using only visible-light images and used the lu-
minance histogram of the Y channel as the input for the support vector machine (SVM)
classifier for counterfeit detection. A similar type of feature was also used by Yeh et al. [12];
however, they used transmitted visible-light images of banknotes instead. In the method
proposed by Pham et al. [13], genuine and reproduced fake banknote images were cap-
tured by a smartphone camera using composite images of ROIs and CNNs as classifiers.
Classification-based studies regarding fake banknote recognition mostly used input images
readily prepared for the classifiers, without the detection or verification step, to confirm the
existence of the banknote in use.

2.3. Detection- and Classification-Based Methods

Considering the issues presented by detection-based and classification-based methods,
Park et al. proposed a three-stage detection method for both banknotes and coins using
a faster region-based CNN (Faster R-CNN) and an additional classifier of ResNet CNN
architecture [14]. However, their study involved only the recognition of the banknote type
and denomination, rather than the counterfeit (fake) detection of banknotes. Additionally,
they did not consider a cross-dataset environment.

Based on the analysis of previous studies, we propose a method for the detection
and classification of fake and genuine banknotes using visible-light images captured by
smartphone cameras in a cross-dataset environment. The banknote regions in the captured
banknote images are localized using the YOLOv3 model with the input of pre-processed
images. The detected ROIs are then used as inputs for additional CNN classifiers and
various scores and feature-lever fusion methods for classifying banknotes into fake or
genuine categories in a cross-dataset environment, regardless of the denomination and
exposed side of an image.

Table 1 presents a comparison of the previous studies and our proposed method.

Table 1. Comparisons of previous studies and our proposed method.

Category Method Advantage Disadvantage

Detection-based

- Using keypoint
descriptions and
detection algorithms
(SIFT, SURF, etc.) for
banknote recognition
[3–5]

- Using a CNN feature
extractor and SSD [6]

- Using YOLOv3 [7]

- Can be applied in an
actual use scenario for
detecting the presence
of banknotes

- Image acquisition is
simple because the
used images are
captured by general
cameras

- Mostly used for
recognition of
banknote type and
denomination and
rarely applied in fake
banknote detection

- Does not consider the
additional classifier,
which causes the
limitation of
performance
enhancement
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Table 1. Cont.

Category Method Advantage Disadvantage

Classification-based

- Combining
visible-light and other
imaging methods (UV,
IR) for counterfeit
detection [8–10]

- Using the Y channel’s
histogram of
visible-light reflection
or transmission images
of banknotes [11,12]

- Using composite
images of banknote
ROIs and CNNs [13]

The effect of the background
is reduced or eliminated
because only the banknote
areas or ROIs are used as the
input to the system

Input images of banknotes
need to be captured by
specialized devices or
manually selected from the
original images

Detection- and
classification-based

Homogeneous dataset
environment

A three-stage detection
method using Faster R-CNN
and ResNet [14]

High accuracies of banknote
detection and classification

Does not consider
cross-dataset environment

Cross-dataset
environment

Using YOLOv3 for banknote
detection and additional
CNNs with fusion methods
for recognition of fake
banknotes

- Can detect fake
banknotes by
smartphone camera

- Considers
multinational and
cross-dataset
environments

Requires training for
multiple CNN models

3. Proposed Method
3.1. Overview of the Proposed Method

Figure 1 presents the overall flowchart of the proposed method. The inputted banknote
image captured by a smartphone camera is pre-processed by applying a retinex filter. This
preprocessing step enhances the detection result by YOLOv3 in the next step. Although
the YOLOv3 model has two outputs that can detect the two classes of fake and genuine
banknotes, additional CNN models are used to obtain the final classification results. The
inputs for these CNN classifiers were the banknote regions cropped from the original input
image based on the bounding boxes detected by YOLOv3. We used two CNN models and
various scores or feature-level fusion methods to obtain the final classification results of
fake or genuine banknotes.

Figure 1. Overall flowchart of the proposed method.
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3.2. Inputted Banknote Image and Pre-Processing

We used a smartphone camera to capture banknote images. The camera’s capturing
modes and parameters were automatically set by the smartphone to represent a general
use scenario in practice. While being held in front of the camera, the banknote was exposed
either on the front or back side and in arbitrary directions, as shown in Figure 2a,b.

Figure 2. Example of banknote images captured from the (a) front side and (b) back side; (c) and (d)
are the corresponding pre-processed images using MSRCR.

In the next pre-processing step, a multi-scale retinex (MSR) filter is applied to the
original captured banknote image. This filtering technique is commonly used to enhance
the object detection results of YOLOv3 [15,16]. In this study, we use a variant of retinex,
namely, multi-scale retinex with color restoration (MRSCR) [17] because the color difference
is essential for the recognition of reproduced fake banknotes. The retinex theory states
that the image is affected by the incident light source and the reflection properties of the
surface [18]. To emphasize the objects’ color, the retinex algorithm helps to reduce the effect
of illumination and compensates for the reflection. The single-scale retinex (SSR) equation
is expressed as follows:

Ri(x, y) = log Ii(x, y)− log[F(x, y) ∗ Ii(x, y)] (1)

where Ii(x,y) is the image in the ith color spectral band, F(x,y) denotes the Gaussian filter,
and Ri(x,y) is the retinex output, that is, the reflectance for each pixel. To obtain the
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MSR, we calculated the weighted sum of the SSR results with various Gaussian scales, as
indicated in (2):

RMSRi =
N

∑
n=1

wnRni(x, y) (2)

where N is the number of scales and Rni is the ith component of the nth scale associated
with the weight wn. The color restoration algorithm for MSR is as follows [17]:

RMSRCSi(x, y) = G[Ci(x, y)RMSRi(x, y) + b] (3)

Ci(x, y) = β log[αIi(x, y)]− β log

[
S

∑
i=1

Ii(x, y)

]
(4)

where α and β are the coefficients controlling the strength of the nonlinearity and the gain
constant, respectively, G is the gain, and b is the bias value. These parameters were set to
the default values in [17]. Figure 2c,d present the results of the pre-processing step on the
captured banknote images.

