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Abstract: The split feasibility problem (SFP) has many practical applications, which has attracted the
attention of many authors. In this paper, we propose a different method to solve the SFP and the
fixed-point problem involving quasi-nonexpansive mappings. We relax the conditions of the operator
as well as consider the inertial iteration and the adaptive step size. For example, the convergence
generated by our new method is better than that of other algorithms, and the convergence rate of our
algorithm greatly improves that of previous algorithms.
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1. Introduction

Since Censor et al. [1] introduced the SFP, more and more people have paid attention
to this problem due to its various applications in resolving practical issues.

Throughout this paper, we suppose that H1, H2 are real Hilbert spaces, and C, Q are
nonempty convex closed subsets of H1, H2, respectively. We consider A : H1 → H2 a
bounded linear operator, and A 6= 0. The SFP can be stated in the following form [2–9]:

Find a point q ∈ H1, such that

q ∈ C, Aq ∈ Q. (1)

The solution for (1) is denoted by SFP(C, Q):

SFP(C, Q) := {q ∈ C : Aq ∈ Q}. (2)

We note that the CQ algorithm of Byrne [2] is a very successful approach to (1), where
{qn} is generated by the following process:

For any initial estimation as q1 ∈ H1,

qn+1 = PC(qn − τn A∗(I − PQ)Aqn), ∀n ≥ 1. (3)

The metric projections of C, Q are PC, PQ, and the adjoint operator of A is A∗. We

select the step size τn with τn ∈
(

0, 2
‖A‖2

)
. The selection of τn is dependent on the operator

norm, but the calculation of the operator norm is not easy.
The use of Formula (3) to solve (1) can be further optimized. We introduce the

following function:

f (q) :=
1
2
‖(I − PQ)Aq‖2. (4)
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According to the above function, we can get the following equation:

∇ f (q) = A∗(I − PQ)Aq. (5)

Therefore, (3) is also included as a particular case of a gradient projection algorithm.
In order to conquer the difficulty of numerical calculation, many authors have come up
with the variable step size, which does not need to calculate norms ‖A‖. Later on, based
on predecessors, López et al. [4] thought deeply and finally put forward a new variable
step size sequence τn, expressed in the following form:

τn :=
ρn f (qn)

‖∇ f (qn)‖2 , ∀n ≥ 1, (6)

where ρn satisfies these conditions: the upper bound is 4, the lower bound is 0, and ρn is a
sequence of positive real numbers. If we select the step size (6), we do not need to know
any other conditions of the norm ‖A‖, Q, and A.

In 2019, Qin et al. [5] introduced and studied a fixed point method to solve the SFP (1).
Given that q1 ∈ C, calculate the following iteration as:{

yn = PC((1− δn)(qn − τn A∗(I − PQ)Aqn) + δnSqn),
qn+1 = αng(qn) + βnqn + γnyn, n ≥ 1,

(7)

where g : C → C is a k−contraction, S : C → C is a nonexpansive mapping, Fix(S) denotes
the set of fixed points of S. {αn}, {βn}, {γn}, {δn}, and {τn} are real sequences and belong
to (0, 1), satisfying the following:

(C1) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C2) limn→∞ |τn − τn+1| = 0, 0 < lim infn→∞ τn ≤ lim supn→∞ τn < 2

‖A‖2 ;

(C3) limn→∞ αn = 0, ∑∞
n=1 αn = ∞;

(C4) 0 < lim infn→∞ δn ≤ lim supn→∞ δn < 1, limn→∞ |δn − δn+1| = 0 ;
(C5) αn + βn + γn = 1.

Then, {qn} converges strongly to x∗ ∈ Fix(S) ∩ SFP(C, Q), and x∗ is the unique
solution of the following variational inequality:

〈q− x∗, g(x∗)− x∗〉 ≤ 0, ∀q ∈ Fix(S) ∩ SFP(C, Q).

In 2020, Kraikaew et al. [6] further weakened the conditions and simplified the process
of proof. They showed that the sequence {qn} produced by (7) converges strongly to
q∗ ∈ Fix(S) ∩ SFP(C, Q) when the following conditions are satisfied:

(C1) lim supn→∞ βn < 1;
(C2) 0 < lim infn→∞ τn ≤ lim supn→∞ τn < 2

‖A‖2 ;

(C3) limn→∞ αn = 0, ∑∞
n=1 αn = ∞;

(C4) 0 < lim infn→∞ δn ≤ lim supn→∞ δn < 1 ;
(C5) αn + βn + γn = 1.

