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Abstract: This paper discusses statistical inference and optimal design of constant-stress accelerated
life testing for the Chen distribution under progressive Type-II censoring. The scale parameter of
the life distribution is assumed to be a logarithmic linear function of the stress level. The maximum
likelihood estimates of the parameters are obtained. Then, the observed Fisher information matrix
is derived and utilized to construct asymptotic confidence intervals. Meanwhile, the parametric
bootstrap methods are provided for the interval estimation. In addition, the Bayes estimates under
the squared error loss function are obtained by applying the Tierney and Kadane technique and
Lindley’s approximation. As for the optimal design, D- and A-optimality criteria are considered to
determine the optimal transformed stress level. Finally, the simulation is carried out to demonstrate
the proposed estimation techniques and the optimal criteria, and a real data set is discussed.

Keywords: accelerated life testing; the Chen distribution; maximum likelihood estimation; parametric
bootstrap methods; Bayes estimation; optimal criteria
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1. Introduction

In factory production, life testing is of great significance to evaluate product quality.
Conventional life testing is to mainly observe the failure time information of all test units
under normal usage in order to reveal the life characteristics. However, products are
produced more and more reliably currently, so it is difficult or even impossible for them
to fail under normal usage. To reduce the cost and time, it is necessary to make the test
units fail more quickly. A common way is to perform life testing at higher stress levels than
normal, which is called accelerated life testing (ALT). Then, the failure time information
obtained is analyzed to extrapolate the life characteristics under the normal stress level.
One type of classifying ALT is the way stress changes with time. ALTs are mainly classified
into constant-stress ALT (CSALT), step-stress ALT (SSALT) and progressive-stress ALT
(PSALT). The different focus of the three types is the relationship between stress loading
and testing time. For CSALT, the stress is fixed with time; for SSALT, the stress is increased
step by step at specific moments; for PSALT, stress is increased continuously with time.
Another type of classifying ALTs is by the number of stress levels. They are mainly divided
into simple ALT and multiple ALT. The simple ALT has only two stress levels while the
multiple ALT has more than two stress levels.

Some of the earlier works on ALT are mainly based on McCool [1], Nelson [2] and
Miller and Nelson [3]. Gradually, the study of ALT has attracted the interest of more
and more researchers. For the studies of CSALT, Ismail [4] discussed the estimation
of parameters of Weibull distribution in the constant-stress partial ALT under hybrid
censoring. Statistical inferences on the acceleration factor and the distribution parameters
were made utilizing maximum likelihood and percentile bootstrap. Mohie EI-Din et al. [5]
derived the optimal plans for k-level CSALT for Lindley failure data and compared the
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optimal plans calculated by two optimal criteria with the traditional plan calculated by
the asymptotic variance of maximum likelihood estimation. In addition, many researchers
studied SSALT. Mohie El-Din et al. [6] explored parametric inference for the extension of
exponential distribution on SSALT under progressive Type-II censoring. They assumed the
cumulative exposure model and obtained the point estimates and interval estimates such
as Bayes estimation and parametric bootstrap intervals. Chandra and Khan [7] studied the
optimum test plan and parameter estimation for a Lomax distribution for 3-step SSALT
under modified progressive Type-I censoring. Interval and point estimates of the model
parameters were obtained, and the Bayes estimates are obtained based on Gibbs sampling.
Regarding the studies of PSALT, Abdel-Hamid and Abushal [8] applied PSALT when the
product lifetime under design stress followed the exponential distribution. Bayes estimates
were obtained and compared with maximum likelihood estimates.

Obtaining complete failure time data is ideal in life testing. However, considering
the time cost and the possibility of unexpected product failure in practice, researchers
increasingly focus on the application of the censoring method. The two basic censoring
methods are Type-I and Type-II censoring. A life test is terminated at a fixed time and the
surviving test units are withdrawn in Type-I censoring, whereas a life test is terminated
when a specified number of units fail in Type-II censoring. Considering that the surviving
units can only be withdrawn at the final termination point of the life test, progressive
censoring has been more and more popular which enables to withdraw units at various
points in the life test. For example, the progressive Type-II censoring is commonly applied
in various fields. For more studies on progressive censoring, one can refer to Balakrishnan
and Aggarwala [9] and Balakrishnan [10]. Jaheen et al. [11] investigated Bayes inference of
constant-partial ALT when the lifetime of test units follows the generalized exponential
distribution. Under progressive Type-II censoring, the maximum likelihood and Bayes
methods of estimation were utilized for estimating acceleration factor and parameters.
Basak and Balakrishnan [12] discussed the problem of predicting survival times of units
for the exponential distribution in the simple step-stress testing under progressive Type-II
censoring. The maximum likelihood predictors and the conditional median predictors
were derived. Abd El-Raheem [13] considered optimal design and estimation of multiple
CSALT for generalized half-normal distribution under progressive Type-II censoring. Using
various estimation methods, point estimation, interval estimation and predictive estimation
were obtained and the optimal transformed stress level was derived using the optimal
criteria. Algarni et al. [14] considered E-Bayesian estimation of the scale parameter, hazard
and reliability rate functions of the Chen distribution under Type-I censoring. On the
basis of the balanced squared error loss function, the gamma distribution was used as a
conjugate prior for the scale parameter and three different distributions were discussed for
the hyper-parameters.

Chen [15] proposed a two-parameter lifetime distribution with an increasing or
bathtub-shaped hazard function. It has been considered by many researchers because
the bathtub-shaped hazard function is a suitable conceptual model for a number of ma-
chinery and electronics; see Hjorth [16] and Olkin [17]. Due to the various good properties
of the Chen distribution, many authors have discussed its statistical inference. Sarhan
et al. [18] obtained the Bayes estimation of parameters with gamma priors for the Chen
distribution by different approximations methods and compared the maximum likelihood
estimates with the approximate Bayesian estimates under non-informative prior. Rastogi
and Tripathi [19] used hybrid censoring to estimate unknown parameters of the Chen
distribution. Maximum likelihood estimates were obtained by the EM algorithm and Bayes
estimates were evaluated by the Tierney and Kadane method and Lindley method. Asymp-
totic and parametric bootstrap intervals were also proposed. Ahmed [20] derived the Bayes
estimators of the parameters, reliability, and hazard function for the Chen distribution
under both the balanced linear-exponential loss and balanced-squared error loss utilizing
the MCMC method. Moreover, to construct the asymptotic confidence intervals, delta and
parametric bootstrap methods were applied to find the variance.
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Considering that ALT is relatively rarely used for the Chen distribution which has a
bathtub-shaped hazard function and that optimal design studies are less concerned with
solving for optimal transformed stress levels, we apply the CSALT model to test units whose
lifetimes follow the Chen distribution in the presence of progressive Type-II censoring in
this paper. To better estimate the lifetime characteristics of products, we discuss a variety
of parameter and interval estimation methods. The maximum likelihood estimates of
the parameters for the Chen distribution are obtained under progressive censoring. The
Bayes estimates of the parameters are derived by both the Tierney and Kadane technique
and Lindley’s approximation. We also discuss three types of confidence intervals which
are the asymptotic confidence interval, the bootstrap percentile confidence interval, and
the bootstrap-t confidence interval. In addition, to better estimate the life parameters of
products under the normal stress level, two optimal criteria are utilized to determine and
specify the optimal transformed stress level of CSALT. To measure the performance of the
estimates, we conduct some simulations.