3.3. Banknote Detection by YOLOv3

We adopted the YOLOv3 model for banknote detection. This is a deep learning-based
object detection algorithm that predicts bounding boxes using logistic regression and the
sum of squared error loss [19]. Compared to the previous versions, YOLOv3 uses the
Darknet-53 network architecture for feature extraction. This CNN-based feature extractor
is followed by a detector and classifier. The architecture of YOLOv3 is shown in Figure 3.

In Darknet-53, convolutional layers with a stride of two are used to reduce the dimen-
sion of the feature maps instead of pooling layers. This helps to maintain the quality of
object detection and prevents information loss, which usually occurs during subsampling.
Residual connections and multi-scale detection help improve the detection of small ob-
jects [19]. In YOLOv3, a convolutional layer of 1 × 1 with logistic regression is used instead
of softmax to enable multilabel classification.

The entire detection process of the inputted images was performed in a single evaluation
using YOLO. First, the inputted image is divided into grids and the bounding boxes, confi-
dence scores, and class probabilities are encoded based on the grid where the center of the
object is located. There are four values for the box coordinates indicating the following: two
offsets to the center of the object, width, and height (x, y, w, h). The box confidence score indi-
cates the likelihood of an object in the box and the class probabilities represent the probabilities
of the object in the box belonging to the classes. As a result, the output tensors at each feature
map have a size calculated by “Number of bounding boxes × (4 + 1 + Number of classes)”.
YOLOv3 generates detection results on three scales, as shown in Figure 3.

This algorithm results in the detection of multiple bounding boxes. In our study,
predictions with an object confidence that is less than the optimal threshold are rejected.
The optimal threshold was experimentally determined as 0.3, with the training data demon-
strating the highest detection accuracies. The remaining boxes may overlap and are filtered
using the non-max suppression (NMS) algorithm [20]. In the NMS, the bounding box with
the maximum confidence score is compared with the other boxes that intersect with it. If
the intersection over union (IoU) ratio is higher than 0.3, the box is rejected as multiple
detection on one banknote; this threshold of 0.3 is also experimentally determined with the
training data, which demonstrated the highest detection accuracies with the training data.

Although the YOLOv3 model in our method has two outputs corresponding to the two
classes of fake and genuine banknotes, we use additional CNN classifiers in the next step
to enhance the overall detection result, particularly for the cross-dataset testing experiment
to confirm the multinational usage ability of our method.
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Figure 3. Architecture of YOLOv3 object detector. “Conv2D” and “UpSample2D” denote the two-
dimensional convolutional layers and up-sampling layers, respectively.

In the “Banknote region detection using YOLOv3” step of Figure 1, both real and fake
banknotes whose ground-truth regions were manually annotated were used for training.
Therefore, YOLOv3 produces the detected region with the class label and probability of
real and fake banknotes. As shown in Figures 1 and 2, it is difficult to know the rotation
angle in the captured banknote image and the detected banknote region by YOLOv3 in
advance. Therefore, the detected banknote region is directly inputted to the additional
two CNNs for the final classification of genuine and fake banknotes without reorientation.
“Directly inputted” does not mean that the orientation is manually corrected; it means that
the detected banknote region itself is inputted to the additional two CNNs without any
orientation compensation and modification.

3.4. CNN Classifiers

In the next step of our method, we used additional CNN classifiers for the banknotes
detected in the previous step. In this study, we used ResNet-18 [21] and GoogleNet [22]
architectures for the classification step after YOLOv3 detection because they yielded good
results in previous studies [13,14] with original captured banknote images; GoogleNet was
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used as the comparative method for the experiments in [10]. We also tested the classification
using Inception-ResNet-v2 [23], which is a combination of the inception architecture and
residual connections of ResNet. Considering the types of input images for fake banknote
detection, we used the original banknote images as inputs for the CNN classifiers. That
is, based on the bounding boxes predicted by YOLOv3 in the previous step, we cropped
the ROIs from the original images and fed them into the CNNs to determine whether the
detected image regions belonged to the fake or genuine classes. The classification results
were then used instead of the class detected by YOLO to calculate the overall accuracy.

Figure 4 presents the structure of the CNN classifiers used in the proposed method.
In the case of ResNet-18 and GoogleNet, each architecture is comprised of substructures,
namely, the residual block and the inception block, respectively. Details regarding these
blocks are shown in Figure 5. In the residual block, denoted by “Two-Layer-Res” in
Figure 4a, the skip connection directly delivers the input data to the output of the two-layer
convolutional subnetwork, as shown in Figure 5a, which is useful for a network with
several layers. That is, when a group of layers produces an output identical to the input or
acts as an identity function, the skip connection can be used in the residual block instead
of the convolutional layers because the identical function is optimal. Residual blocks help
prevent performance degradation in very deep networks. The number of 3 × 3 filters in
each residual block may vary according to the group of blocks, which is denoted by the
indices in Figure 4a [21]. As shown in Figure 5a, two convolutional layers were used in
each residual block of ResNet-18.

