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Abstract: We consider an approach to mathematical modeling of photodegradation of polymer
nanocomposites with photoactive additives using the Monte Carlo methods. We principally pay
attention to the strength decrease of these materials under solar light action. We propose a new
term, “photocatalytic fatigue”, which we apply to the particular case when the mechanical strength
decreases only owing to the presence of photocatalytically active components in polymeric nanocom-
posite material. The propriety of the term is based on a relative similarity of photostimulated
mechanical destructive processes in nanocomposites with photoactive additives and mechanical
destructive processes typical for metal high-cycle fatigue. Formation of the stress concentrations is
one of the major causes of fatigue cracks generation in metals. Photocatalytic active nanoparticles
of semiconductors initiate a generation of the stress concentrations under sunlight irradiation. The
proposed mathematical model is a Wöhler curve analog for the metal high-cycle fatigue. We assume
that equations for high-cycle fatigue curves of samples with stress concentrations could be used in
mathematical modeling of polymer nanocomposites photodegradation. In this way, we replace the
number of loading cycles with the exposition time in the equations. In the case of polypropylene and
polyester samples with photoactive titanium dioxide, the experimental parameters of phenomenolog-
ical equations for “photocatalytic fatigue” are calculated using one of the Monte Carlo methods based
on the random search algorithm. The calculating scheme includes a solution of the extreme task
of finding of the minimum of nonnegative transcendent multivariable function, which is a relative
average quadratic deviation of calculated values of polymeric nanocomposite stress in comparison
with corresponding experimental values. The applicability of the “photocatalytic fatigue” model for
polymer nanocomposites with photoactive nanoparticles is confirmed by the example of polypropy-
lene and polyester samples. The approximation error of the experimental strength values for them
did not exceed 2%.

Keywords: Monte Carlo methods; cyclic fatigue; Wöhler curve; stress concentration; photodegradation;
photocatalysts; polymeric nanocomposites

MSC: 74S60

1. Introduction

We consider a finding of the minimum of a nonnegative transcendental function of
several variables. This problem is solved in the case of approximation of experimental
points by the least squares method in the class of nonlinear functions of several variables.
Tasks of this kind are quite complex, and a possible way to solve them is to use one of the
Monte Carlo methods [1,2]. In this case, we explore the entire area in which the global
extremum is being searched. In the case of directed smooth optimization methods, the
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search is carried out only in a certain neighborhood of the extremum, which may not be
global, but only local [3,4]. Therefore, for Monte Carlo methods, the probability of finding
a global extremum is higher than for smooth optimization methods. Monte Carlo methods
can be defined as numerical methods for solving mathematical problems by modeling
random variables and statistical evaluation of their characteristics [5,6].

With this definition, Monte Carlo methods include stochastic approximation and
random search. Monte Carlo methods are used in various optimization problems, including
the problems of finding the global extremum [7–10].

We use a method based on a simple random search algorithm [7]. In this case, the
unknown parameters of the transcendental function are uniformly distributed in a limited
subset of the Euclidean space.

The corresponding method of mathematical modeling of the behavior of the strength
properties of organic polymers containing photoactive low-dimensional nanoparticles
during the initial stage of photostimulated degradation of the material is discussed.

Organic polymeric nanocomposites now substitute for many traditional materials,
such as steels, metals, wood, and ceramics, in various applications. Moreover, we could
not have found better materials for use in space exploration, motorcar construction, and
medicine [11,12].

Given polymers comprise inorganic low-dimensional nanoparticles in the bulk or at
the surface [11]. The modification of polymeric materials by metal oxides nanoparticles
makes it possible to manipulate optical and electrophysical properties and subsequently
to find new application fields. For instance, titanium dioxide (TiO2) or titanates such as
BaTiO3, SrTiO3, etc. are used to remove the effects of UV and IR parts of sunlight [13].
Changes in mechanical properties owing to light absorption by oxide nanoparticles are not
always taken into account. We could meet an utmost opinion that the energy of absorbed
solar light, including near UV-part, is dissipated within a material bulk, and insignificant
heating observed in this case does not appreciably affect strength properties [14]. At the
same time, the semiconductor oxide nanoparticles are photochemically active in the sense
that the absorption of light energy initiates, by means of inner photoelectrical effect, a
chemical reaction. Shortly after, light energy absorbed by the semiconductor is transformed
in the energy of electrically charged species—photogenerated electrons and holes, and
they participate in reduction and oxidation chemical reactions within the polymer matrix
(note that this descriptive scheme is very similar to the scheme of such phenomenon as the
semiconductor photocatalysis [15]). The key parameter is the semiconductor energy band
gap. In our case, the energy band gap interval for the photochemical active semiconductor
has an upper bound limited by energy of UV solar quanta incident on Earth’s surface
(∼4 eV) and a lower bound limited by an energy required for concrete chemical reaction.
Typical pigments such as titanium dioxide, zinc oxide, ferric oxide, etc., satisfy these
conditions, taking into account the quantum-dimensional effect which increases the band
gap value.