The rest of this paper is organized as follows. In Section 2, we discussed some
properties of the Chen distribution. In Section 3, we propose the progressive censoring
scheme and necessary model assumptions. Then, the maximum likelihood estimates
are obtained in Section 4. In Section 5, we derive the Fisher information matrix and the
variance–covariance matrix. The asymptotic confidence intervals are also constructed.
In Section 6, we present the parametric bootstrap confidence intervals. In Section 7, we
discuss the Bayesian estimation and utilize the Tierney and Kadane technique and Lindley’s
approximation to obtain the approximate estimates. In Section 8, we apply two optimal
criteria to determine the optimal transformed stress levels. In Section 9, a numerical study is
conducted to illustrate the methods proposed and examine their performance. In addition,
a real data set is discussed in Section 10. Finally, we make conclusions.

2. The Chen Distribution

The probability density function (pdf), the cumulative distribution function (cdf), and
the hazard function (hf) for the Chen distribution are expressed respectively as follows:

f (x; α, β) = αβxβ−1 exp
{

α
(

1− exβ
)
+ xβ

}
, x > 0, α > 0, β > 0, (1)

F(x; α, β) = 1− exp
{

α
(

1− exβ
)}

, x > 0, α > 0, β > 0, (2)

h(x; α, β) =
f (x; α, β)

1− F(x; α, β)
= αβxβ−1exβ

, x > 0, α > 0, β > 0, (3)

where α is the scale parameter and β is the shape parameter. When β is less than one, the
hazard function has a bathtub shape, while the shape is increasing when β ≥ 1. Different
plots of pdf and hf are shown in Figures 1–6. The shape of pdf or hf varies for different
parameter values. Assume that β is fixed. If 0 < β < 1: when 0 < α < 1, pdf is
monotonically decreasing or decreasing, then increasing and finally decreasing, and the tail
is thinner with a larger value of α; when α ≥ 1, pdf is monotonically decreasing, and the
decrease is sharper with a larger value of α. If β = 1: when 0 < α < 1, the pdf is unimodal;
when α ≥ 1, the pdf is monotonically decreasing and the decrease is sharper with a larger
value of α. If β > 1: the pdf is unimodal no matter what α value is taken, and the peak
value is larger with a larger value of α. From Figures 5 and 6, it can be seen that the hazard
rate is larger with a larger value of α if 0 < β < 1; the rising rate of hf is higher with a larger
value of α if β ≥ 1.
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Figure 1. The pdf when 0 < α < 1, 0 < β < 1.
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Figure 2. The pdf when α ≥ 1, 0 < β < 1.
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Figure 3. The pdf when β = 1.
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Figure 4. The pdf when β > 1.
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Figure 5. The hf when 0 < β < 1.
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When β is fixed at some value less than 1, the relationship between the mean of the
Chen distribution and α is shown in Figure 7. The mean decreases when the value of
α increases. Additionally, letting the cdf of the Chen distribution equal 1

2 , we can solve

for the median xm =
[
ln
(

1 + 1
α ln 2

)] 1
β . Similarly, when β is fixed and α increases, the

median decreases.
In addition, the Chen distribution has a great deal of flexibility. Let X be a nonnegative

random variable and follow the Chen distribution. Following Ahmed et al. [21], Y = eXβ − 1

follows the exponential distribution and Y =
(

eXβ − 1
) 1

θ follows the Weibull distribution.
Furthermore, the Chen distribution reduces to Gompertz distribution when β = 1.
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Figure 7. The influence of α on the mean of the Chen distribution when β is fixed.

3. Model Assumptions

For CSALT, assume a total of n units under the test and k ≥ 2 stress levels, s1 < · · · <
sk. At each stress level si, i = 1, 2, . . . , k, ni identical units are assigned for the test, such that
∑k

i=1ni = n. The lifetime of each unit Xij, j = 1, 2, . . . , ni, follows the Chen distribution. s0
is the normal stress level. The progressive Type-II censoring scheme in CSALT is briefly
described as follows: For i = 1, 2, . . . , k, when the first failure occurs at time ti1:mi :ni , Ri1
units are randomly withdrawn from the remaining ni− 1 units whose lifetime Xij > ti1:mi :ni .
Then, when the second failure occurs at time ti2:mi :ni , Ri2 units are randomly withdrawn
from the remaining ni − 2− Ri1 units whose lifetime Xij > ti2:mi :ni . Similarly, when the mi-
th (1 ≤ mi ≤ ni) failure occurs at a random time of timi :mi :ni , all remaining Rimi = ni −mi −
∑mi−1

j=1 Rij units are withdrawn and the test is terminated. The censoring scheme is shown in
Figure 8. Under stress level si, i = 1, 2, . . . k,

(
Ri1, Ri2, · · · , Rimi

)
is the progressive censoring

scheme and tij:mi :ni is the observed progressive censored data that ti1:mi :ni < · · · < timi :mi :ni .
Obviously, the sample is complete when

(
Ri1, Ri2, · · · , Rimi

)
= (0, 0, · · · , 0) and the sample

is Type-II censored when
(

Ri1, Ri2, · · · , Rimi

)
= (0, · · · , 0, ni −mi).
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Figure 8. For ni assigned units, progressive Type-II censoring scheme
(

Ri1, Ri2, · · · , Rimi

)
at stress

level si, i = 1, 2, . . . k, in constant-stress accelerated life testing.

The following model assumptions are used throughout the whole paper:
(1) Under stress level si, i = 1, 2, . . . , k, the lifetimes of the units follow

fi(x; αi, β) = αiβxβ−1 exp
{

αi

(
1− exβ

)
+ xβ

}
, x > 0, αi > 0, β > 0. (4)

(2) The relationship between the stress level si and the lifetime distribution parameter
αi is

ln (αi) = b0 + bϕi, i = 0, 1, . . . , k, (5)

where ϕi = ϕ(si) is an incremental function of si. b0 and b > 0 are unknown parameters.
To simplify the expression, according to the model (5), the scale parameter αi can be

presented as

αi = α0 exp{b(ϕi − ϕ0)} = α0λhi , i = 0, 1, . . . , k, (6)

where α0 is the scale parameter for the Chen distribution under normal stress level s0,
ϕ0 = ϕ(s0), λ = exp{b(ϕ1 − ϕ0)} = α1

α0
> 1 and

hi =
ϕi − ϕ0

ϕ1 − ϕ0
, i = 1, 2, . . . , k,

which satisfy hk > hk−1 > · · · > h1 = 1. Since the Jacobian determinant from (b0, b, β) to
(α0, λ, β) is 1/λα0(ϕ1 − ϕ0) > 0, the transformation from the model parameter (b0, b, β) to
(α0, λ, β) is mapped one-to-one.