Figure 4. Structures of the CNNs used in our method: (a) ResNet-18, (b) GoogleNet, and (c) Inception-
ResNet-v2. “Conv” denotes the two-dimensional convolutional layer, with filter size and the number
of filters in parentheses; “MaxPool” and “AvgPool” indicate the max pooling and average pooling
layers, respectively.
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Figure 5. Structures of (a) the two-layer residual block in ResNet-18 and (b) the inception block in
GoogleNet, respectively.

The inception block in GoogleNet, which is denoted by “Inception” in Figure 4b,
comprises a filter with different scales of 1 × 1, 3 × 3, and 5 × 5 for extracting features of
various scales, as shown in Figure 5b. As shown in Figure 5b, six convolutional layers were
used in each inception block of GoogleNet. At the output of the filter branches, the feature
maps were concatenated depth-wise. Similar to the case of ResNet-18, the number of filters
in the branches of each inception block vary among the group of blocks in the GoogleNet
architecture [22]. Batch normalization was used between the convolutional layers of both
architectures to add generalization to the network [24].

The substructures in Inception-ResNet-v2, denoted by “Inception-Res” in Figure 4c,
contain the key features of the residual block and inception block combined. The structures
of the residual inception blocks are shown in Figure 6. There are several modifications
to these blocks compared to the previous version of the inception network. First, in the
Inception-Res-A subblock, a 5 × 5 convolution is factorized into two 3 × 3 operations to
improve the computational speed. In addition, the filter size of n × n was factorized to a
combination of 1 × n and n × 1 convolutions, which significantly reduced the computa-
tional cost [25]. This technique was applied to all residual inception blocks, as shown in
Figure 6. In the residual inception block C, shown in Figure 6c, the filter banks are expanded
instead of being made deeper. This helps remove the representational bottleneck, which
is the phenomenon of information loss when dimensions are drastically reduced [25]. In
addition, 7, 10, and 10 convolutional layers were used in Inception-Res-A, Inception-Res-B,
and Inception-Res-C of Inception-ResNet-v2, as shown in Figure 6. The optimal numbers of
all the convolutional layers in the residual block of ResNet-18, inception block of GoogleNet,
and Inception-Res-A, B, and C of Inception-ResNet-v2 were experimentally determined,
and the best classification accuracies of genuine and fake banknotes were obtained with
training data.

As shown in Figure 7, the stem block, which provides the initial set of operations
before feeding the data to the inception blocks, is modified in Inception-ResNet-v2 to be
more uniform with other modules. Compared to previous versions of inception networks,
the Inception-ResNet-v2 architecture includes specialized reduction blocks, which are used
to change the height and width of the feature map grid. These uniform designs can enable
performance boosting compared to previous versions, which have similar functionalities
but no specified blocks [23].

The convolutional blocks are considered as the feature extractor and are followed
by one fully connected layer (denoted by “Dense” in Figure 4), which plays the role of
a classifier in the CNN architecture. Dropout layers are employed in all of these fully
connected layers, with a 50% probability of randomly disconnecting nodes during training,
and help prevent overfitting in the network training process [26].
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Figure 6. Structures of the residual inception blocks in the Inception-ResNet-v2 architecture:
(a) Inception-Res-A, (b) Inception-Res-B, and (c) Inception-Res-C in Figure 4c.

3.5. Score-Level and Feature-Level Fusion of CNN Classifiers and the Evaluation Criterion

In this study, the performance of the proposed method was tested under cross-dataset
conditions. That is, the model trained on the currency dataset was used for testing on a
different dataset. To enhance the testing result, we considered not only one additional
CNN classifier in the subsequence of YOLOv3 detection but also used two CNNs and
applied various score-level fusions and feature-level fusions on the outputs of these two
additional classifiers.

The CNN classifiers used in our study have two outputs corresponding to the proba-
bility of the input image belonging to either the fake or genuine banknote class. The output
values were calculated using the softmax function, whose formula is given as follows:

pi =
eyi

∑C
i=1 eyi

(5)

where yi and pi are the activation value and the calculated class probability at the ith output
of the network, respectively, and C is the number of classes. In this study, C is equal to
two, namely, the fake and genuine classes. That is, the p1 and p2 of Equation (5) show the
output probabilities of fake and genuine banknote classes by CNN, respectively, and the
p1 and p2 have ranges from 0 to 1, respectively. As shown in Figure 1, we use two CNNs
which produce a total of four output probabilities of p1~p4 (p1 and p2 from CNN-1 and p3
and p4 from CNN-2), and these four output probabilities are too many to be combined by
score-level fusion. Therefore, we obtain the combined score (sA) from p1 and p2 and the
combined score (sB) from p3 and p4 by Equations (6) and (7), where the sA and sB values
have a range from −1 to 1, respectively. Finally, these two scores (sA and sB) are combined
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by various score-level fusion methods of Equations (8)–(18). Based on combined scores of
Equations (8)–(18), the final classification of genuine and fake banknotes is performed.