In addition, nanocomposite polymers are successfully studied as potential photocata-
lysts of oxidative decomposition of water and air organic pollutants [16–18]. Construction
and production of easily decomposed and utilized polymeric materials with satisfactory
mechanical properties are the attractive aim of the ecological community. The complete
decomposition could take place under ambient factors: sunlight, moisture, and air oxygen
action. In this way, the method for photocatalytic degradation is developed for plastic
waste utilization [19].

Degradation mechanisms are not completely ascertained: most likely, both photother-
mal and photocatalytic ways are possible. We considered published experimental data
arrays on the sunlight effect on nanocomposite polymers. We found that a very lim-
ited group of research communications [20–22] reported time dependencies of strength
properties changes under solar light irradiation, far before complete material destruction.
Physicochemical mechanisms are shown in null representation and mathematical models
are quite absent.
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Obviously, correct physical description and mathematical modeling of the initial stage
of photostimulated destruction of nanocomposite polymers could give basic worthwhile
information for new materials’ development. On this basis, two types of function materials
could be elaborated: stable structural polymers, and action polymers, easily decomposed
under ambient factor.

Pigment additives effect on polymers photodestruction is considered in known clas-
sical transactions [23–25]. Ambiguous conclusions given in these works are based on the
experimental data obtained in 60–70 s of the past century in relation with attempts to use
inorganic additives (TiO2, ZnO, etc.) for elimination of destructive UV light action on
polymers. Emanual and Buchachenko [25] concluded that many problems of polymer
photodegradation and photostabilization are reduced to the problems of light=assisted
thermo-oxidative destruction, complicated by specific photophysics issues.

Ranby and Rabek [23] paid attention to a possibility of inner photoeffect realization in
semiconductor substances of pigment additives and, consequently, of initiation of photocat-
alytic destructive processes in polymer, supposing their redox character. In summary, three
possible mechanisms of photostimulated nylon destruction in the presence of titanium
dioxide were assumed: (a) free radical mechanism, (b) through formation of peroxide
species responsible for subsequent oxidation reactions under moisture and/or oxygen
action, and (c) by means of energy transfer.

A few articles were cited in this relation. However, only Egerton’s [26,27] works
give some information on considered photostimulated processes. Specifically, Egerton has
shown a decreasing of tensile strength under solar light or simulating irradiation in the
case of cotton and nylon 6.6 yarn, viscose, and acetate rayon covered by titanium dioxide
or zinc oxide films. Appreciable effects were observed when humidity was increased. This
fact was taken on the basis of conclusion that the polymer surface reactions with water
and oxygen are responsible for material destruction, and these reactions are initiated by
photo-exited semiconductors.

We note that mathematical modeling has been widely used in recent years to classify
new polymer materials, describe their properties and application prospects, and predict
approaches to environmentally friendly methods of their synthesis [28,29].

2. Photodegradation of Polymers and Metals Fatigue

Undoubtedly, the mathematical models describing changes in strength of the consid-
ered materials independent of light intensity and exposure time will be claimed.

Let us compare the process of photocatalytic degradation of polymeric nanocomposites
with photoactive components and the process of high cycle fatigue in metals. In the case
of polymeric nanocomposites, we suggest the photocatalyst nanoparticles as the initiation
points of dislocations. Stress concentrations originate from these dislocations. If we
consider an abstract metallic sample, we would find local dislocations within it. These
dislocations would cause the material structure distortion. Dislocations would drift under
the action of cyclic external load, novel dislocations would appear under a certain critical
value of stress, and novel microscopic cracks would be generated [30]. Finally, a fatigue
macrocrack would be formed within a highly tense area, which will increase before material
destruction [31,32]. Several various theories of fatigue destruction exist this time [33–36].
However, experiments and theory show that the formation of local stress concentration is
one of the basic factors responsible for generation and enlargement of fatigue cracks [37].

We will assume that the considered photodegradation processes would be, to some ex-
tent, similar to fatigue changes in metals with concentrated stress under high cycle fatigue.

We propose to name as “photocatalytic fatigue” the specific case of composite polymer
photodegradation when (i) some decrease in strength properties of a sample is observed,
(ii) the process is initiated by incident light interacting with semiconductor nanoparticles of
polymer composite. A similarity of the experimental curves typical for composite polymer
with photoactive additives’ photodegradation processes [20,22] and Wöhler’s curves for
metal multicycle fatigue [34,37] permits us to apply this term here.
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Kamrannejad et al. [20] presented data on the photocatalytic degradation of nanocom-
posites based on polypropylene which were prepared using carbon-coated TiO2 nanopar-
ticles and commercially available TiO2 nanoparticles (Degussa, P25). The test showed
a decrease in the ultimate tensile strength value. The photocatalytic properties of TiO2
(internal photoelectric effect on a semiconductor) caused chain-breaking reactions and,
as a result, the formation of cross-links and, ultimately, the destruction of polypropylene.
The authors also showed that the presence of carbon nanoparticles (putative traps for
photogenerated charge carriers) can reduce the degree of degradation [20].