Based on previous works, in this paper, we further weaken the conditions and add the
inertia method so that the choice of step size does not need to calculate the operator norm.

2. Preliminaries

Throughout this paper, we suppose that H is a real Hilbert space, and D is a nonempty
convex closed subset of H. For sequence {qn}, and with q in H, we use qn → q to represent
a strong convergence and qn ⇀ q to represent a weak convergence. Fix(T) denotes the
fixed points of T : H → H.

The mapping T : H → H is called:

(i) A nonexpansive mapping if ‖Tx− Ty‖ ≤ ‖x− y‖ for any x, y ∈ H;
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(ii) A quasi-nonexpansive mapping if Fix(T) 6= ∅ and ‖Tx − y‖ ≤ ‖x − y‖ for every
x ∈ H, y ∈ Fix(T);

(iii) A firmly nonexpansive mapping if ‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(I − T)x− (I − T)y‖2

for any x, y ∈ H;
(iv) A ι−Lipschitz continuous mapping if there is ι > 0 such that ‖Tx− Ty‖ ≤ ι‖x− y‖

for any x, y ∈ H;
(v) A contraction mapping if there exists κ ∈ [0, 1) such that ‖T(x)− T(y)‖ ≤ κ‖x− y‖,

for any x, y ∈ H.

Lemma 1 ([10,11]). For any x, y ∈ H, then

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ X;
(2) ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, ∀t ∈ [0, 1].

Recall that PD is the metric projection operator, that is:

PDy := arg min
x∈D
‖x− y‖2, y ∈ H.

Lemma 2 ([12–14]). Given x ∈ D and y ∈ H,

(1) x = PDy is equivalent to 〈x− y, y− z〉 ≥ 0, ∀z ∈ D;
(2) ‖x− PDy‖2 ≤ ‖x− y‖2 − ‖y− PDy‖2.

From Lemma 2, we can easily prove that I − PD is firmly nonexpansive.

Lemma 3 ([15]). Let {qn} be a non-negative number sequence, which satisfies:

qn+1 ≤ (1− Γn)qn + ΓnΛn, n ≥ 1,

qn+1 ≤ qn −Ψn + Φn, n ≥ 1,

where {Γn} is a sequence in the open interval (0, 1), {Ψn} is a non-negative real sequence, {Λn},
{Φn} are two sequences on R, satisfying the following:

(1) ∑∞
n=0 Γn = ∞;

(2) limn→∞ Φn = 0;
(3) limk→∞ Ψnk = 0 implies lim supk→∞ Λnk ≤ 0, where {nk} is a subsequence of {n}.
Then, limn→∞ qn = 0.

Lemma 4 ([16]). Let f (q) = 1
2‖(I − PQ)Aq‖2. Then ∇ f is ‖A‖2− Lipschitz continuous.

Definition 1 ([17]). Let T : H → H be a nonlinear operator with Fix(T) 6= ∅, I be the identity
operator. If the following implication holds for {qn} ∈ H:

qn ⇀ q and (I − T)qn → 0⇒ q ∈ Fix(T),

then we say that I − T is demiclosed at zero.

It is easy to see that this implication holds for Lipschitz continuous quasi-nonexpansive
mappings (see [18]).

3. Main Results

Theorem 1. Let S : H1 → H1 be a quasi-nonexpansive mapping. Suppose that I− S is demiclosed
at zero, and g : H1 → H1 is a κ-contraction. In addition, let {αn}, {βn}, {γn}, {δn} be sequences
in [0, 1], satisfying the following:

(C1) lim supn→∞ βn < 1;
(C2) limn→∞

εn
αn

= 0;
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(C3) limn→∞ αn = 0, ∑∞
n=1 αn = ∞;

(C4) 0 < lim infn→∞ δn ≤ lim supn→∞ δn < 1;
(C5) αn + βn + γn = 1.

For each n ≥ 1, we can define the following constant:

f (wn) :=
1
2
‖(I − PQ)Awn‖2, (8)

so that
∇ f (wn) = A∗(I − PQ)Awn.