4. Maximum Likelihood Estimation

Based on the above assumptions and notations, when the stress level is si, the likeli-
hood function of parameters α0, λ and β is given by

Li(α0, λ, β) = Ci

mi

∏
j=1

αiβtβ−1
ij exp

{
αi

(
1− etβ

ij

)
+ tβ

ij

}(
exp

[
αi

(
1− etβ

ij

)])Rij

, (7)
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where Ci = ni(ni − 1− Ri1) · · ·
(

ni −mi + 1−∑mi−1
j=1 Rij

)
and tij = tij:mi :ni . Then, the

likelihood function is given by

L(α0, λ, β) =
k

∏
i=1

Li(α0, λ, β)

=
k

∏
i=1

Ci

mi

∏
j=1

αiβtβ−1
ij exp

{
αi

(
1− etβ

ij

)
+ tβ

ij

}(
exp

[
αi

(
1− etβ

ij

)])Rij

. (8)

Correspondingly, the log-likelihood function ignoring the constants is given by

l(α0, λ, β) = ln L(α0, λ, β) = ln (β)∑k
i=1 mi + ∑k

i=1mi ln (αi) + (β− 1)∑k
i=1∑mi

j=1 ln
(
tij
)

+∑k
i=1∑mi

j=1αi
(

Rij + 1
)(

1− etβ
ij

)
+ ∑k

i=1∑mi
j=1tβ

ij. (9)

The partial derivatives of l(α0, λ, β) with respect to α0, λ and β are given by

∂l
∂α0

=
1
α0

∑k
i=1 mi + ∑k

i=1∑mi
j=1λhi

(
Rij + 1

)(
1− etβ

ij

)
, (10)

∂l
∂λ

=
1
λ

∑k
i=1 mihi + ∑k

i=1∑mi
j=1α0hiλ

hi−1(Rij + 1
)(

1− etβ
ij

)
, (11)

∂l
∂β

=
1
β

∑k
i=1 mi + ∑k

i=1∑mi
j=1

(
tβ
ij + 1

)
ln
(
tij
)
−∑k

i=1∑mi
j=1αie

tβ
ij tβ

ij ln
(
tij
)(

Rij + 1
)
. (12)

We can solve the maximum likelihood estimates (MLE)
(
α̂0, λ̂, β̂

)
for α0, λ and β by

making the functions (10)–(12) equal to 0 simultaneously. Unfortunately, explicit solutions
cannot be obtained and numerical methods such as the Newton–Raphson method can
be utilized to calculate the estimates. According to MacDonald [22], for a constrained
optimization problem, one can enforce the constraint by means of a transformation or use
of a constrained optimizer. Considering the three parameters are constrained (α > 0, λ > 1,
β > 0), we use the optim function in R software with method L-BFGS-B and default settings.
L-BFGS-B is an application of the quasi-Newton method.

5. Fisher Information Matrix

Let Θ = (α0, λ, β) and T be the observed failure data. For a large-size sample, the
inverse of the Fisher information matrix (FIM) can be regarded as the approximation of
the variance–covariance matrix. First, FIM is given as follows by evaluating the negative
of the expected values of the second-order derivatives and mixed partial derivatives of
log-likelihood function in (9) with respect to α0, λ and β,

IT(Θ) = E
(
−∂2l(Θ)

∂Θ2

)
=


E
(
− ∂2l(Θ)

∂α2
0

)
E
(
− ∂2l(Θ)

∂α0∂λ

)
E
(
− ∂2l(Θ)

∂α0∂β

)
E
(
− ∂2l(Θ)

∂λ∂α0

)
E
(
− ∂2l(Θ)

∂λ2

)
E
(
− ∂2l(Θ)

∂λ∂β

)
E
(
− ∂2l(Θ)

∂β∂α0

)
E
(
− ∂2l(Θ)

∂β∂λ

)
E
(
− ∂2l(Θ)

∂β2

)
. (13)

Due to the complexity of the pdf and the integral formula, in practice, the observed
FIM which utilizes the MLEs of parameters Θ̂ =

(
α̂0, λ̂, β̂

)
is used to approximate the

exact values,
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OT(Θ) =


− ∂2l(Θ)

∂α2
0
− ∂2l(Θ)

∂α0∂λ − ∂2l(Θ)
∂α0∂β

− ∂2l(Θ)
∂λ∂α0

− ∂2l(Θ)
∂λ2 − ∂2l(Θ)

∂λ∂β

− ∂2l(Θ)
∂β∂α0

− ∂2l(Θ)
∂β∂λ − ∂2l(Θ)

∂β2


|α0=α̂0,λ=λ̂,β=β̂

, (14)

where

−∂2l(Θ)

∂α2
0

=
∑k

i=1mi

α2
0

, (15)

−∂2l(Θ)

∂λ2 =
∑k

i=1mihi

λ2 −∑k
i=1∑mi

j=1α0λhi−2hi(hi − 1)
(

Rij + 1
)(

1− etβ
ij

)
, (16)

−∂2l(Θ)

∂β2 =
∑k

i=1mi

β2 + ∑k
i=1∑mi

j=1αi
(

Rij + 1
)

ln2(tij
)
etβ

ij tβ
ij

(
tβ
ij + 1

)
−∑k

i=1∑mi
j=1tβ

ij ln2(tij
)
, (17)

−∂2l(Θ)

∂α0∂λ
= −∂2l(Θ)

∂λ∂α0
= −∑k

i=1∑mi
j=1hiλ

hi−1(Rij + 1
)(

1− etβ
ij

)
, (18)

−∂2l(Θ)

∂α0∂β
= −∂2l(Θ)

∂β∂α0
= ∑k

i=1∑mi
j=1λhi

(
Rij + 1

)
etβ

ij tβ
ij ln

(
tij
)
, (19)

−∂2l(Θ)

∂λ∂β
= −∂2l(Θ)

∂β∂λ
= ∑k

i=1∑mi
j=1α0hiλ

hi−1(Rij + 1
)
etβ

ij tβ
ij ln

(
tij
)
. (20)

According to the observed FIM in (14), the asymptotic variance–covariance matrix of
Θ̂ can be constructed as O−1

T (Θ). Then, on the basis of the respective asymptotic variances
and the asymptotic normality of Θ̂, the 100(1− τ)% asymptotic confidence intervals can be
given by

(
θ̂l , θ̂u

)
= θ̂ ± Z1− τ

2

√
Var

(
θ̂
)
, (21)

where θ is α0, λ or β, and Zr is the 100r-th percentile of the standard normal distribution.

6. Parametric Bootstrap Intervals

The asymptotic confidence interval based on the normal approximation which we
mentioned in Section 5 has a better performance for the large sample size. In this section,
two parametric bootstrap methods are discussed to find more accurate approximate confi-
dence intervals for unknown parameters α0, λ and β when the sample size is not large. The
algorithms are as follows.

6.1. The Bootstrap Percentile Confidence Interval

- Step 1: Utilize the progressive censored sample to compute the MLE Θ̂ =
(
α̂0, λ̂, β̂

)
.

- Step 2: Generate a progressive censored sample by regarding Θ̂ as the parameter
values for the Chen distribution.

- Step 3: Compute the MLE Θ̂∗ =
(
α̂∗0 , λ̂∗, β̂∗

)
using the samples from Step 2.

- Step 4: Repeat Step 2 and 3, B times.
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- Step 5: Estimate the cdf of θ̂∗ by F̂1(x) = P
(
θ̂∗ ≤ x

)
where θ is α0, λ or β and let

θ̂Boot−p = F̂1
−1

(x) be the inverse of F̂1 for a given x (0 < x < 1).

By following the above steps, the 100(1− τ)% bootstrap percentile confidence interval
of θ is given by (

θ̂l , θ̂u
)
=
(

θ̂Boot−p

(τ

2

)
, θ̂Boot−p

(
1− τ

2

))
.

6.2. The Bootstrap-t Confidence Interval

- Steps 1 and 2 are the same as those in the algorithm of the bootstrap percentile confi-
dence interval.

- Step 3: Compute the MLE θ̂∗ using the progressive censored samples from Step 2
where θ is α0, λ or β . Then, obtain the statistic

T∗ =
θ̂∗ − θ̂√

ˆVar
(
θ̂∗
) .

- Step 4: Repeat Step 2 and 3, B times.

- Step 5: Estimate the cdf of T∗ by F̂2(x) = P(T∗ ≤ x) and let θ̂Boot−t = θ̂ +
√

ˆVar
(
θ̂∗
)

F̂2
−1

(x) for a given x (0 < x < 1).

By following the above steps, the 100(1− τ)% bootstrap-t confidence interval of θ is
given by (

θ̂l , θ̂u
)
=
(

θ̂Boot−t

(τ

2

)
, θ̂Boot−t

(
1− τ

2

))
.