Similar results for polypropylene were obtained by Wiener et al. [22], who measured
ultimate tensile strength at different exposures to UV irradiation. Intensity of UV light
on the sample surface was 40.4 mW cm−2 of UVA and 4.1 mW cm−2 of UVB. Aeroxide
P25 Degussa (nano-TiO2) that contains 70% anatase and 30% rutile was used in this study.
The mean diameter of the used nanoparticles was 21 nm. Using electron microscopy, TiO2
nanoparticles were visualized and the surface roughness of the fibers was estimated. It was
noted that TiO2 nanoparticles damaged the surface of polypropylene fibers; an increase
in surface roughness was observed due to its local decomposition. The authors conclude
that, upon irradiation, ultraviolet light penetrates deeply into the polymer mass, and the
polymer composition changes because of a chemical reaction, which causes a decrease in the
mechanical strength of the fibers. With the addition of TiO2 nanoparticles, the absorption
of UV light on the fibers’ surface becomes more efficient, which increases the level of their
damage [22].

It should be noted that the procedures of the experiments under consideration and the
descriptions of the investigated objects are not sufficiently presented in the article texts to
be reproduced in laboratory conditions. At the same time, we propose to admit that the
lack of information does not prevent the presented data from being used as model data for
implementation of computational experiments.

Prolypropylene samples with or without TiO2 showed identical behaviors: UV light
induced a decrease of the ultimate tensile strength (Table 1).

Table 1. Ultimate tensile strength (UTS) value (in Newtons) of polypropylene fibers as a function of
irradiation time (in minutes). Values of UTS are digitized graphs from the paper by Wiener et al. [22].

Minutes UTS without TiO2 UTS with TiO2

0 24.55 25.00
30 24.55 24.77
60 24.50 24.53
90 24.45 24.30
120 24.30 23.82
150 24.05 23.34
180 23.80 22.87
210 23.45 22.39
240 22.90 21.91
270 22.35 21.41
300 21.80 20.96
330 21.33 20.47
360 20.86 20.00
390 20.39 19.70
420 19.92 19.40
450 19.45 19.10
480 18.92 18.80
510 18.40 18.50
540 17.85 18.20
570 17.20 17.90
600 16.60 17.60
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Wiener et al. [22] also measured the strength of polyester fibers. The ultimate tensile
strength decrease under UV-irradiation was observed for polyester fibers with or without
TiO2 nanoparticles (Table 2).

Table 2. Ultimate tensile strength (UTS) value (in Newtons) of polyester fibers as a function of
irradiation time (in minutes). Value of UTS are digitized graphs from the paper by Wiener et al. [22].

Minutes UTS without TiO2 UTS with TiO2

0 9.250 7.450
30 9.000 7.400
60 8.785 7.350
90 8.550 7.300
120 8.325 7.225
150 8.100 7.150
180 7.990 7.075
210 7.880 7.010
240 7.770 6.910
270 7.660 6.810
300 7.550 6.710
330 7.470 6.610
360 7.390 6.510
390 7.310 6.410
420 7.240 6.310
450 7.240 6.200
480 7.240 6.090
510 7.239 5.980
540 7.239 5.870
570 7.239 5.760
600 7.239 5.650

3. Derivation of the Equation of the “Photocatalytic Fatigue” Curve

Without loss of generality, we can consider only symmetric high cycle loading, i.e.,
cases when the maximum stress value σmax and the minimum stress value σmin are equal in
absolute value and opposite in sign.

In the theory of metal fatigue, high cycle fatigue is understood as a process in which
each loading cycle occurs within the limits of elastic deformation, i.e., σmax is strictly less

than the yield strength. If we assume by definition that R =
σmax

σmin
, then for symmetrical

loading R = −1.
There is a value of the stress at which the material can withstand an unlimited number

of cycles. Such a stress is called an endurance limit, and is denoted by σR. Endurance
strength is defined as the maximum value of the stress that a material can withstand N
loading cycles. For the case of symmetrical loading, the following notation is used: (σ−1)N ,
i.e., the sample withstands N cycles of symmetrical loading at maximum stress (σ−1).
Another important value is the limit of limited endurance for basic durability, when the
number of cycles is known in advance (usually 107 cycles). In this case, the notation σ−1 is
used for symmetrical loading.

The results of tests of high cycle fatigue are usually presented graphically in the form
of a fatigue curve (Wöhler curve). It approximates the experimental points having two
coordinates on the Cartesian plane. On the abscissa axis—the number of loading cycles
that the sample withstood before failure. On the ordinate axis—the values of the limits of
limited endurance (maximum cycle stress) at which the sample is tested.