sA = p1 − p2 (p1 + p2 = 1) (6)

sB = p3 − p4 (p3 + p4 = 1) (7)

MAX rule : SMAX = max(sA, sB) (8)

MAX-Absolute rule : SMAXABS = max(|sA|, |sB|) (9)

MIN rule : SMIN = min(sA, sB) (10)

MIN-Absolute rule : SMINABS = min(|sA|, |sB|) (11)

Weighted-SUM rule : SwSUM = wsA + (1− w)sB, with 0 < w < 1 (12)

Weighted-PRODUCT rule : SwSUM = (1 + sA)
w(1 + sB)

1−w − 1, with 0 < w < 1 (13)

SVM rule : SSVM = sign(∑ aiyiK(sA, sB) + b), (14)

Linear kernel : K(sA, sB) = sT
AsB (15)

RBF kernel : K(sA, sB) = exp−γ||sA−sB ||2 , γ > 0 (16)

Polynomial kernel : K(sA, sB) =
(

γ(sT
AsB

)
+ coe f )degree (17)

Sigmoid kernel : K(sA, sB) = tanh
(

γ
(

sT
AsB

)
+ coe f

)
(18)

Figure 7. Structures of other blocks in Inception-ResNet-v2 architectures: (a) Stem, (b) Reduction-A,
and (c) Reduction-B in Figure 4c. “s2” denotes a stride number of 2.

Among the score-level fusion rules indicated above, the MIN and MAX rules with
absolute values shown in Equations (9) and (11) imply the evaluation of the separation
degree of the prediction probabilities of the two classes on the CNN classifiers, as the
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component scores of the fusion method are the differences of the prediction probabilities.
The optimal weight values in Equations (12) and (13) were determined using the training set.
In the weighted-PRODUCT rule, 1 is added to ensure that the base of the exponentiation is
non-negative, as the score values are in the range of [−1, 1]. In the support vector machine
(SVM) score-level fusion in equation (14), the performances of various kernel functions of
Equations (15)–(18) were compared with the training data, and the radial basis function
(RBF) kernel of Equation (16) was selected. In Equation (14), ai, yi, and b are the parameters
trained using the training dataset [27].

We also used a feature-level fusion method with a three-layer neural network (NN),
where we removed the last fully connected layers (dense layers) of the CNN classifiers,
concatenated the activation vectors at the last pooling layers connected to the original dense
layers of the two CNNs, and fed them into a three-layer NN. This NN consists of three
fully connected layers, with the number of nodes in each layer being 10, 5, and 2, and the
last number corresponding to the two classes as the original CNN classifiers. As a result,
we can obtain the class probabilities directly from the NN-rule.

In the last step, we replaced the class detection results of YOLOv3 with the classi-
fication results of additional CNNs with fusion methods. The overall performance was
evaluated using the mean average precision (mAP) criterion, with the IoU selected to be
0.5, which is widely used in object detection studies [19,28,29]. The average precision
(AP) demonstrates the area under the receiver operating characteristic (ROC) curve in the
graphs whose x- and y-axes are precision and recall, respectively, and the mAP value can
be calculated using Equation (19) as follows:

mAP =
∑N

q=1 AvgP(q)

N
(19)

where N is the number of queries and AvgP(q) is the average precision score for each query.
That is, the mAP shows the mean value of APs calculated with all the inputs. Therefore,
the mAP already has the measurement concepts of sensitivity (recall) [30], precision, and
area under ROC, and it has been widely used as the performance measurement criterion in
object detection and classification studies [19,20,28,29].

4. Experimental Results
4.1. Experimental Dataset

The experimental dataset used in this study consists of fake and genuine banknote
images from the following three national currencies: the Euro (EUR), Korean won (KRW),
and US dollar (USD). There are five denominations of EUR (EUR 5, EUR 10, EUR 20,
EUR 50, and EUR 100), four of KRW (KRW 1000, KRW 5000, KRW 10,000, and KRW 50,000),
and six of USD (USD 1, USD 5, USD 10, USD 20, USD 50, and USD 100). The fake banknotes
were created by reproduction as follows: we used the scanner of the HP® LaserJet Pro
M1536dnf multifunction printer [31], the Samsung Galaxy Note 5 [32] and Samsung Galaxy
Note 10 [33] cameras to capture images on both sides of the original banknotes. Utilizing
the captured images, we used the HP Color LaserJet CP4525 printer [34] to print colored
banknote images on normal paper to create a reproduced banknote. Subsequently, we
captured images using the aforementioned smartphone models while holding the fake
and genuine banknotes in front of the cameras or placing them on surfaces to simulate the
typical use scenario of banknotes. The background of the capture varied between a plain
color and complex backgrounds, as shown in Figures 8–10. Each type of fake banknote
(smartphone-reproduced or scanner-reproduced) and genuine banknote was captured ten
times individually, and in the group of three types twice, on both sides. The resulting
number of images for each currency type, including EUR, KRW, and USD, were 360, 288,
and 432, respectively.
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Figure 8. Examples of EUR banknote images in the dataset: (a) genuine, (b) scanner-reproduced,
(c) smartphone-reproduced, and (d) a group photo of the three types, from upper to lower:
smartphone-reproduced, scanner-reproduced, and genuine.