If {qn} is defined by: q0, q1 ∈ H1 are arbitrarily chosen, and we have the following equation:
wn = qn + µn(qn − qn−1),
yn = PC((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn),
qn+1 = αng(qn) + βnwn + γnyn, n ≥ 1,

(9)

µn =

{
min

{
µ, εn
‖qn−qn−1‖

}
, if qn 6= qn−1,

µ, otherwise,

where µ ≥ 0, τn = ρn f (wn)
‖∇ f (wn)‖2 , ρn ∈ (0, 4), and ρn is a sequence of positive real numbers. If

∇ f (wn) = 0, then stop; otherwise, let n := n + 1 and go to compute the next iteration. Assuming
that Fix(S) ∩ SFP(C, Q) 6= ∅, then {qn} converges strongly to x∗ ∈ Fix(S) ∩ SFP(C, Q), and
x∗ is the unique solution of the following variational inequality:

〈z′ − x∗, g(x∗)− x∗〉 ≤ 0, ∀z′ ∈ Fix(S) ∩ SFP(C, Q).

Proof. From Lemma 2, we know that x∗ is a solution of the following variational inequality:

〈z′ − x∗, g(x∗)− x∗〉 ≤ 0, ∀z′ ∈ Fix(S) ∩ SFP(C, Q),

if and only if x∗ = PFix(S)∩SFP(C,Q)g(x∗). Since g is contractive and PFix(S)∩SFP(C,Q) is
nonexpansive, we know that PFix(S)∩SFP(C,Q)g is contractive. Hence, such x∗ exists and is
unique.

First, let p ∈ SFP(C, Q) ∩ Fix(S). Because p ∈ C, according to Lemma 1 and Lemma 2,
we find that:

‖yn − p‖2

= ‖PC((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)− p‖2

≤ ‖((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)− p‖2

−‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)‖2

= ‖δn(Swn − p) + (1− δn)(wn − τn A∗(I − PQ)Awn − p)‖2

−‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)‖2

= δn‖Swn − p‖2 + (1− δn)‖wn − τn∇ f (wn)− p‖2

−δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

−‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)‖2

≤ δn‖wn − p‖2 + (1− δn)‖wn − τn∇ f (wn)− p‖2

−δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

−‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)‖2

≤ δn‖wn − p‖2 + (1− δn)(‖wn − p‖2 + τ2
n‖∇ f (wn)‖2

−2τn〈∇ f (wn), wn − p〉)− δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

−‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)‖2, (10)
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and

〈∇ f (wn), wn − p〉
= 〈(I − PQ)Awn − (I − PQ)Ap, Awn − Ap〉
≥ ‖(I − PQ)Awn‖2

= 2 f (wn). (11)

Therefore, by combining (10) and (11), we derive the following:

‖yn − p‖2

≤ ‖wn − p‖2 − 4(1− δn)τn f (wn) + τ2
n(1− δn)‖∇ f (wn)‖2

−δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

−‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)‖2

= ‖wn − p‖2 − ρn(4− ρn)(1− δn)
f 2(wn)

‖∇ f (wn)‖2

−δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

−‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)‖2. (12)

Note that ρn ∈ (0, 4), {δn} is a sequence in (0, 1). We thus derive the following
equation:

‖yn − p‖ ≤ ‖wn − p‖. (13)

Putting zn = βn
1−αn

wn +
γn

1−αn
yn, by Lemma 1, we can derive that:

‖zn − p‖2

=

∥∥∥∥ βn

1− αn
wn +

γn

1− αn
yn − p

∥∥∥∥2

=

∥∥∥∥ βn

1− αn
(wn − p) +

γn

1− αn
(yn − p)

∥∥∥∥2

=
βn

1− αn
‖wn − p‖2 +

γn

1− αn
‖yn − p‖2 − βn

1− αn

γn

1− αn
‖wn − yn‖2.

From the conditions imposed on {αn}, {βn}, {γn} and (12), we have the following:

‖zn − p‖2

≤ βn

1− αn
‖wn − p‖2 +

γn

1− αn
‖yn − p‖2

≤ βn

1− αn
‖wn − p‖2 +

γn

1− αn
‖wn − p‖2

−(1− δn)
γn

1− αn
ρn(4− ρn)

f 2(wn)

‖∇ f (wn)‖2

− γn

1− αn
δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

− γn

1− αn
‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)‖2

= ‖wn − p‖2 − (1− δn)
γn

1− αn
ρn(4− ρn)

f 2(wn)

‖∇ f (wn)‖2

− γn

1− αn
δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

− γn

1− αn
‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)‖2. (14)
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From the conditions imposed on {αn}, {δn} and {γn}, we have the following equation:

‖zn − p‖ ≤ ‖wn − p‖. (15)

Since zn = βn
1−αn

wn +
γn

1−αn
yn, we can get the equations below:

qn+1 = αng(qn) + βnwn + γnyn

= αng(qn) + (1− αn)zn.