Usually, one of three models is used to derive the high cycle fatigue equation:
one-term, two-term, or exponential. For the case taking into account the stress
concentration, these models have the following form:
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σ(N) = C
x

x + y
; σ(N) = 1− C

y
x

; σ(N) = 1− exp
(
−C

x
y

)
, (1)

where x = lgγ N, y = (ασ − 1)β, ασ is the stress concentration factor, C, γ, β—experimental
parameters.

The paper [37] considers the equation of the high cycle fatigue curve of specimens
with stress concentration on the basis of a one-term model. The resulting equation finally
has the following form:

(σ−1K )N =
(σ−1)N(C

√
ασ − 1 + lgγ N)

ασ lgγ N + C
√

ασ − 1
, (2)

where (σ−1K )N is the endurance strength of samples with stress concentration, (σ−1)N is
the endurance strength without stress concentration.

The empirical equation for samples without stress concentration is

(σ−1)N = σ−1(A + B lg−k N), (3)

where σ−1 is the endurance strength without stress concentration for basic durability and
A, B, k are the experimental parameters.

A possible approach to mathematical modeling of the “photocatalytic fatigue” of polymer
nanocomposites with photoactive components can be the use of Equations (2) and (3). In these
equations, the number of loading cycles should be replaced by the irradiation time.

Denote by SK(t) the ultimate tensile strength of a fiber of a polymer nanocomposite of
a fixed diameter (fixed thickness for a nanofilm) with photoactive components at exposure
time t and some fixed illumination value E0. By S0(t), denote the ultimate tensile strength
of the same fiber under the same conditions, but without photoactive additives. Let S
denote the ultimate tensile strength at the time t = 0.

Note that when modeling high cycle fatigue of metals, the value of the argument of
the decimal logarithm in Equations (2) and (3) changes within 104–107. In our case, the
maximum value of the exposure time does not exceed 600 minutes. Therefore, it is necessary
to introduce one more experimental parameter, t0, which is added to the argument of the
decimal logarithm. Taking into account this remark and by analogy with (2), we write
the equation of “photocatalytic fatigue” for polymer nanocomposites with photoactive
components.

SK(t) =
S0(t)(c

√
α− 1 + lgγ(t0 + t))

α lgγ(t0 + t) + c
√

α− 1
. (4)

By analogy with (3), the equation of downward strength for the same polymer, with
the same irradiation parameters, but without photoactive nanoparticles, will be

S0(t) = S(a + b lg−k(t0 + t)). (5)

Substituting (5) into Equation (4) and replacing S with Ŝ, where Ŝ = S +
| S− S |

2
,

and S—ultimate tensile strength of polymer with photoactive nanoparticles at time t = 0,
we obtain

SK(t) =
Ŝ(a + b lg−k(t0 + t))(c

√
α− 1 + lgγ(t0 + t))

α lgγ(t0 + t) + c
√

α− 1
, (6)

where α is the stress concentration factor; a, b, c, k, γ, t0—experimental parameters charac-
terizing a type of polymer.
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4. Calculation of the Experimental Parameters for the Equations of “Photocatalytic
Fatigue” by the Monte Carlo Method

To determine the values of the experimental parameters and the stress concentration
factor from Equation (6), we use the Monte Carlo method.

We will use the relative standard deviation as a criterion for the accuracy of the
approximation of the experimental strength values:

δ =

√√√√ 1
m− 1

m

∑
t=1

(
σe

t − σc
t

σe
t

)2
, (7)

where m is the number of experiments, σe
t is the experimental strength values, and σc

t is the
calculated strength values [37].

The δ can be considered as a function of seven variables δ = δ(α, a, b, c, k, γ, t0), since
the values of σc

t in (7) are calculated according to (6), i.e., σc
t = SK(α, a, b, c, k, γ, t0, t), where

t is the time, α is the stress concentration factor, and a, b, c, k, γ, t0 are the experimental
parameters of the model.

We will introduce the notation Θ = (α, a, b, c, k, γ, t0), and distinguish between the
constant δ̃—random error of the model and the random variable δ(Θ)—relative stan-
dard deviation.

To determine the values of the experimental parameters and the value of the stress
concentration factor from Equation (6), it is necessary to solve the extreme problem of
finding the minimum of the non-negative function δ(Θ).

Denote by X the solution of this problem, then

X = argmin
Θ

δ(Θ). (8)

Let us apply a variant of the Monte Carlo method based on the simple random search
algorithm, when the unknown parameters of the functions δ(Θ) are uniformly distributed
in some region of the Euclidean space E7.