Figure 9. Examples of KRW banknote images in the dataset: (a) genuine, (b) scanner-reproduced,
(c) smartphone-reproduced, and (d) a group photo of the three types, from left to right: scanner-
reproduced, smartphone-reproduced, and genuine.

To further test the performance of our method on banknotes with a variety of qualities,
we used an additional open dataset of Jordanian dinar (JOD) bill images provided in [4].
The banknote images in the original dataset consist of four denominations (JOD 1, JOD 5,
JOD 10, and JOD 20) and were captured at various angles, distances, scales, illumination
degrees, and conditions, such as being folded and wrinkled, resembling street quality, as
shown in Figure 11. We considered these images to be genuine, printed them on normal
paper, recaptured the reproduced ones, and considered these as the smartphone-reproduced
banknotes, as indicated in our aforementioned dataset. The number of fake and genuine
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images was 180 for each class, for a total of 360 images in the JOD dataset. Examples of the
images in our experimental dataset are shown in Figures 8–11.

Figure 10. Examples of USD banknote images in the dataset: (a) genuine, (b) scanner-reproduced,
(c) smartphone-reproduced, and (d) a group photo of the three types, from upper to lower: genuine,
scanner-reproduced, and smartphone-reproduced.

Figure 11. Examples of JOD banknote images in the dataset: (a) genuine, (b) fake (smartphone-reproduced).

4.2. Training and Testing YOLOv3 on the Multinational Dataset

In the first experiment, we performed a four-fold cross-validation of the YOLOv3
architecture on the combined dataset of four national currencies using the original image.
We randomly divided the dataset of banknote images into four equal parts, three of which
were used for training and the remaining for testing. This training and testing procedure
was repeated four times with alternate dataset parts.

The training and testing experiments were conducted using the Keras deep learning li-
brary [35] on a desktop computer with the following configuration: Intel® Core™ i7-3770 K
CPU @ 3.50 GHz [36], 16 GB DDR3 memory, and an NVIDIA GeForce GTX 1070 graphics
card (1920 CUDA cores, 8 GB GDDR5 memory) [37]. We trained the YOLOv3 model with
transfer learning on pretrained weights using the MSCOCO dataset [19]. The loss graphs
for the four training processes are shown in Figure 12.
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Figure 12. Training loss of YOLOv3 on the combined multinational dataset of the four currency types.

Table 2 presents the test results of the four-fold cross-validation on the combined dataset.

Table 2. Testing results of YOLOv3 on the combined multinational dataset. (Measure: mAP, unit: %).

1st Testing 2nd Testing 3rd Testing 4th Testing Average

97.856 100 99.301 100 99.289

As shown in Table 2, only YOLOv3 provides a good performance in terms of a high
mAP value in the four-fold cross-validation condition, even with the original captured
banknotes. We further tested the cross-dataset condition in subsequent experiments.

4.3. Cross-Dataset Training and Testing of YOLOv3 and CNNs

In this training and testing experiment, we used an image dataset of one currency
type for training and tested the banknote images of the remaining currencies. The training
process was alternately conducted on the EUR, KRW, and USD datasets; the remaining
three datasets in each case were used for testing.

For the YOLOv3 training, we used retinex-filtered images of banknotes to enhance the
detection result. The Adam optimizer was used for the training of YOLOv3 [38]. Transfer
learning was used in these experiments.

To train the additional CNNs, we used the following three optimizers: stochastic gra-
dient descent (SGD), Adam, and sharpness-aware minimization (SAM) [39]. We manually
cropped the banknote regions in the original captured banknote images and used them as
the training input. The data augmentation methods used in these training processes were
based on random rotation and shifting. Figures 13–15 present the loss graphs of the training
process for the three CNN architectures used in this study using various optimization
methods on the three national currency datasets.
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Figure 13. Training losses of CNN classifiers on the EUR dataset with various optimization methods:
(a) ResNet-18, (b) GoogleNet, and (c) Inception-ResNet-v2.

Figure 14. Training losses of CNN classifiers on the KRW dataset with various optimization methods:
(a) ResNet-18, (b) GoogleNet, and (c) Inception-ResNet-v2.

Figure 15. Training losses of CNN classifiers on the USD dataset with various optimization methods:
(a) ResNet-18, (b) GoogleNet, and (c) Inception-ResNet-v2.

Using the trained CNN models, we tested the remaining (different) datasets and
compared the results. In the first comparative experiment, we used YOLOv3 and a
single additional CNN classifier to select the combination that yielded the best results.
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Tables 3–5 present the experimental results of using YOLOv3 and a single CNN trained
for each national currency dataset and tested on the remaining ones, which confirms that
YOLOv3, with a single classifier, demonstrates a higher accuracy than YOLOv3, without
additional classifiers.

Table 3. Experimental results of training on EUR and testing on the other currency types using
YOLOv3 and a single state-of-the-art CNN classifier. (Measure: mAP, unit: %).

Additional CNN Classifier Optimizer KRW USD JOD

ResNet-18 [21]
SGD 64.717 63.549 41.570

Adam 57.801 71.771 41.141
SAM 64.413 65.395 43.749

GoogleNet [22]
SGD 66.968 75.618 37.607

Adam 64.393 77.720 23.285
SAM 64.050 72.480 39.006

Inception-ResNet-v2 [23]
SGD 65.560 72.558 34.280

Adam 61.941 71.012 43.229
SAM 65.227 69.133 41.125

YOLOv3 Only (without additional CNN) [19] 56.713 60.253 40.769

Table 4. Experimental results of training on KRW and testing on the other currency types using
YOLOv3 and single state-of-the-art CNN classifier. (Measure: mAP, unit: %).