7. Bayesian Estimation

The aim of this section is to obtain the Bayes estimates (BE) of unknown parameters α0,
λ and β, utilizing progressive censored samples of CSALT. First, considering α0 > 0, λ > 1
and β > 0, the prior distributions of α0 and β are assumed to be the gamma distributions
and the prior distribution of λ is assumed to be the left truncated gamma distribution as

π1(α0) ∝ αa1−1
0 e−b1α0 , α0 > 0, a1 > 0, b1 > 0, (22)

π2(λ) ∝
λa2−1e−b2λ∫ ∞

1 ua2−1e−b2udu
, λ > 1, a2 > 0, b2 > 0, (23)

π3(β) ∝ βa3−1e−b3β, β > 0, a3 > 0, b3 > 0, (24)

where all the hyperparameters ai and bi, (i = 1, 2, 3) are considered to be known and
non-negative. When the hyperparameters all tend to zero, the BEs are obtained in the
case of non-informative prior. Because of the independence of α0, λ and β, their joint prior
distribution is given by

π(α0, λ, β) ∝
αa1−1

0 λa2−1βa3−1e−(b1α0+b2λ+b3β)∫ ∞
1 ua2−1e−b2udu

. (25)

Denote the observed failure data as T. Then using both the likelihood function (8) and
the joint prior distribution (25), the posterior distribution is given by

π∗(α0, λ, β | T) ∝
π(α0, λ, β)L(T | α0, λ, β)∫ ∞

0

∫ ∞
1

∫ ∞
0 π(α0, λ, β)L(T | α0, λ, β)dα0dλdβ

. (26)
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Let g(α0, λ, β) be an arbitrary function of α0, λ and β. The BE of g(α0, λ, β) under
squared error loss function is given by

ˆgBE(α0, λ, β) = E(g(α0, λ, β) | T)

=

∫ ∞
0

∫ ∞
1

∫ ∞
0 g(α0, λ, β)π(α0, λ, β)L(T | α0, λ, β)dα0dλdβ∫ ∞

0

∫ ∞
1

∫ ∞
0 π(α0, λ, β)L(T | α0, λ, β)dα0dλdβ

. (27)

For the ease of calculation, the BE of g(α0, λ, β) is rewritten as

ˆgBE(α0, λ, β) =

∫ ∞
0

∫ ∞
1

∫ ∞
0 g(α0, λ, β)el(α0,λ,β)+ρ(α0,λ,β)dα0dλdβ∫ ∞

0

∫ ∞
1

∫ ∞
0 el(α0,λ,β)+ρ(α0,λ,β)dα0dλdβ

, (28)

where l(α0, λ, β) = ln(L(α0, λ, β)) and ρ(α0, λ, β) = ln(π(α0, λ, β)).
Considering the complexity of the likelihood function (8) and the ratio of two multiple

integrals, ˆgBE(α0, λ, β) cannot be given by an analytical form. Therefore, it is necessary to
employ some approximation methods to obtain the approximate posterior expectations.
Among others, the methods suggested by Tierney and Kadane [23] and Lindley [24] are
commonly used and perform well. In the next subsections, the Tierney and Kadane
technique and Lindley’s approximation are applied.

7.1. Tierney and Kadane Technique

By applying the Tierney and Kadane technique, we can approximate (28) into an
explicit expression. First, two functions ψ(α0, λ, β) and ψ∗θ (α0, λ, β) are defined as follows:

ψ(α0, λ, β) =
l(α0, λ, β) + ρ(α0, λ, β)

n
, (29)

ψ∗θ (α0, λ, β) = ψ(α0, λ, β) +
ln(g(α0, λ, β))

n
. (30)

Then, (28) can be approximated as

ˆgTK(α0, λ, β) =

√∣∣Σ∗θ ∣∣
|Σ| exp

{
n
(
ψ∗θ
(
α̂0ψ∗ , λ̂ψ∗ , β̂ψ∗

)
− ψ

(
α̂0ψ, λ̂ψ, β̂ψ

))}
, (31)

where
(
α̂0ψ, λ̂ψ, β̂ψ

)
and

(
α̂0ψ∗ , λ̂ψ∗ , β̂ψ∗

)
maximize ψ(α0, λ, β) and ψ∗θ (α0, λ, β), respectively,

and |Σ| and
∣∣Σ∗θ ∣∣ are the determinants of negative inverse Hessian of ψ(α0, λ, β) and

ψ∗θ (α0, λ, β) at
(
α̂0ψ, λ̂ψ, β̂ψ

)
and

(
α̂0ψ∗ , λ̂ψ∗ , β̂ψ∗

)
,respectively.

From the (9) and (25), ψ(α0, λ, β) ignoring the constants can be expressed as

ψ(α0, λ, β) =
1
n

[
ln(α0)

(
a1 − 1 + ∑k

i=1mi

)
+ ln(λ)

(
a2 − 1 + ∑k

i=1mihi

)
+ ln(β)

(
a3 − 1 + ∑k

i=1mi

)
+ (β− 1)∑k

i=1∑mi
j=1 ln

(
tij
)

+∑k
i=1∑mi

j=1α0λhi
(

Rij + 1
)(

1− etβ
ij

)
+ ∑k

i=1∑mi
j=1tβ

ij

−(b1α0 + b2λ + b3β)]. (32)

To obtain
(
α̂0ψ, λ̂ψ, β̂ψ

)
, the derivatives of ψ are derived

∂ψ

∂α0
=

1
n

[
1
α0

(
a1 − 1 + ∑k

i=1mi

)
+ ∑k

i=1∑mi
j=1λhi

(
Rij + 1

)(
1− etβ

ij

)
− b1

]
, (33)
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∂ψ

∂λ
=

1
n

[
1
λ

(
a2 − 1 + ∑k

i=1mihi

)
+ ∑k

i=1∑mi
j=1α0hiλ

hi
(

Rij + 1
)(

1− etβ
ij

)
− b2

]
, (34)

∂ψ

∂β
=

1
n

[
1
β

(
a3 − 1 + ∑k

i=1mi

)
−∑k

i=1∑mi
j=1α0λhi etβ

ij tβ
ij ln

(
tij
)(

Rij + 1
)

+∑k
i=1∑mi

j=1 ln
(
tij
)
+ ∑k

i=1∑mi
j=1tβ

ij ln
(
tij
)
− b3

]
. (35)

To calculate |Σ|, the second-order derivatives of ψ are derived

∂2ψ

∂α2
0
=

1
n

[
− 1

α2
0

(
a1 − 1 + ∑k

i=1mi

)]
, (36)

∂2ψ

∂α0∂λ
=

1
n

[
∑k

i=1∑mi
j=1hiλ

hi−1(Rij + 1
)(

1− etβ
ij

)]
, (37)

∂2ψ

∂α0∂β
=

1
n

[
−∑k

i=1∑mi
j=1λhi etβ

ij tβ
ij ln

(
tij
)(

Rij + 1
)]

, (38)

∂2ψ

∂λ2 =
1
n

[
− 1

λ2

(
a2 − 1 + ∑k

i=1mihi

)
+ ∑k

i=1∑mi
j=1α0hi(hi − 1)λhi−2(Rij + 1

)(
1− etβ

ij

)]
, (39)

∂2ψ

∂λ∂β
=

1
n

[
−∑k

i=1∑mi
j=1α0hiλ

hi−1etβ
ij tβ

ij ln
(
tij
)(

Rij + 1
)]

, (40)