In each experiment of the Monte Carlo method, the components of the random vector
Θ are specified using a pseudorandom number generator. Let us set the initial value δ̃0
of the random error of the model, and calculate the relative standard deviation δ(Θ) with
fixed components of the random vector Θ. If δ(Θ) is smaller than the current value of the
random error of the model, we will replace δ̃0 with δ̃1 = δ(Θ). Again, we calculate the
random vector Θ area using a pseudorandom number generator and calculate the relative
standard deviation δ(Θ). If δ(Θ) is smaller than the δ̃1, we will replace δ̃1 with δ̃2 = δ(Θ),
etc. Thus, we obtain a strictly monotonically decreasing sequence δ̃0 > δ̃1 > . . . > δ̃n > . . .
of random errors of the model. This sequence corresponds to a monotonically decreasing
sequence of sets Q0 ⊃ Q1 ⊃ . . . ⊃ Qn ⊃ . . ..

Each Qn ⊂ E7 and Qn = {Θ | δ(Θ) < δ̃n}. Obviously, for ∀ n : Qn ⊃ Qn+1, because if
Θ | δ(Θ) < δ̃n+1, then all the more δ(Θ) < δ̃n.

The sequence of random model errors δ̃0 > δ̃1 > . . . > δ̃n > . . . is limited from below,
for example, by zero. If we introduce a time limit for choosing the components of the
random vector Θ, then we can always determine the minimum value for the sequence of
random model errors. Denote by δ̃min this as the minimum value of random model error.
This value of the random error will correspond to the set Qmin = {Θ | δ(Θ) < δ̃min}. By
construction, this set is not empty.

Let us remark that, to obtain a solution of the problem of finding the minimum of a
non-negative function δ(Θ) using the Monte Carlo method, it is necessary to perform a
series of statistical tests (for example, 50 times) with a minimum value δ̃min of the random
error of the model. Then we calculate the stress concentration factor α, and the experimental
parameters a, b, c, k, γ, t0 as the arithmetic mean of the corresponding components of the
random vector Θ ∈ Qmin.
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The problem being solved has one peculiarity. To determine the unknown parameters
of the function δ(Θ), two sets of experimental data can be used: the strength of the
nanopolymer without TiO2 and the value strength of the same polymer with TiO2.

By choosing a dataset with the strength values of the nanopolymer without TiO2,
one can calculate the values σc

t using the Formula (5), and, using the algorithm described,
calculate the values for the a, b, k, and t0. The values k and t0 are calculated as natural
numbers, and the parameters a and b are calculated as rational numbers up to the fourth
decimal place.

After that, we can finally solve the problem of finding the minimum of δ̃(Θ). Take
the dataset containing values of the experimental strength σe

t for a nanopolymer with
photoactive TiO2 nanoparticles. The Formula (6) is used to calculate the values of σc

t , if
the parameters a, b, k, and t0 are already known. At the final stage of solving the extreme
problem, the values of the c, γ, and the stress concentration factor α are specified using a
pseudorandom number generator. The exponent γ takes natural values, while α and c take
rational values up to the fourth decimal place.

In the case under consideration, the problem of finding the global minimum remains
open. Nevertheless, without loss of generality, we can assume that if the random error of
the model does not exceed 3–4%, the results of approximating the experimental values
of the strength σe

t of nanopolymers with photoactive additives can be considered quite
satisfactory. It is true even if the calculated values of the components of the Θ ∈ Qmin
vector correspond to a local minimum that is not a global one.

5. Equations of the “Photocatalytic Fatigue”

Phenomenological models describe the empirical relationships of phenomena to one
another in such a way that they are consistent with, but not directly derived from, fun-
damental theory. In our case, verification of the adequacy of the mathematical model of
“photocatalytic fatigue” is possible by comparing the results of numerical simulation with
the results of real photophysical experiments. As model data, consider the digitized graphs
of the decrease of the ultimate tensile strength for wet polypropylene and polyester fibers
(Tables 1 and 2) obtained by Wiener et al. [22].

The calculations were carried out using the original program written in the Visual Basic
programming language in the Visual Studio Community 2019 integrated development
environment.

We assume, as a first approximation, that the natural values of the random parameter
t0 are uniformly distributed from 1 to 100.

The initial values of the remaining six experimental parameters are estimated on
the basis of the results obtained in the article [37]. At the first stage of application of the
Monte Carlo method for both polypropylene and polyester-based samples, they are evenly
distributed in the following intervals:

α—from 1 to 50 on the set of rational numbers.
a—from 0.1 to 10 on the set of rational numbers.
b—from 1 to 20 on the set of rational numbers.
c—from 1 to 200 on the set of rational numbers.
k—from 1 to 10 on the set of natural numbers.
γ—from 1 to 10 on the set of natural numbers.

5.1. Phenomenological Equation for Polypropylene

Using the tabular data for polypropylene fibers without TiO2 (Table 1) and Equation (5),
we determine the experimental parameters a, b, k, and t0.

At the first stage of stochastic tests, the values δ̃ of the random error of the model are
gradually reduced. In this case, the values of the parameters k = 4 and t0 = 38 stabilize. As
the random error of the model decreases, it reaches its minimum possible value δ̃ = 0.0387.
The test results for the specified value of δ̃ give insignificant variations in the random
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values of the parameters a and b. With repeated stochastic tests (50 times), the average
values of these parameters are equal to a = 0.1212 and b = 5.8923.