Additional CNN Classifier Optimizer EUR USD JOD

ResNet-18 [21]
SGD 59.022 61.948 24.553

Adam 77.471 50.556 33.103
SAM 70.638 66.131 26.774

GoogleNet [22]
SGD 77.695 58.269 26.811

Adam 65.954 49.535 28.661
SAM 73.361 58.651 27.677

Inception-ResNet-v2 [23]
SGD 65.195 53.242 21.609

Adam 65.664 50.478 24.163
SAM 84.757 57.312 29.093

YOLOv3 Only (without additional CNN) [19] 78.800 54.326 23.117

Table 5. Experimental results of training on USD and testing on the other currency types using
YOLOv3 and single state-of-the-art CNN classifier. (Measure: mAP, unit: %).

Additional CNN Classifier Optimizer KRW EUR JOD

ResNet-18 [21]
SGD 56.219 45.593 20.481

Adam 43.454 36.673 9.489
SAM 58.267 50.389 20.581

GoogleNet [22]
SGD 38.775 33.303 8.604

Adam 54.066 52.967 13.382
SAM 42.912 36.287 8.269

Inception-ResNet-v2 [23]
SGD 37.961 36.996 8.013

Adam 53.025 54.588 15.749
SAM 38.651 38.843 7.851

YOLOv3 Only (without additional CNN) [19] 37.214 35.499 12.146

Based on the aforementioned experimental results, for each case we selected the
two combinations that yielded the best and second-best results and used these two CNN
classifiers as CNN-1 and CNN-1, respectively, as shown in Figure 1. Finally, we tested the
overall method with various score-level and feature-level fusion methods, as indicated in
Section 3.5. The experimental results are shown in Tables 6–8, which confirm the higher
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accuracies of the score-level and feature-level fusion methods relative to those of the single
CNN, as shown in Tables 3–5. Nevertheless, the detection accuracies for JOD were lower
than those for the other currencies. This is because the image quality of the JOD banknotes
was significantly lower than those of the other currencies, as shown in Figure 11, and the
consequent image characteristics of JOD differ from those of other currencies.

Table 6. Experimental results of training on EUR and testing on the other currency types using the
proposed fusion methods on two additional CNN classifiers. (Measure: mAP, unit: %).

Methods KRW USD JOD

MAX 67.141 78.449 42.544
MAX-ABSOLUTE 67.814 77.206 42.536

MIN 64.881 75.294 42.145
MIN-ABSOLUTE 64.109 76.571 42.647
Weighted-SUM 69.051 77.350 43.021

Weighted-PRODUCT 67.089 75.711 44.651
SVM 67.190 75.639 42.536

3-layer NN 66.843 74.023 45.156

Table 7. Experimental results of training on KRW and testing on the other currency types using the
proposed fusion methods on two additional CNN classifiers. (Measure: mAP, unit: %).

Methods EUR USD JOD

MAX 76.769 69.921 34.441
MAX-ABSOLUTE 83.338 67.928 32.530

MIN 86.097 56.378 31.474
MIN-ABSOLUTE 79.282 58.089 33.359
Weighted-SUM 86.311 67.620 28.782

Weighted-PRODUCT 86.374 66.414 28.412
SVM 77.152 67.570 32.029

3-layer NN 76.842 71.687 25.322

Table 8. Experimental results of training on USD and testing on the other currency types using the
proposed fusion methods on two additional CNN classifiers. (Measure: mAP, unit: %).

Methods EUR KRW JOD

MAX 49.006 57.975 19.029
MAX-ABSOLUTE 57.670 57.613 23.548

MIN 58.424 56.474 21.774
MIN-ABSOLUTE 50.060 56.604 17.639
Weighted-SUM 57.670 57.671 23.548

Weighted-PRODUCT 59.946 58.272 22.374
SVM 55.781 57.298 19.525

3-layer NN 50.504 55.958 18.448

In addition, we show the classification accuracies of genuine and fake banknotes in
Table 9, which confirms that the proposed method yields accuracies higher than 70% even
in the cross-dataset environment. However, the classification accuracies with JOD are lower
than those for the other currencies. This is because the image quality of the JOD banknotes
is significantly lower than those of the other currencies, as shown in Figure 11, and the
consequent image characteristics of JOD severely differ from those of other currencies.
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Table 9. Experimental results of training on EUR, KRW, and USD, and testing on the other currency
types using the proposed fusion methods on two additional CNN classifiers. (Measure: average
classification accuracy, unit: %).