Since g is a κ-contraction and by using (15), we can get the following:

‖qn+1 − p‖
= ‖αng(qn) + (1− αn)zn − p‖
= ‖αn(g(qn)− p) + (1− αn)(zn − p)‖
≤ αn‖g(qn)− p‖+ (1− αn)‖zn − p‖
≤ αn‖g(qn)− p‖+ (1− αn)‖wn − p‖
≤ αn‖g(qn)− g(p)‖+ αn‖g(p)− p‖+ (1− αn)‖qn − p + µn(qn − qn−1)‖
≤ αnκ‖qn − p‖+ αn‖g(p)− p‖+ (1− αn)‖qn − p‖

+(1− αn)‖µn(qn − qn−1)‖
≤ αnκ‖qn − p‖+ αn‖g(p)− p‖+ (1− αn)‖qn − p‖+ µn‖qn − qn−1‖
≤ αnκ‖qn − p‖+ αn‖g(p)− p‖+ (1− αn)‖qn − p‖+ εn

= (1− αn(1− κ))‖qn − p‖+ αn(1− κ)

(
‖g(p)− p‖

1− κ
+

εn

αn(1− κ)

)
.

Since limn→∞
εn
αn

= 0, we therefore have εn
αn

< M, where M is a suitable positive
constant. Hence, we have the following:

‖qn+1 − p‖

≤ (1− αn(1− κ))‖qn − p‖+ αn(1− κ)

(
‖g(p)− p‖+ M

1− κ

)
≤ max

{
‖qn − p‖, ‖g(p)− p‖+ M

1− κ

}
We can thus deduce that:

‖qn+1 − p‖ ≤ max
{
‖q1 − p‖, ‖g(p)− p‖+ M

1− κ

}
. (16)

Therefore, the sequence {‖qn − p‖} is bounded.
From Lemma 1, we can get the following:

‖wn − p‖2 = ‖qn + µn(qn − qn−1)− p‖2

≤ ‖qn − p‖2 + 2µn〈qn − qn−1, wn − p〉
≤ ‖qn − p‖2 + 2µn‖qn − qn−1‖‖wn − p‖
≤ ‖qn − p‖2 + 2εn‖wn − p‖.

We derive that:
‖wn − p‖2 ≤ ‖qn − p‖2 + 2εn‖wn − p‖. (17)
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As p is chosen arbitrarily and g is a κ-contraction, we have the following equations:

‖qn+1 − x∗‖2

= ‖αng(qn) + (1− αn)zn − x∗‖2

= ‖αn(g(qn)− x∗) + (1− αn)(zn − x∗)‖2

≤ α2
n‖g(qn)− x∗‖2 + (1− αn)

2‖zn − x∗‖2

+2αn〈g(qn)− x∗, zn − x∗〉 − 2α2
n〈g(qn)− x∗, zn − x∗〉

≤ α2
n‖g(qn)− x∗‖2 + (1− αn)

2‖zn − x∗‖2

+2αn〈g(qn)− x∗, zn − x∗〉+ 2α2
n‖g(qn)− x∗‖‖zn − x∗‖

= α2
n‖g(qn)− x∗‖2 + (1− αn)

2‖zn − x∗‖2 + 2αn〈g(qn)− g(x∗), zn − x∗〉
+2αn〈g(x∗)− x∗, zn − x∗〉+ 2α2

n‖g(qn)− x∗‖‖zn − x∗‖
≤ α2

n‖g(qn)− x∗‖2 + (1− αn)
2‖zn − x∗‖2 + 2αnκ‖qn − x∗‖‖zn − x∗‖

+2αn〈g(x∗)− x∗, zn − x∗〉+ 2α2
n‖g(qn)− x∗‖‖zn − x∗‖

≤ α2
n‖g(qn)− x∗‖2 + 2α2

n‖g(qn)− x∗‖‖zn − x∗‖+ (1− αn)
2‖zn − x∗‖2

+αnκ(‖qn − x∗‖2 + ‖zn − x∗‖2) + 2αn〈g(x∗)− x∗, zn − x∗〉. (18)