∂2ψ

∂β2 =
1
n

[
− 1

β2

(
a3 − 1 + ∑k

i=1mi

)
+ ∑k

i=1∑mi
j=1tβ

ij
(
ln
(
tij
))2

−∑k
i=1∑mi

j=1α0λhi ln
(
tij
)(

Rij + 1
)(

etβ
ij
(

tβ
ij

)2
ln
(
tij
)
+ etβ

ij tβ
ij ln

(
tij
))]

. (41)

Take solving α̂0TK as an example. Let g(α0, λ, β) = α0. Then, the ψ∗α0
is given by

ψ∗α0
(α0, λ, β) = ψ +

1
n

ln(α0). (42)

Correspondingly, the derivatives and second-order derivatives of ψ∗α0
are as follows,

respectively,

∂ψ∗α0

∂α0
=

∂ψ

∂α0
+

1
nα0

,
∂ψ∗α0

∂λ
=

∂ψ

∂λ
,

∂ψ∗α0

∂β
=

∂ψ

∂β
, (43)

∂2ψ∗α0

∂α2
0

=
∂2ψ

∂α2
0
− 1

nα2
0

,
∂2ψ∗α0

∂λ2 =
∂2ψ

∂λ2 ,
∂2ψ∗α0

∂β2 =
∂2ψ

∂β2 ,

∂2ψ∗α0

∂α0∂λ
=

∂2ψ

∂α0∂λ
,

∂2ψ∗α0

∂α0∂β
=

∂2ψ

∂α0∂β
,

∂2ψ∗α0

∂λ∂β
=

∂2ψ

∂λ∂β
. (44)
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From the above derivation, we obtain the estimates α̂0TK by

α̂0TK =

√∣∣Σ∗α0

∣∣
|Σ| exp

{
n
(
ψ∗α0

(
α̂0ψ∗ , λ̂ψ∗ , β̂ψ∗

)
− ψ

(
α̂0ψ, λ̂ψ, β̂ψ

))}
. (45)

Similarly, by making g(α0, λ, β) = λ and g(α0, λ, β) = β, respectively, the estimates
λ̂TK and β̂TK can be obtained by

λ̂TK =

√∣∣Σ∗λ∣∣
|Σ| exp

{
n
(
ψ∗λ
(
α̂0ψ∗ , λ̂ψ∗ , β̂ψ∗

)
− ψ

(
α̂0ψ, λ̂ψ, β̂ψ

))}
, (46)

β̂TK =

√√√√∣∣∣Σ∗β∣∣∣
|Σ| exp

{
n
(

ψ∗β
(
α̂0ψ∗ , λ̂ψ∗ , β̂ψ∗

)
− ψ

(
α̂0ψ, λ̂ψ, β̂ψ

))}
. (47)

7.2. Lindley’s Approximation

Jung and Chung [25] mentioned that the Lindley’s approximation can be utilized to
the model with three parameters. Denote Θ = (θ1, θ2, θ3) = (α0, λ, β). By applying the
Lindley’s approximation, (28) becomes

ˆgLA(α0, λ, β) ≈ g(Θ) +
1
2 ∑3

i=1∑3
j=1
(

gij(Θ) + 2gi(Θ)ρj
)
σij

+
1
2 ∑3

i=1∑3
j=1∑3

k=1∑3
l=1lijkgl(Θ)σijσkl , (48)

where gi =
∂g
∂θi

, gij =
∂2g

∂θi∂θj
, ρi =

∂ρ
∂θi

, lijk = ∂3l
∂θi∂θj∂θk

and σij is the (i, j)th element of the

matrix O−1
T (Θ).

By making g(Θ) = α0, g(Θ) = λ and g(Θ) = β, respectively, the estimates α̂0LA, λ̂LA
and β̂LA can be calculated by

α̂0LA = α̂0 + ρ1σ11 + ρ2σ12 + ρ3σ13 +
1
2 ∑3

i=1∑3
j=1∑3

k=1lijkσijσk1, (49)

λ̂LA = λ̂ + ρ1σ21 + ρ2σ22 + ρ3σ23 +
1
2 ∑3

i=1∑3
j=1∑3

k=1lijkσijσk2, (50)

β̂LA = β̂ + ρ1σ31 + ρ2σ32 + ρ3σ33 +
1
2 ∑3

i=1∑3
j=1∑3

k=1lijkσijσk3. (51)

8. Optimal Design

In addition to the study of parameter estimation, this paper also includes the problem
of selecting the optimal transformed stress level h∗i (i = 1, . . . , k) of CSALT for the Chen
distribution under progressive Type-II censoring. In CSALT, test units are assigned to run
under different stress levels to better estimate the life characteristics of the units under
the normal stress level. For different combinations of stress levels, the performance of
parameter estimation will be different. Therefore, to improve the accuracy of product life
characteristic estimation, the selection of stress levels is very important.

According to Nelson [2], the best test plan has two stress levels to produce the most
precise estimation of life distribution parameters (minimum variance) under design stress
levels. Therefore, we consider and discuss the case k = 2 when solving the optimal
transformed stress level. Since the minimum transformed stress level is constant at h1 = 1,
we only need to solve the optimal stress level of h2. Here, we investigate this problem
according to the following two optimal criteria.
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8.1. D-Optimality

D-optimality is very common in designing ALT, which maximizes the determinant of
FIM. The determinant of FIM is known to be proportional to the determinant of the inverse
of the asymptotic variance–covariance matrix, which is proportional to the total volume of
the joint confidence interval of the parameter (α0, λ, β). To estimate the life parameters of
the unit under the normal stress level with greater accuracy, when the progressive censoring
scheme is determined, the smaller the total volume of the joint confidence region of the
parameter (α0, λ, β), the better the estimation. Therefore, maximizing the determinant of
the FIM within a suitable range can achieve this aim. Here, we continue to use the observed
FIM OT(Θ) derived from the preceding section. The criterion can be expressed as follows

max |OT(α0, λ, β)|. (52)

8.2. A-Optimality

Similarly, according to the relationship between the asymptotic variance–covariance
matrix and the joint confidence region of the parameter (α0, λ, β), we can also minimize the
trace of the inverse of FIM to obtain the optimal solution. It provides a global indicator to
measure the overall change of MLE. We still use observed FIM OT(Θ) to obtain the optimal
transformed stress to estimate the life parameters of the unit under the normal stress level
more accurately when the progressive censoring scheme is determined. The criterion can
be expressed as follows

min tr
(

O−1
T (α0, λ, β)

)
. (53)

9. Simulation Study

In this section, a numerical study is carried out with the Monte Carlo simulation using
R software to assess the performance of the methods for point and interval estimation
discussed in the preceding sections. Initially, we set the true values of the parameters
to α0 = 0.45, λ = 2.0 and β = 0.7. We also set the CSALT with two stress levels that
h = (1, 8.0) and k = 2. Under both stress levels s1 and s2, suppose that the number of
assigned test units ni, (i = 1, 2), the number of failed test units mi, and the censoring
schemes Ri do not depend on i. We set three different sample sizes (30, 15), (45, 25) and
(60, 35), and consider three different censoring schemes in each sample size. Among the
censoring schemes, (0 ∗ 7, 15, 0 ∗ 7) denotes that no unit is withdrawn for the first 7 times,
then 15 units are withdrawn at one time, and no unit is withdrawn for the last 7 times. It is
similar to other notations. By utilizing the algorithm from Balakrishnan and Sandhu [26],
the progressive Type-II censored samples are generated.

For all point and interval estimation methods, the simulation is repeated 5000 times.
Then, we take the expected values (EV) as the final point estimates and take the mean values
of lower bounds (LB) and upper bounds (UB) as the final interval estimates. Additionally,
we calculate the mean square error (MSE) for point estimation and the average interval
length (AIL) and the coverage probability (COVP) for interval estimation to compare the
performance of the estimation from various methods.