After substituting the obtained values of the parameters a, b, k, t0 to the Formula (6), it
will take the following form:

SK(t) =
Ŝ (0.1212 + 5.8923 lg−4(38 + t))(c

√
α− 1 + lgγ(38 + t))

α lgγ(38 + t) + c
√

α− 1
. (9)

At the second stage of the stochastic tests, one can proceed to the final determination
of the form of the equation for the “photocatalytic fatigue” curve for polypropylene fibers
with TiO2 photocatalyst nanoparticles.

With a successive decrease in the values of the random error of the δ̃ model, the value
of the exponent γ = 1 is stabilized.

Further statistical tests are carried out at a fixed value of the parameter γ = 1 and
successive reduction of the random error of the model to the value δ̃ = 0.0121. At the
same time, computational experiments give insignificant variations in the values of the
parameter c and the stress concentration factor α. With repeated stochastic tests (50 times),
the average values of these quantities are equal to c = 25.3581 and α = 1.2696. Then
Xpp = (1.2696, 0.1212, 5.8923, 25.3581, 4, 1, 38) is the solution of the extreme problem for
polypropylene. Substituting these values into the Formula (9), we obtain the final form of
the equation of the “photocatalytic fatigue” curve for the model values of the strength of
polypropylene fibers with TiO2 photocatalyst nanoparticles,

SK(t) =
Ŝ (0.1212 + 5.8923 lg−4(38 + t))(13.1667 + lg(38 + t))

1.2696 lg(38 + t) + 13.1667
. (10)

The graph of the curve approximating the model values of the strength of polypropy-
lene with TiO2 photocatalyst nanoparticles at the above parameters is shown in Figure 1.

Figure 1. Ultimate tensile strength (ordinate in Newtons) of polypropylene fibers with TiO2 photo-
catalyst nanoparticles as a function of irradiation time (abscissa in minutes). The asterisks on the
graph are the model data, and the curved line is the results of the approximation of the model data
by Equation (10), whose coefficients are obtained by the Monte Carlo method.

5.2. Phenomenological Equation for Polyester

Using tabular data for polyester fibers without TiO2 (Table 2), and Equation (5), the
experimental parameters a, b, k, and t0 are computed.

At the first stage of stochastic tests, the values of the random error δ̃ of the model
are gradually reduced. In this case, the values of the parameters k = 4 and t0 = 39 are
stabilized. As the random error of the model decreases further, it reaches its minimum
possible value δ̃ = 0.0211. The test results for the specified value of δ̃ show insignificant
variations in the random values of the parameters a and b. With repeated stochastic tests
(50 times), the average values of these parameters are equal to a = 0.3676 and b = 3.8004.
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After substituting the obtained values of the parameters a, b, k, t0 into the Formula (6),
it will take the following form:

SK(t) =
Ŝ (0.3676 + 3.8004 lg−4(39 + t))(c

√
α− 1 + lgγ(39 + t))

α lgγ(39 + t) + c
√

α− 1
. (11)

At the second stage of carrying out stochastic tests, one can proceed to the final deter-
mination of the form of the equation of the “photocatalytic fatigue” curve for polypropylene
fibers with TiO2 photocatalyst nanoparticles.

With a successive decrease in the values of the random error of the δ̃ model, the value
of the exponent γ = 2 is stabilized.

Further statistical tests are carried out at a fixed value of the parameter γ = 2 and
successive reduction of the random error of the model to the value δ̃ = 0.01985. At the
same time, computational experiments give insignificant variations in the values of the
parameter c and the stress concentration factor α. With repeated stochastic tests (50 times),
the average values of these quantities are, respectively, c = 6.3235 and α = 2.4885. Then,
Xpe = (2.4885, 0.3676, 3.8004, 6.3235, 4, 2, 39) is the solution of the extreme problem for
polyester. Substituting these values into the Formula (11), we obtain the final form of
the equation of the “photocatalytic fatigue” curve for the model values of the strength of
polyester fibers with TiO2 photocatalyst nanoparticles

SK(t) =
Ŝ (0.3676 + 3.8004 lg−4(39 + t))(7.7149 + lg2(39 + t))

2.4885 lg2(39 + t) + 7.7149
. (12)

The graph of the curve approximating the model values of the strength of polyester
with TiO2 photocatalyst nanoparticles at the above values of parameters is shown in
Figure 2.

Figure 2. Ultimate tensile strength (ordinate in Newtons) of polyester fibers with TiO2 as a function
of irradiation time (abscissa in minutes). The asterisks on the graph are the model data, and the
curved line is the results of the approximation of the model data by Equation (12), the coefficients of
which are obtained by the Monte Carlo method.