From (15) and (17), we can derive that:

‖zn − x∗‖2 ≤ ‖qn − x∗‖2 + 2εn‖wn − x∗‖. (19)

It thus follows from (18) and (19) that:

‖qn+1 − x∗‖2

≤ α2
n‖g(qn)− x∗‖2 + 2α2

n‖g(qn)− x∗‖‖zn − x∗‖
+αnκ(‖qn − x∗‖2 + ‖qn − x∗‖2 + 2εn‖wn − x∗‖)
+2αn〈g(x∗)− x∗, zn − x∗〉+ (1− αn)

2(‖qn − x∗‖2 + 2εn‖wn − x∗‖)
= α2

n‖g(qn)− x∗‖2 + 2α2
n‖g(qn)− x∗‖‖zn − x∗‖

+(α2
n + (1− 2αn(1− κ)))‖qn − x∗‖2

+(2εn(1− αn)
2 + 2αnκεn)‖wn − x∗‖+ 2αn〈g(x∗)− x∗, zn − x∗〉

≤ α2
n‖g(qn)− x∗‖2 + 2α2

n‖g(qn)− x∗‖‖zn − x∗‖+ α2
n‖qn − x∗‖2

+(1− 2αn(1− κ))‖qn − x∗‖2 + 4εn‖wn − x∗‖+ 2αn〈g(x∗)− x∗, zn − x∗〉

= (1− 2αn(1− κ))‖qn − x∗‖2 + αn

(
αn‖g(qn)− x∗‖2

+2αn‖g(qn)− x∗‖‖zn − x∗‖+ αn‖qn − x∗‖2 +
4εn

αn
‖wn − x∗‖

+2〈g(x∗)− x∗, zn − x∗〉
)

= (1− 2αn(1− κ))‖qn − x∗‖2 + 2αn(1− κ)
1

2(1− κ)

(
αn‖g(qn)− x∗‖2

+2αn‖g(qn)− x∗‖‖zn − x∗‖+ αn‖qn − x∗‖2

+
4εn

αn
‖wn − x∗‖+ 2〈g(x∗)− x∗, zn − x∗〉

)
. (20)

On the other hand, by Lemma 1, we can derive that:

‖qn+1 − x∗‖2

= ‖αn(g(qn)− zn) + zn − x∗‖2

≤ ‖zn − x∗‖2 + 2αn〈g(xn)− zn, xn+1 − x∗〉. (21)
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From (14), (17), (21), we find the following:

‖qn+1 − x∗‖2

≤ ‖wn − x∗‖2 − (1− δn)
γn

1− αn
ρn(4− ρn)

f 2(wn)

‖∇ f (wn)‖2

− γn

1− αn
δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

− γn

1− αn
‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn)

+δnSwn)‖2 + 2αn〈g(qn)− zn, qn+1 − x∗〉

≤ ‖qn − x∗‖2 + 2εn‖wn − x∗‖ − (1− δn)
γn

1− αn
ρn(4− ρn)

f 2(wn)

‖∇ f (wn)‖2

− γn

1− αn
δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

− γn

1− αn
‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn)

+δnSwn)‖2 + 2αn〈g(xn)− zn, qn+1 − x∗〉.

Thus,

‖qn+1 − x∗‖2

≤ ‖qn − x∗‖2 + 2εn‖wn − x∗‖ − (1− δn)
γn

1− αn
ρn(4− ρn)

f 2(wn)

‖∇ f (wn)‖2

− γn

1− αn
δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

− γn

1− αn
‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn)

+δnSwn)‖2 + 2αn〈g(qn)− zn, qn+1 − x∗〉. (22)

Set the following:

Γn = 2αn(1− κ),

Λn =
1

2(1− κ)

(
αn‖g(qn)− x∗‖2

+2αn‖g(qn)− x∗‖‖zn − x∗‖+ αn‖qn − x∗‖2

+
2εn

αn
‖wn − x∗‖+ 2〈g(x∗)− x∗, zn − x∗〉

)
,

Ψn = (1− δn)
γn

1− αn
ρn(4− ρn)

f 2(wn)

‖∇ f (wn)‖2

+
γn

1− αn
δn(1− δn)‖Swn − wn + τn A∗(I − PQ)Awn‖2

+
γn

1− αn
‖(I − PC)((1− δn)(wn − τn A∗(I − PQ)Awn) + δnSwn)‖2,

Φn = 2αn〈g(qn)− zn, qn+1 − x∗〉.