According to the log-likelihood function (9), we use the progressively censored
samples to obtain the MLEs of the parameters in Table 1. In computing BEs, we set
(a1, a2, a3) = (0.1, 0.1, 0.1) and (b1, b2, b3) = (0.2, 0.2, 0.2) as the values of hyperparameters
for the prior distributions. Then, we apply the Tierney and Kadane technique and Lindley’s
approximation to obtain BEs that are shown in Tables 2 and 3, respectively. Further, Table 4
shows the corresponding 95% asymptotic confidence intervals based on the asymptotic
property of MLEs and the approximate variance of the parameters in the matrix O−1

T (Θ).
For the interval estimation, we also apply the parametric bootstrap method to find the 95%
bootstrap percentile confidence interval and the 95% bootstrap-t confidence interval that
are shown in Tables 5 and 6, where we set B = 1000. Finally, utilizing D- and A- optimal cri-
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teria, we obtain the average optimal transformed stress level for each progressive censoring
scheme that are shown in Tables 7 and 8.

From Tables 1–8, the following conclusions can be drawn.
(1) According to Tables 1–6, the parameter estimation under different progressive

censoring schemes all roughly follows the pattern of better performance with increasing
sample size. Different censoring schemes have different performance in different estimation
methods. As the censoring scheme of withdrawing one surviving unit for each unit ob-
served to fail from the beginning of the test (for example, (1 ∗ 15)), the performance in point
estimation is poor, especially when the sample size is relatively small and the estimation
bias is relatively large. However, this censoring scheme has no obvious difference from
other schemes in interval estimation.

(2) According to the results of the point estimates in Tables 1–3, the estimated values are
all close to the true values and, roughly, the MSE decreases as the sample size increases, so
all the point estimation methods mentioned are valid. Based on the MSEs of the parameter
estimators, the three methods perform similarly when the progressive censoring scheme is
determined. For the estimation of α0, the BE obtained from the Lindley’s approximation
performs better than BE obtained from the Tierney and Kadane technique. Additionally,
BE obtained from the Tierney and Kadane technique performs slightly better than MLE.
For λ estimation, BE obtained from the Lindley’s approximation performs best, and the
BE obtained from the Tierney and Kadane technique and MLE perform similarly. For β
estimation, BE obtained from the Lindley’s approximation performs best, followed by BE
obtained from Lindley’s approximation and MLE. Overall, BE obtained from the Lindley’s
approximation performs well for all three parameters.

(3) According to the results of the interval estimation in Tables 4–6, generally speaking,
the asymptotic confidence intervals perform best. The bootstrap percentile confidence
intervals and the bootstrap-t confidence intervals perform similarly when the progressive
censoring scheme is determined. For all three interval estimation methods, the AIL of λ is
longer than those of α0 and β. The COVP of the intervals of α0 outperforms those of both λ
and β in parametric bootstrap intervals.

(4) According to Tables 7 and 8 for the optimal transformed stress level, the values
based on A-optimality are smaller than those based on D-optimality. For a similar censoring
scheme, the results based on D-optimality become larger as the sample size increases.
However, the results based on A-optimality are the opposite. In general, the optimal
transformed stress levels do not differ significantly in each of the optimal criteria.

Table 1. The expected values (EV) and mean square errors (MSE) of the maximum likelihood
estimates for different sample sizes (ni, mi) and different censoring schemes Ri.

(ni, mi) Ri EVα̂0 MSEα̂0 EVλ̂ MSEλ̂ EVβ̂ MSEβ̂

(30, 15)
(0 ∗ 7, 15, 0 ∗ 7) 0.4933 0.0321 2.1014 0.0736 0.7474 0.0142

(0 ∗ 5, 3 ∗ 5, 0 ∗ 5) 0.4946 0.0324 2.1050 0.0786 0.7484 0.0151
(1 ∗ 15) 0.4967 0.0367 2.1238 0.0932 0.7567 0.0182

(45, 25)
(0 ∗ 12, 20, 0 ∗ 12) 0.4728 0.0144 2.0573 0.0330 0.7281 0.0071

(0 ∗ 10, 4 ∗ 5, 0 ∗ 10) 0.4729 0.0146 2.0583 0.0368 0.7281 0.0076
(1 ∗ 20, 0 ∗ 5) 0.4703 0.0139 2.0595 0.0355 0.7281 0.0074

(60, 35)
(0 ∗ 17, 25, 0 ∗ 17) 0.4643 0.0096 2.0456 0.0235 0.7217 0.0049

(0 ∗ 15, 5 ∗ 5, 0 ∗ 15) 0.4671 0.0100 2.0409 0.0224 0.7205 0.0048
(1 ∗ 25, 0 ∗ 10) 0.4650 0.0098 2.0402 0.0228 0.7199 0.0050
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Table 2. The expected values (EV) and mean square errors (MSE) of the Bayes estimates using the
Tierney and Kadane technique for different sample sizes (ni, mi) and different censoring schemes Ri.

(ni, mi) Ri EVα̂0 MSEα̂0 EVλ̂ MSEλ̂ EVβ̂ MSEβ̂

(30, 15)
(0 ∗ 7, 15, 0 ∗ 7) 0.4957 0.0291 2.0937 0.0715 0.7386 0.0130

(0 ∗ 5, 3 ∗ 5, 0 ∗ 5) 0.4957 0.0299 2.1003 0.0779 0.7397 0.0139
(1 ∗ 15) 0.4953 0.0315 2.1187 0.0902 0.7476 0.0166

(45, 25)
(0 ∗ 12, 20, 0 ∗ 12) 0.4744 0.0147 2.0541 0.0330 0.7229 0.0067

(0 ∗ 10, 4 ∗ 5, 0 ∗ 10) 0.4747 0.0150 2.0563 0.0350 0.7236 0.0069
(1 ∗ 20, 0 ∗ 5) 0.4750 0.0142 2.0556 0.0345 0.7244 0.0071

(60, 35)
(0 ∗ 17, 25, 0 ∗ 17) 0.4669 0.0093 2.0368 0.0220 0.7157 0.0047

(0 ∗ 15, 5 ∗ 5, 0 ∗ 15) 0.4664 0.0096 2.0364 0.0223 0.7154 0.0046
(1 ∗ 25, 0 ∗ 10) 0.4664 0.0098 2.0401 0.0235 0.7172 0.0049

Table 3. The expected values (EV) and mean square errors (MSE) of the Bayes estimates using the
Lindley’s approximation for different sample sizes (ni, mi) and different censoring schemes Ri.

(ni, mi) Ri EVα̂0 MSEα̂0 EVλ̂ MSEλ̂ EVβ̂ MSEβ̂

(30, 15)
(0 ∗ 7, 15, 0 ∗ 7) 0.4869 0.0270 2.0424 0.0491 0.7117 0.0098

(0 ∗ 5, 3 ∗ 5, 0 ∗ 5) 0.4825 0.0265 2.0425 0.0514 0.7099 0.0105
(1 ∗ 15) 0.4826 0.0258 2.0462 0.0593 0.7119 0.0125

(45, 25)
(0 ∗ 12, 20, 0 ∗ 12) 0.4699 0.0126 2.0290 0.0269 0.7088 0.0058

(0 ∗ 10, 4 ∗ 5, 0 ∗ 10) 0.4704 0.0138 2.0290 0.0285 0.7089 0.0060
(1 ∗ 20, 0 ∗ 5) 0.4708 0.0133 2.0286 0.0304 0.7085 0.0065

(60, 35)
(0 ∗ 17, 25, 0 ∗ 17) 0.4632 0.0088 2.0190 0.0192 0.7059 0.0042

(0 ∗ 15, 5 ∗ 5, 0 ∗ 15) 0.4648 0.0087 2.0189 0.0196 0.7054 0.0042
(1 ∗ 25, 0 ∗ 10) 0.4660 0.0096 2.0171 0.0194 0.7051 0.0042

Table 4. The lower bounds (LB), upper bounds (UB), average interval lengths (AIL) and coverage
probabilities (COVP) of the 95% asymptotic confidence intervals for different sample sizes (ni, mi)

and different censoring schemes Ri.