6. Discussion

The phenomenological equations of photocatalytic fatigue for polypropylene and
polyester with photoactive TiO2 nanoparticles demonstrate that the proposed mathematical
model is adequate for these materials. The relative standard deviation (random error of the
model) for polypropylene is 1.21%, for polyester—1.99%. The principal feature is that their
strength monotonically decreases with increasing irradiation time.
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Note that in the paper [22], in addition to polypropylene and polyester, the data are
given on the ultimate tensile strength of cotton and polyamide fibers at different exposures
to UV radiation. It follows from the text that the introduction of TiO2 nanoparticles leads to
some increase in the strength of cotton fiber samples for the first hours of irradiation, and
only after 300 min of irradiation is a decrease in the strength of the cotton fiber observed. In
the case of polyamide, the behavior of the samples is similar to that of cotton fibers. With
UV radiation up to 300 min, the strength of polyamide fibers increases, but with an increase
in exposure time, it begins to decrease. However, it should be noted that the strength of the
polyamide sample after UV radiation for 600 min is greater than that of the sample before
irradiation. The effect of ultraviolet on polyamide samples containing nano-TiO2 is similar
to the effect on cotton fibers.

In other words, for cotton and polyamide, a monotonous decrease in the tensile
strength of the samples is violated, which, in turn, indicates the impossibility of using the
mathematical model proposed above for these materials. As an example, let us consider
polyamide fibers. Table 3 shows data on the change in their ultimate tensile strength.

Table 3. Ultimate tensile strength (UTS) value (in Newtons) of polyamide fibers as a function of
irradiation time (in minutes). Values of UTS are digitized graphs from the paper by Wiener et al. [22].

Minutes UTS without TiO2 UTS with TiO2

0 3.250 3.450
30 3.500 3.650
60 3.750 3.825
90 3.900 3.950
120 4.050 4.100
150 4.200 4.200
180 4.300 4.300
210 4.400 4.375
240 4.505 4.400
270 4.600 4.375
300 4.650 4.300
330 4.700 4.250
360 4.700 4.150
390 4.650 4.100
420 4.600 3.975
450 4.550 3.850
480 4.500 3.725
510 4.445 3.550
540 4.375 3.400
570 4.300 3.150
600 4.200 2.900

Using the strength values for polyamide fibers without TiO2 and Equation (5), we
determine the experimental parameters a, b, k, and t0. At the first stage of stochastic tests,
the values of the δ̃ random error of the model are gradually reduced. In this case, the values
of the parameters k = 9 and t0 = 39 are stabilized.

As the random error of the model decreases further, it reaches its minimum possible
value, δ̃ = 0.1084. The test results for the specified value of δ̃ give insignificant variations
of the random values for the parameters a and b. With repeated stochastic tests (50 times),
the average values of these parameters are equal to a = 1.2817 and b = 1.0190. We can pay
attention to the qualitative change in the values of the parameters a and b. Parameter a,
in contrast to polypropylene and polyester, takes values greater than one, and b, on the
contrary, is almost equal to one. Therefore, the error in the approximation of experimental
strength values increases.
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After substituting the obtained values of the parameters a, b, k, t0 into the Formula (6),
it will take the following form:

SK(t) =
Ŝ (1.2817 + 1.0190 lg−9(39 + t))(c

√
α− 1 + lgγ(39 + t))

α lgγ(39 + t) + c
√

α− 1
. (13)

At the second stage of stochastic tests, with a successive decrease in the values of the δ̃
random error of the model, the value of the exponent γ = 4 is stabilizing. Further statis-
tical tests are carried out at its fixed value, as well as successive reduction of the random
error of the model to the value δ̃ = 0.1122. With repeated stochastic tests (50 times), we
obtain the average values of two more unknown quantities, c = 187.5523 and α = 17.3862,
which differ by an order of magnitude from the corresponding values for polypropy-
lene and polyester. The solution of the extreme problem for polyamide has the form
Xpa = (17.3862, 1.2817, 1.0190, 187.5523, 9, 4, 39).

Substituting these values into the Formula (13), we obtain the final form of the equa-
tion for the model values of the strength of polyamide fibers with TiO2 photocatalyst
nanoparticles:

SK(t) =
Ŝ (1.2817 + 1.0190 lg−9(39 + t))(759.2093 + lg4(39 + t))

17.3862 lg4(39 + t) + 759.2093
. (14)

In the considered case, the approximation error exceeds 10%, which indicates that a
further refinement is required for the mathematical model of “photocatalytic fatigue” of
polymer nanocomposites with photoactive additives for materials with the property of
short-term strengthening upon irradiation.

The graph of the curve approximating the model values of the strength of polyamide
with nanoparticles of the TiO2 photocatalyst, with the above values of the experimental
parameters, is shown in Figure 3.

Figure 3. Ultimate tensile strength (ordinate in Newtons) of polyamide fibers with TiO2 as a function
of irradiation time (abscissa in minutes). The asterisks on the graph are the model data, and the
curved line is the results of the approximation of the model data by the Equation (14), the coefficients
of which are obtained by the Monte Carlo method.