Then, (20) and (22) can be rewritten as follows:

‖qn+1 − x∗‖2 ≤ (1− Γn)‖qn − x∗‖2 + ΓnΛn,

‖qn+1 − x∗‖2 ≤ ‖qn − x∗‖2 −Ψn + Φn.

It is easy to see that limn→∞ Γn = 0, ∑∞
n=0 Γn = ∞, and limn→∞ Φn = 0. Therefore,

by Lemma 3, we prove that limn→∞ ‖qn − x∗‖ = 0 if we show that lim supk→∞ Λnk ≤ 0
whenever limk→∞ Ψnk = 0 for any subsequence {nk} ⊂ {n}.
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Suppose that
lim
k→∞

Ψnk = 0. (23)

By the conditions of {αn}, {βn}, {δn}, and {γn}, we have the following equations:

lim
k→∞

ρnk (4− ρnk )
f 2(wnk )

‖∇ f (wnk )‖2 = 0, (24)

lim
k→∞
‖Swnk − wnk + τnk A∗(I − PQ)Awnk‖

2 = 0, (25)

lim
k→∞
‖(I − PC)((1− δnk )(wnk − τnk∇ f (wnk )) + δnk Swnk )‖ = 0. (26)

Equation (24) implies that:

f 2(wnk )

‖∇ f (wnk )‖2 → 0. (27)

From Lemma 4, since {‖∇ f (wnk )‖} is bounded, we derive that f (wnk )→ 0 as k→ ∞,
so limk→∞ ‖(I − PQ)Awnk‖ = 0. By using (27) and the conditions on {ρn}, we get the
following:

τnk‖∇ f (wnk )‖ =
ρnk f (wnk )

‖∇ f (wnk )‖
→ 0. (28)

Moreover, according to (25), we can get the equation below:

‖Swnk − wnk‖ → 0. (29)

From (26), by expanding the formula, since ynk = PC((1− δnk )(wnk − τnk∇ f (wnk )) +
δnk Swnk ), we can get:

‖(1− δnk )(wnk − τnk∇ f (wnk )) + δnk Swnk − ynk‖ → 0. (30)

By expanding (30), we can get the following equation:

‖(1− δnk )wnk − (1− δnk )τnk∇ f (wnk ) + δnk Swnk − ynk‖ → 0. (31)

With (31) and (28), we can derive the equation below:

‖(1− δnk )wnk + δnk Swnk − ynk‖ → 0, (32)

i.e.,
‖wnk − ynk + δnk (Swnk − wnk )‖ → 0. (33)

Hence, we arrive at the following:

‖wnk − ynk‖
= ‖wnk − ynk + δnk (Swnk − wnk )− δnk (Swnk − wnk )‖
≤ ‖wnk − ynk + δnk (Swnk − wnk )‖+ ‖δnk (Swnk − wnk )‖.

Then, from (29) and (33), we can derive that:

‖wnk − ynk‖ → 0. (34)
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From the definition of zn, we can see the following:

‖znk − wnk‖ =

∥∥∥∥ βnk

1− αnk

wnk +
γnk

1− αnk

ynk − wnk

∥∥∥∥
=

∥∥∥∥− γnk

1− αnk

wnk +
γnk

1− αnk

ynk

∥∥∥∥
=

γnk

1− αnk

‖ynk − wnk‖.

By using (34), we can get the following:

‖znk − wnk‖ → 0. (35)

Combining (29) and the fact that I − S is demiclosed at zero, we know ωw(wnk ) ⊂
Fix(S). We select a subsequence {wnkj

} of {wnk} to satisfy the following equation:

lim sup
k→∞

〈g(x∗)− x∗, wnk − x∗〉 = lim
j→∞
〈g(x∗)− x∗, wnkj

− x∗〉.