Methods
Training on EUR Training on KRW Training on USD

KRW USD JOD EUR USD JOD EUR KRW JOD

MAX 68.213 81.314 44.176 77.128 71.034 41.556 51.125 59.125 21.452
MAX-ABSOLUTE 69.273 78.356 44.365 85.974 69.156 34.781 59.781 59.437 28.992

MIN 65.992 76.572 43.657 87.137 58.165 31.095 60.128 55.786 23.124
MIN-ABSOLUTE 65.674 77.298 44.129 79.103 59.457 32.598 52.251 57.913 18.973
Weighted-SUM 73.324 77.113 44.981 86.028 69.135 29.891 59.135 58.781 30.342

Weighted-PRODUCT 68.156 76.913 45.897 89.106 67.578 29.678 70.571 70.324 24.762
SVM 68.382 74.893 44.987 79.532 68.875 33.991 57.179 59.114 21.156

3-layer NN 68.114 75.923 51.621 77.106 73.986 27.523 52.198 56.143 18.334

Even in Table 9, the classification accuracies are far from 0.9999. That is because we
used different datasets for training and testing of our method (cross-dataset environment),
respectively. For example, after training on the EUR dataset, we tested on the untrained
dataset of USD. Since the image characteristics between cross-datasets are different, the
classification accuracies are much lower than 0.9999. However, in case we used the same
multinational dataset of USD, EUR, KRW, and JOD for training and testing (in detail, in
each fold, 75% of the whole multinational dataset was used for training, and the remained
25% of the whole multinational dataset was used for testing), the detection accuracies of
the counterfeit banknotes were almost 99.3% only by YOLOv3 without additional CNN
classifiers, as shown in Table 2.

Table 10 shows the confusion matrices of classification accuracies. As shown in
Table 10, except for the case of testing with JOD, all the accuracies are higher than 70%.

Table 10. Confusion matrices of experimental results of training on EUR, KRW, and USD, and testing
on the other currency types using proposed fusion methods on two additional CNN classifiers.
(Measure: average classification accuracy, unit: %).

Methods
Training on EUR Training on KRW Training on USD

KRW USD JOD EUR USD JOD EUR KRW JOD

Actual

Predicted
Real Fake Real Fake Real Fake Real Fake Real Fake Real Fake Real Fake Real Fake Real Fake

Real 73.324 26.676 81.314 18.686 51.621 48.379 89.106 10.894 73.986 26.014 41.556 58.444 70.571 29.429 70.324 29.676 30.342 69.658

Fake 26.676 73.324 18.686 81.314 48.379 51.621 10.894 89.106 26.014 73.986 58.444 41.556 29.429 70.571 29.676 70.324 69.658 30.342

Figures 16–18 present the correctly detected cases in the testing experiments that
yielded the best results in Tables 6–8, which confirmed that our method can correctly
detect and differentiate genuine and fake banknotes, despite banknotes having complex
backgrounds, the presence of image blurring, folded banknotes, and low image quality.

Only the far-right banknote is a genuine banknote in Figure 19a; however, all three
banknotes were incorrectly detected as genuine. The USD banknote in Figure 19b is
actually a fake banknote; however, it was misclassified as genuine. As shown in Figure 19c,
multiple bounding boxes were detected; however, only one banknote is presented in the
image. In addition, the fake JOD note here was misclassified as being genuine. These
errors were caused by nonuniform illumination, rotated banknotes, as well as folded and
dirty banknotes.
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Figure 16. Correctly detected cases of (a) genuine KRW, (b) fake USD, and (c) genuine JOD banknotes
using the models trained on the EUR dataset.

Figure 17. Correctly detected cases of (a) a genuine EUR note; (b) (from top to bottom) scanner-
reproduced fake, genuine, and smartphone-reproduced fake USD notes; and (c) a fake JOD note
using the models trained on the KRW dataset.

Figure 18. Correctly detected cases of (a) a fake EUR note; (b) (from top to bottom) genuine and two
fake KRW notes; and (c) a genuine JOD note using the models trained on the USD dataset.
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Figures 19–21 present the error cases in the testing experiments that yielded the best
results in Tables 6–8.

Figure 19. Error cases of (a) KRW, (b) USD, and (c) JOD banknote images using the models trained
on the EUR dataset for detection.

Figure 20. Error cases of (a) EUR, (b) USD, and (c) JOD banknote images using the models trained on
the KRW dataset for detection.
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Figure 21. Error cases of (a) EUR, (b) KRW, and (c) JOD banknote images using the models trained
on the USD dataset for detection.

The genuine EUR and USD banknotes shown in the uppermost position of Figure 20a,b,
respectively, were misclassified as fake banknotes. As shown in Figure 20c, no bounding
box was detected although there is a banknote in the image. These errors were caused by
non-uniform illumination, rotated banknotes, as well as occluded and dirty banknotes.

In Figure 21a, not only was the lowermost banknote not detected, but the genuine
banknote in the middle was also misclassified as a fake banknote. In the image shown in
Figure 21b, although the fake banknote was correctly detected, an additional non-banknote
bounding box was detected in the background. A similar case was observed for the genuine
JOD banknote in Figure 21c. These errors were caused by complex backgrounds.
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4.4. Discussion

As shown in Figures 1 and 2, it is difficult to know the factors of affine transformation
in the captured banknote image and the detected banknote region by YOLOv3 in advance.
Therefore, the detected banknote region is directly inputted to the additional two CNNs
for the final classification of genuine and fake banknotes. In order to measure the detec-
tion accuracies of counterfeit banknotes according to the factors of affine transformation,
we should artificially generate the image by translation, in-plane rotation, scaling, and
sheering [40]. However, these transformations produce non-real images because the ad-
ditional pixel interpolations should be performed after all the transformations except for
translation [41], and experimental results with these transformed images cannot reflect the
actual detection accuracies of counterfeit banknotes in real-world applications (collected
by actual cameras). Even in the case that we generate images according to the various
factors of uneven lighting, low resolution, etc., this artificial generation makes non-real
images because additional pixel interpolation and artificial changes to pixel values should
be performed [41], and experimental results with these images cannot reflect the actual
detection accuracies of counterfeit banknotes in real-world applications, either.