(ni, mi) Ri Parameter LB UB AIL COVP

(30, 15)

(0 ∗ 7, 15, 0 ∗ 7)
α0 0.2015 0.7859 0.5844 0.9422
λ 1.6609 2.5389 0.8779 0.9556
β 0.5503 0.9425 0.3922 0.9403

(0 ∗ 5, 3 ∗ 5, 0 ∗ 5)
α0 0.2020 0.7876 0.5856 0.9451
λ 1.6553 2.5524 0.8971 0.9595
β 0.5470 0.9495 0.4025 0.9436

(1 ∗ 15)
α0 0.2018 0.7889 0.5871 0.9476
λ 1.6240 2.6262 1.0022 0.9649
β 0.5285 0.9863 0.4578 0.9404

(45, 25)

(0 ∗ 12, 20, 0 ∗ 12)
α0 0.2565 0.6871 0.4306 0.9467
λ 1.7324 2.3861 0.6538 0.9535
β 0.5784 0.8780 0.2995 0.9465

(0 ∗ 10, 4 ∗ 5, 0 ∗ 10)
α0 0.2569 0.6878 0.4309 0.9461
λ 1.7296 2.3883 0.6587 0.9546
β 0.5768 0.8793 0.3026 0.9456

(1 ∗ 20, 0 ∗ 5)
α0 0.2553 0.6840 0.4287 0.9446
λ 1.7270 2.3995 0.6725 0.9546
β 0.5742 0.8847 0.3106 0.9470
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Table 4. Cont.

(ni, mi) Ri Parameter LB UB AIL COVP

(60, 35)

(0 ∗ 17, 25, 0 ∗ 17)
α0 0.2860 0.6448 0.3588 0.9461
λ 1.7700 2.3133 0.5433 0.9535
β 0.5940 0.8454 0.2514 0.9474

(0 ∗ 15, 5 ∗ 5, 0 ∗ 15)
α0 0.2856 0.6437 0.3581 0.9444
λ 1.7683 2.3144 0.5461 0.9523
β 0.5935 0.8465 0.2531 0.9486

(1 ∗ 25, 0 ∗ 10)
α0 0.2853 0.6447 0.3594 0.9422
λ 1.7675 2.3144 0.5468 0.9562
β 0.5927 0.8471 0.2544 0.9491

Table 5. The lower bounds (LB), upper bounds (UB), average interval lengths (AIL) and coverage
probabilities (COVP) of the 95% bootstrap percentile confidence interval for different sample sizes
(ni, mi) and different censoring schemes Ri.

(ni, mi) Ri Parameter LB UB AIL COVP

(30, 15)

(0 ∗ 7, 15, 0 ∗ 7)
α0 0.2748 1.0015 0.7267 0.9180
λ 1.8041 2.9166 1.1125 0.8520
β 0.6093 1.0612 0.4519 0.8560

(0 ∗ 5, 3 ∗ 5, 0 ∗ 5)
α0 0.2762 1.0105 0.7343 0.9320
λ 1.7954 2.9324 1.1370 0.8680
β 0.6050 1.0685 0.4635 0.8540

(1 ∗ 15)
α0 0.2760 1.0237 0.7476 0.9260
λ 1.7939 3.0883 1.2945 0.8800
β 0.5961 1.1200 0.5238 0.8800

(45, 25)

(0 ∗ 12, 20, 0 ∗ 12)
α0 0.3040 0.7959 0.4919 0.9260
λ 1.8200 2.5674 0.7474 0.8980
β 0.6171 0.9435 0.3265 0.8900

(0 ∗ 10, 4 ∗ 5, 0 ∗ 10)
α0 0.3056 0.8003 0.4947 0.9220
λ 1.8125 2.5607 0.7482 0.9040
β 0.6144 0.9442 0.3298 0.9000

(1 ∗ 20, 0 ∗ 5)
α0 0.3134 0.8193 0.5059 0.9120
λ 1.7963 2.5448 0.7484 0.9180
β 0.6068 0.9414 0.3346 0.8960

(60, 35)

(0 ∗ 17, 25, 0 ∗ 17)
α0 0.3188 0.7094 0.3906 0.9460
λ 1.8287 2.4219 0.5932 0.9180
β 0.6188 0.8854 0.2666 0.9060

(0 ∗ 15, 5 ∗ 5, 0 ∗ 15)
α0 0.3184 0.7082 0.3898 0.9420
λ 1.8368 2.4402 0.6035 0.9040
β 0.6251 0.8957 0.2706 0.8820

(1 ∗ 25, 0 ∗ 10)
α0 0.3144 0.7022 0.3878 0.9200
λ 1.8367 2.4400 0.6032 0.9020
β 0.6219 0.8917 0.2699 0.8880
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Table 6. The lower bounds (LB), upper bounds (UB), average interval lengths (AIL) and coverage
probabilities (COVP) of the 95% bootstrap-t confidence interval for different sample sizes (ni, mi) and
different censoring schemes Ri.

(ni, mi) Ri Parameter LB UB AIL COVP

(30, 15)

(0 ∗ 7, 15, 0 ∗ 7)
α0 0.2779 1.0088 0.7309 0.9180
λ 1.8004 2.8922 1.0919 0.8660
β 0.6098 1.0624 0.4526 0.8460

(0 ∗ 5, 3 ∗ 5, 0 ∗ 5)
α0 0.2803 1.0228 0.7425 0.9140
λ 1.7986 2.9278 1.1293 0.8640
β 0.6091 1.0729 0.4639 0.8580

(1 ∗ 15)
α0 0.2862 1.0585 0.7723 0.9260
λ 1.7877 3.0774 1.2897 0.8680
β 0.5981 1.1247 0.5266 0.8540

(45, 25)

(0 ∗ 12, 20, 0 ∗ 12)
α0 0.2991 0.7843 0.4851 0.9300
λ 1.8251 2.5750 0.7499 0.8900
β 0.6203 0.9461 0.3257 0.8760

(0 ∗ 10, 4 ∗ 5, 0 ∗ 10)
α0 0.3063 0.8031 0.4968 0.9240
λ 1.8170 2.5678 0.7508 0.9180
β 0.6151 0.9446 0.3295 0.9020

(1 ∗ 20, 0 ∗ 5)
α0 0.3135 0.8194 0.5059 0.9180
λ 1.8088 2.5659 0.7571 0.9100
β 0.6123 0.9485 0.3362 0.8860

(60, 35)

(0 ∗ 17, 25, 0 ∗ 17)
α0 0.3255 0.7213 0.3957 0.9280
λ 1.8254 2.3876 0.5623 0.9060
β 0.6194 0.8699 0.2505 0.9120

(0 ∗ 15, 5 ∗ 5, 0 ∗ 15)
α0 0.3182 0.7099 0.3917 0.9460
λ 1.8306 2.4291 0.5984 0.9020
β 0.6199 0.8886 0.2687 0.9040

(1 ∗ 25, 0 ∗ 10)
α0 0.3173 0.7077 0.3904 0.9260
λ 1.8339 2.4316 0.5977 0.9160
β 0.6227 0.8927 0.2700 0.9120

Table 7. The average optimal transformed stress level h∗k using D-optimality for different sample
sizes (ni, mi) and different censoring schemes Ri.