Without loss of generality, we can assume that wnkj
⇀ z′. According to f (wnk ) → 0,

we can derive that 0 ≤ f (z′) ≤ lim infj→∞ f (wnkj
) = 0, so f (z′) = 0, Az′ ∈ Q. This means

that z′ ∈ SFP(C, Q) by combining with (34). Therefore, z′ ∈ Fix(S) ∩ SFP(C, Q). By using
(35), we have the following:

lim sup
k→∞

〈g(x∗)− x∗, znk − x∗〉

= lim sup
k→∞

〈g(x∗)− x∗, wnk − x∗〉

= lim
j→∞
〈g(x∗)− x∗, wnkj

− x∗〉

= 〈g(x∗)− x∗, z′ − x∗〉
≤ 0.

This means that:
lim
k→∞

Λnk ≤ 0.

The proof is finished.

4. Numerical Experiments

Now, we give two numerical experiments. We wrote these programs on Matlab 9.0,
performed them on a PC Desktop Intel(R) Core(TM) i5-1035G1 CPU @ 1.00 GHz 1.19 GHz,
RAM 16.0 GB.

Example 1. Solving the system of linear equations Ax = b. We assume that H1 = H2 = R5. In
the following, we take:

S =


1
3

1
3 0 0 0

0 1
3

1
3 0 0

0 0 1
3

1
3 0

0 0 0 1
3

1
3

0 0 0 0 1

,
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and g = 0. Consider Ax = b, where

A =


1 1 2 2 1
0 2 1 5 −1
1 1 0 4 −1
2 0 3 1 5
2 2 3 6 1

, b =


43
16
2
19
16
51
8

41
8

.

We give the parameters and initial values as follows: For (7) and (9), we choose αn = 1
10n ,

βn = 0.5, γn = 0.5− 1
10n , δn = 0.5, q1 = (1, 1, 1, 1, 1)T; for (7), we choose τn = 1

‖A‖2 ; for (9), we

choose εn = 1
n2 , µ = 1, ρn = 3 + 1

n+1 , q0 = (1, 1, 1, 1, 1)T. Denote x∗ by the solution of Ax = b.
Then we have x∗ = ( 1

16 , 1
8 , 1

4 , 1
2 , 1)T. We can see that x∗ ∈ Fix(S). We can see the numerical

results of the main algorithms in Table 1 and Figure 1.

Table 1. Numerical results of scheme (9) as regards Example 1.

n − 1 q(1)
n q(2)

n q(3)
n q(4)

n q(5)
n En

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.5675 × 100

10 0.2146 0.1868 0.2938 0.4159 0.8249 2.5806 × 10−1

50 0.0704 0.1281 0.2543 0.4935 0.9827 2.0782 × 10−2

100 0.0658 0.1263 0.2519 0.4971 0.9921 9.3812 × 10−3

500 0.0632 0.1253 0.2504 0.4994 0.9984 1.8944 × 10−3

1000 0.0628 0.1251 0.2502 0.4997 0.9992 9.4829 × 10−4

5000 0.0626 0.1250 0.2500 0.4999 0.9998 1.8983 × 10−4

10000 0.0625 0.1250 0.2500 0.5000 0.9999 9.4925 × 10−5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of Iterations

10-3

10-2

10-1

100

101

E
n=

||q
n-x

*|
|

Scheme (9)
Scheme (7)

Figure 1. Comparison of scheme (9) and scheme (7) in Example 1.

From Table 1, we can see that with the addition of iterative steps, {qn} is closer to the exact
solution x∗. We can also see that these errors are closer to zero. Hence, we can conclude that our
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algorithm is reliable. From Figure 1, we can see that our method has fewer iterations than (7),
therefore our method has more advantages.

Example 2. Seeking the solution to the following problem:

min
{

1
2
‖Ax− b‖2

2 : x ∈ Rs, ‖x‖1 ≤ τ

}
,

where A : Rs → Rm, m < s is the bounded linear operator, b ∈ Rm and τ > 0. A is a sparse
matrix, and A is generated by a standard normal distribution. The uniform distribution on the
interval (-2,2) generates a real sparse signal x∗. The position of random p is not equal to zero, and
the rest remains at zero. We can then obtain the sample data b = Ax∗.

The key is to seek the sparse solution of the linear system so that we can use method (9) to solve
the problem.