The meaning of the one-term fatigue model lies in the fact that the right side of the
equation describing the Wöhler curve consists of two factors: a constant equal to the initial
strength value and a factor which is slightly less than unity and very slowly decreases. As
a result, a strictly monotonically decreasing nonlinear function is obtained, which models
the decrease in the strength of the material.
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The problem that arose in connection with the phenomenon of short-term strength-
ening of polymers under light irradiation can be solved in two ways. First, with help
of a two-term model, in the form of a difference. The minuend increases rapidly at first,
and then its growth slows down. Vice versa, the subtrahend slowly increases, so that the
difference is greater than unity up to a certain moment, and then this difference becomes
less than unity and very slowly decreases as a factor of the one-term model. Second,
another approach is possible, in which a much longer exposure interval is chosen in the
photophysical experiment. The irradiation of the polymer should be such in duration that
the time of the strengthening period is insignificant compared to the total exposure time.

Some scientific articles and monographs contain conclusions and experimental data
analysis on mechanical fatigue of polymer materials. For instance, the reference book [38]
contains a (set) collection of graphical and tabular data covering fatigue and tribology
of plastics and polymers. This information is useful for engineers and projectors in the
producing polymeric techwares. Any strength decrease is usually treated as mechanical
fatigue, in other words, as an accumulation of micro-damages in the material sample. In
this book, the concept of fatigue is very straightforward: if an object is subjected to a stress
or deformation, and it is repeated, the object becomes weaker. This weakening of plastic
material is called fatigue. We investigated the fatigue generated by photophysical action
on polymeric materials with photoactive components. The results obtained were mainly
determined by the availability of required experimental data.

Obviously, the results of every experimental investigation are of a stochastic nature.
Consequently, the statistical techniques for the data treatment must be exploited if the
functional smooth dependencies would be found. In this case, the discrete numerical
magnitudes of required values must have specified confidence intervals. By analogy
with [39], we present confidence intervals in the Table 4 for some experimental parameters
of Equations (10), (12), and (14).

Table 4. Table of experimental parameters with confidence intervals for phenomenological equations
of polypropylene, polyester, and polyamide.

Equation α a b c

(10) 1.2696 ± 0.0995 0.1212 ± 0.0574 5.8923 ± 0.6032 25.3581 ± 5.4543
(12) 2.4885 ± 0.4311 0.3676 ± 0.0151 3.8004 ± 0.1181 6.3235 ± 0.8956
(14) 17.3862 ± 0.5428 1.2817 ± 0.0138 1.0190 ± 0.0174 187.5523 ± 8.7477

At the end of the discussion, we note that the results obtained were mainly deter-
mined by the availability of required experimental data. To continue the study, specific
photophysical–photochemical experiments with nanocomposite polymers containing pho-
tocatalyst nanoparticles are needed. In that time, the function approximating photocatalytic
fatigue process would be considered as a function depending not only on exposition time
but on physicochemical features of nanocomposite polymers. In particular, we must con-
sider geometric sizes of film or fiber sample, bulk or surface distribution of photoactive
nanoparticles, chemical composition of the polymer, light absorption characteristics, and so
on. Irradiation conditions must also be taken into account, an intensity of incident light
flux, for instance. Moving in this way, it will be possible to become closer to developing a
more general model of photocatalytic fatigue.

7. Conclusions

A mathematical model of “photocatalytic fatigue” of polymer nanocomposites con-
taining photoactive semiconductor additives is considered.

This model is an analogue of the equation for the Wöhler curve of multicycle fatigue
of metals with stress concentrations. Experimental parameters of the phenomenological
equations of “photocatalytic fatigue” for polypropylene and polyester with photoactive
TiO2 nanoparticles are calculated using one of the Monte Carlo methods, which is based
on a simple random search algorithm. The computational scheme consists of solving the
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extreme task of finding the minimum of a non-negative transcendental function of seven
variables, which is the relative standard deviation of the calculated values of the strength
of the polymer nanocomposite from the corresponding experimental values.

The applicability of the “photocatalytic fatigue” model for polymer nanocomposites
with photoactive nanoparticles is confirmed by the example of approximation of model
data for polymers with monotonic strength reduction. For polypropylene samples, the
approximation error of experimental strength values was less than 1.22%. For polyester
samples, the approximation error of the experimental strength values was less than 1.99%.
The proposed method makes it possible to extrapolate the values of changes in the strength
of such polymers when designing structural materials with known durability and consumer
polymers with a predicted decomposition period under the influence of the external envi-
ronment.

The proposed model is not universal and does not cover all possible forms of strength
behavior of polymers with photoactive additives under the sunlight action. For example, it
is necessary to create at least one more mathematical model for changing the strength of
samples based on cotton or polyamide, for which some hardening is observed in the initial
period of UV light irradiation.
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