(ni, mi) Ri h∗
k Ri h∗

k Ri h∗
k

(30, 15) (0 ∗ 7, 15, 0 ∗ 7) 8.2396 (0 ∗ 5, 3 ∗ 5, 0 ∗ 5) 8.1901 (1 ∗ 15) 7.7286
(45, 25) (0 ∗ 12, 20, 0 ∗ 12) 8.6145 (0 ∗ 10, 4 ∗ 5, 0 ∗ 10) 8.5932 (1 ∗ 20, 0 ∗ 5) 8.5267
(60, 35) (0 ∗ 17, 25, 0 ∗ 17) 8.7662 (0 ∗ 15, 5 ∗ 5, 0 ∗ 15) 8.7874 (1 ∗ 25, 0 ∗ 10) 8.7212

Table 8. The average optimal transformed stress level h∗k using A-optimality for different sample
sizes (ni, mi) and different censoring schemes Ri.

(ni, mi) Ri h∗
k Ri h∗

k Ri h∗
k

(30, 15) (0 ∗ 7, 15, 0 ∗ 7) 6.7736 (0 ∗ 5, 3 ∗ 5, 0 ∗ 5) 6.7567 (1 ∗ 15) 6.7330
(45, 25) (0 ∗ 12, 20, 0 ∗ 12) 6.7087 (0 ∗ 10, 4 ∗ 5, 0 ∗ 10) 6.7015 (1 ∗ 20, 0 ∗ 5) 6.6857
(60, 35) (0 ∗ 17, 25, 0 ∗ 17) 6.6858 (0 ∗ 15, 5 ∗ 5, 0 ∗ 15) 6.6738 (1 ∗ 25, 0 ∗ 10) 6.6786

10. Real Data Analysis

A real data set on the breakdown times (in minutes) of a type of insulating fluid from
Chapter Three of Nelson [2] is considered to illustrate the methods. The normal stress level
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is s0 = 20 kilovolt (kV). In CSALT, the complete failure data under both stress levels are
presented in Table 9. To ensure the fit of the data to the Chen distribution, we calculate the
Kolmogorov–Smirnov statistics and p-values, also shown in Table 9. Furthermore, the plots
of the empirical cumulative distribution function and the fitted cumulative distribution
function are shown in Figure 9. It is clear that the data set fits the model well.

Based on the chemical reaction mechanism leading to the failure, the inverse power
model is a suitable acceleration model. Therefore, we let φ(si) = ln(si), (i = 1, 2). The
value of h is then calculated as h = (1, 1.44966). Under both stress levels s1 = 30 kV
and s2 = 36 kV, the number of assigned test units ni, i = 1, 2, the number of failed test
units mi, the progressive Type-II censoring schemes Ri and the censored data are shown in
Table 10. The point estimates are shown in Table 11 and the intervals estimates are shown
in Table 12. The number below each interval in Table 12 is the length of that interval. For
Bayesian estimation, the results are calculated with non-informative priors in which the
hyperparameters all tend to zero.

From Tables 11 and 12, the following conclusions can be drawn:
(1) The point estimates of α0 and β obtained from the three different point estimation

methods are similar, but the point estimates of λ are slightly different. For λ estimation, the
MLE is maximal, followed by the BE obtained from the Lindley’s approximation and the
BE obtained from the Tierney and Kadane technique;

(2) In terms of AIL, the results obtained by the three interval estimation methods
do not differ significantly. The bootstrap-t confidence intervals outperform slightly the
asymptotic confidence intervals and the bootstrap percentile confidence intervals. This
is consistent with the pattern that parametric bootstrap intervals outperform asymptotic
intervals when the sample size is small.

(3) For the bounds of the interval estimates of α0, the bootstrap percentile confidence
intervals and the bootstrap-t confidence intervals are similar. For the interval estimates of λ,
the upper and lower bounds of the asymptotic confidence intervals are significantly larger
than those of the bootstrap percentile confidence intervals and the bootstrap-t confidence
intervals. The bounds of the bootstrap-t confidence intervals are slightly larger than those
of the bootstrap percentile confidence intervals. For the bounds on the interval estimates of
β, the results obtained by the three methods are similar.
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Figure 9. The empirical cumulative distribution function and the fitted cumulative distribution
function for failure data under stress levels s1 = 30 kV (Left, data 1) and s2 = 36 kV (Right, data 2).
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Table 9. The complete failure data and the fitting results.

Stress Level Data Set K-S Statistic p-Value

30 kV 7.74, 17.05, 20.46, 21.02, 22.66, 43.40, 47.30,
139.07, 144.12, 175.88, 194.90 0.2203 0.5858

36 kV 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58,
2.71, 2.90, 3.67, 3.99, 5.35, 13.77, 25.50 0.2179 0.4154

Table 10. The constant-stress progressive Type-II censored data.

Stress Level hi (ni, mi) Ri Censored Data

30 kV 1 (11, 10) (0 ∗ 4, 1, 0 ∗ 5)
7.74, 17.05, 20.46, 21.02, 22.66, 47.30, 139.07,
144.12, 175.88, 194.90

36 kV 1.44966 (15, 14) (0 ∗ 6, 1, 0 ∗ 7)
0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58,
2.90, 3.67, 3.99, 5.35, 13.77, 25.50

Table 11. The maximum likelihood estimates (MLE) and the Bayes estimates using the Tierney and
Kadane technique (BETK) and Lindley’s approximation (BELA).

Parameter MLE BETK BELA

α0 0.0025 0.0032 0.0026
λ 22.8063 20.4310 21.3963
β 0.2639 0.2605 0.2673

Table 12. The 95% asymptotic confidence intervals (ACI), the 95% bootstrap percentile confidence
intervals (Boot-p) and the 95% bootstrap-t confidence intervals (Boot-t).

Parameter ACI Boot-p Boot-t

α0
(0.0012, 0.0039)

0.0027
(0.0025, 0.0218)

0.0193
(0.0025, 0.0043)

0.0018

λ
(9.9884, 35.6241)

25.6356
(4.8530, 28.3640)

23.5111
(6.0894, 28.2857)

22.1964

β
(0.2292, 0.2986)

0.0694
(0.2162, 0.2848)

0.0686
(0.2259, 0.2812)

0.0553

11. Conclusions

This paper considers statistical inference and optimal design of CSALT for the Chen
distribution under progressive Type-II censoring. Specifically, maximum likelihood esti-
mates are obtained utilizing the Newton–Raphson algorithm. Bayesian estimation under
the squared error loss function is also considered and estimated by the Tierney and Kadane
technique and Lindley’s approximation. At the same time, we establish confidence intervals
for the lifetime distribution parameters and compare them. We construct the asymptotic
intervals based on the observed Fisher information matrix and calculate the bootstrap
percentile confidence intervals and the bootstrap-t confidence intervals to address the
problem of small sample sizes. In addition, two optimal criteria are applied to determine
the optimal transformed stress level that would provide more accurate estimates of the life
parameters under the normal stress level. The performance of these estimation methods
and the optimal criteria are compared using Monte Carlo simulation methods.

The Chen distribution possessing a bathtub-shaped hazard function is of great signifi-
cance and practical importance in life experiments. Accelerated life tests and progressive
censoring also play important roles. Further research into these models has great potential
for estimating lifetime characteristics. This paper can also be extended by considering other
distributions or other censoring schemes.
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