We define C = {x : ‖x‖1 ≤ τ}, Q = {b}. Because the projection on C has no closed formal
solution, we consider the subgradient projection to solve it. Assume that the convex function c(x)
and the level set Cn are defined by the following equation:

c(x) = ‖x‖1 − τ, Cn = {x : c(qn + 〈ςn, x− qn〉) ≤ 0},

then ςn ∈ ∂c(qn). Next, we can calculate the orthogonal projection on Cn according to the
following formula:

PCn(x) =

{
x, if c(qn) + 〈ςn, x− qn〉 ≤ 0,
x− c(qn)+〈ςn ,x−xn〉

‖ςn‖2 , otherwise.

Note that the subdifferential ∂c on qn is the following:

∂c(qn) =


1, if qn > 0,
[−1, 1], if qn = 0,
−1, if qn < 0.

Let S = I, g = 0.4I. Take 1
2‖Aqn − b‖2

2 ≤ 10−3 as the stopping criterion. We give
the parameters and initial values as follows: For (7) and (9), we choose αn = 1

10n , βn = 0.5,
γn = 0.5− 1

10n , δn = 0.2, q1 = (1, 1, · · · , 1)T; for (7), we choose τn = 1
‖A‖2 ; for (9), we choose

εn = 1
n2 , µ = 1, ρn = 2, q0 = (1, 1, · · · , 1)T. We can see the numerical results of the main

algorithms in Table 2. Figure 2 shows that when (m, s, p) = (240, 1024, 30), we can obtain the
relationship between the target function and the iterations.

Table 2. Numerical results of scheme (9) and scheme (7) as regards Example 2.

m s p
Scheme (9) Scheme (7)

Iter. Time (s) Iter. Time (s)

240 1024 30 40 0.0584 181 1.7113
480 2048 60 98 0.0933 337 13.8633
720 3072 90 142 0.1578 455 50.5543
960 4096 120 117 0.2073 544 138.2107
1200 5120 150 246 0.3534 795 706.2521
1440 6144 180 291 0.5483 883 1029.8199
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Figure 2. Comparison of scheme (9) and scheme (7) in Example 2, with (m, s, p) = (240, 1024, 30).

From Table 2 and Figure 2, we can see that our iterative method has advantages in both reaction
time and the number of iterations.

Example 3. Let H1 = H2 = L2[0, 1], with the inner product given by the following:

〈 f , g〉 =
∫ 1

0
f (t)g(t)dt.

Let C = {x ∈ L2[0, 1] : ‖x‖ ≤ 1}, Q =
{

x ∈ L2[0, 1] :
〈

x, t
2
〉
= 0

}
and (Ax)(t) = x(t)

2 .
Let S = I, g = 0.5I. Take ‖qn − PCqn‖2 + ‖Aqn − PQ Aqn‖2 ≤ 10−6 as the stopping criterion.

We then give the parameters and initial values as follows: For (7) and (9), we choose αn =
0.5n−0.7, βn = 0.5, γn = 0.5− 0.5n−0.7, δn = 0.5; For (7), we choose τn = 1

2‖A‖2 ; For (9), we

choose εn = 0.25n−1.4, µ = 0.5, ρn = 1, q0 = q1. The numerical results for each choice of q1 are
shown in Table 3. Figure 3 shows that the error plotting for q1 = 4t2 + t + 3.

Table 3. Numerical results of scheme (9) and scheme (7) as regards Example 3.

q1
Scheme (9) Scheme (7)

Iter. Time (s) Iter. Time (s)

4t2 + t + 3 43 0.0413 57 0.0261
et + 2t 37 0.0406 55 0.0249
2t/16 10 0.0338 25 0.0146

t3 + sin t 21 0.0363 46 0.0208
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Figure 3. Comparison of scheme (9) and scheme (7) in Example 3, with q1 = 4t2 + t + 3.

5. Conclusions

In this paper, we proposed a new method to solve the SFP and the fixed-point problem
involving quasi-nonexpansive mappings. Compared with the work of (7), the conditions
were relaxed, and the nonexpansive mapping was extended to quasi-nonexpansive map-
ping. The inertia was also added to accelerate the convergence rate further. In addition, the
selection of step size no longer depended on the operator norm.

By solving some examples, we have illustrated the effectiveness and practicability
of the method. We compared all numerical implementations of this method with (7). As
shown in Figures 1 and 2, we can find that (9) is superior. For these reasons, we can see
that (9) is more effective than (7).
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