However, as shown in Figures 8–11 and Figures 16–21, our experimental images
were captured in natural user environments, including complex backgrounds, various
time and places, illuminations, resolutions, and distances, etc. Therefore, they already
include the various factors of translation, in-plane and out-plane rotation, scaling, sheering,
and warping of banknotes, which corresponds to perspective transformation. Perspective
transformation includes more transformation factors than affine transformation which
includes only translation, in-plane rotation, scaling, and sheering [40]. In addition, they
already include the various factors of uneven lighting, low resolution, occlusions, etc.
Therefore, we confirm that our experimental results in Tables 2–9 were obtained with the
banknote images collected by various perspective transformations and factors in real-world
applications. Although our experimental data were collected in natural user environments,
there is no case of overlapping multiple banknotes and this will be evaluated in future work.

As the next experiment, for analyzing the classification features extracted by the pro-
posed networks for genuine and fake banknotes, we adopted the class activation map
(CAM) technique [42]. In Figure 22, we show the visualized CAMs for correctly classified
genuine, smartphone-reproduced, and scanner-reproduced fake EUR 100 banknotes cap-
tured from the front side, using the Inception-ResNet-v2 model trained on the KRW dataset.
The average activation map was calculated at each stage of the network architecture, scaled,
and shown on the banknote regions cropped from the bounding boxes detected by YOLOv3
in pseudo-color scheme, with maximum and minimum values denoted by red and blue
colors, respectively. Consequently, the image regions superimposed by closed-to-red colors
represents the important features extracted by the CNN classifiers.

As shown in Figure 22a, in the case of genuine banknotes, the higher activation
values on genuine banknotes are focused on the texture areas containing structures such
as building and number patterns, whereas on the fake banknotes of Figure 22b,c, the
regions with less patterning (blank areas, including watermarks) are more activated. That
is because the invisible noises produced in the smartphone- and scanner-reproduced fake
banknote images can be more precisely extracted by our model in the blank area than in
the textured areas due to the complicated patterns of texture area and these noises can act
as key features for distinguishing the fake banknotes. In addition, according to the depth
of the network, the unwanted regions become more unimportant for the classification task,
and the high activation values become more of a focus on the inside regions of banknotes,
as shown in the figures from left to right in Figure 22.
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Figure 22. Visualization of CAM at Stem, Reduction-A, Reduction-B, and the last convolutional
layers (Figure 4c) of the correctly classified EUR banknotes using Inception-ResNet-v2 trained on the
KRW dataset: (a) genuine, (b) smartphone-reproduced fake, and (c) scanner-reproduced fake.

5. Conclusions

In this study, we have proposed a deep learning-based method for detecting multi-
national fake banknotes using smartphone cameras in a cross-dataset environment. This
is the first study of multinational fake banknote detection using a smartphone camera in
a cross-dataset environment. In this study, we have proposed a two-stage classification
model that includes a YOLOv3-based detector and an additional CNN classifier. The input
images for the detector were retinex-filtered images, which helped enhance the detection
result. To further enhance the overall detection results, we proposed a model with various
scores and feature-lever fusion methods. In our study, multinational and cross-dataset
environments were considered to confirm the generality of the proposed model without
retraining; furthermore, to enhance the generality, SAM optimization was also adopted for
the training of our model.

Experimental results for the self-collected multinational genuine and fake datasets of
the USD, EUR, KRW, and JOD banknotes confirm that our method demonstrates higher
detection accuracies than those of conventional YOLOv3 or YOLOv3 with state-of-the-
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art CNN. Nevertheless, the detection errors incurred by our method occur in cases of
non-uniform illumination, rotated banknotes, folded and dirty banknotes, occluded and
dirty banknotes, and banknotes with complex backgrounds. In addition, the detection
accuracies of JOD banknotes using our method are lower than those of other currencies.
This is because the image quality of the JOD notes was significantly lower than those of
other currencies, and the consequent image characteristics of JOD are different from those
of the other currencies.

Although we could not evaluate the limit of our method as to how much of the
banknote can be obscured, we can estimate that severe occlusions by hand can cause false
rejection. In future work, we would measure performance degradation with the database,
including severe occlusions by hand. In addition, we would investigate a method for
enhancing the accuracies in the cases of non-uniform illumination, rotated banknotes,
folded and dirty banknotes, occluded and dirty banknotes, and banknotes with complex
backgrounds. We already used data augmentation methods in the training processes based
on random rotation and shifting. Therefore, our trained model can cope with the cases
of oriented banknote images captured in the natural user environments of Figures 8–11
and Figures 16–21. However, the accuracy of our method can be degraded with more
banknote images including severe rotation, even with data augmentation based on random
rotation in the training processes. In future work, we would look to make the method
robust with respect to severe rotation based on orientation compensation or the features
invariant to orientation. In addition, we would research a method for solving the problem
of different image characteristics on testing data compared to training data. In detail, we
would research the method of enhancing the classification accuracy close to 99.99% by
using the image transformation method between different currencies based on various
generative adversarial networks. In addition, we would research the method of extracting
the features for counterfeit banknote classification, which are not dependent on the types
of currencies, and we would consider how results vary with various types of smartphones
produced by different companies.
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