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1. Introduction

In this article, we investigate the following one-dimensional isothermal porous elastic
problem with dissipation mechanics acting on the porous and elastic equations

ρutt − αuxx − βφx − γuxxt − ε1φxt = 0, t > 0, x ∈ (0, l),
κφtt − δφxx + βux + ηφ + τφt + ε2uxt = 0, t > 0, x ∈ (0, l),
u(x, 0) = u0(x), ut(x, 0) = u1(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, l),
ux(0, t) = ux(l, t) = φ(0, t) = φ(l, t) = 0, t > 0,

(1)

where the unknown scalar functions u and φ represent the displacement of the elastic
material and the volume fraction, respectively. The coefficients satisfy

ρ > 0, α > 0, β 6= 0, γ > 0, ε1 6= 0, ε2 6= 0, κ > 0, δ > 0, η > 0, τ > 0.

Furthermore, to guarantee that the internal energy is positive, we assume αη > β2.
From a physical point of view, the system describes the interpolation of two structures: the
elastic structure, which is macroscopic, and the porous structure, which can be described
as microscopic. Such coupling produces internal or external forces leading to thermome-
chanical displacement, which are generally harmful to the system after some time. Various
types of damping mechanisms are used in the literature to control the displacements. The
porous-elastic materials have wide applications in petroleum engineering, material sci-
ence, physics, biology, and soil mechanics. It also applies to solids characterized by tiny
distributed pores such as rocks, wood, and bones, as mentioned in [1]. Júnior et al. [2]
considered system (1) for ε1 = ε2 = ε and established a lack of exponential stability result
with the condition γτ = ε2. Moreover, they proved an optimal polynomial stability result
subject to a particular relationship between the damping parameters of the system. For the
system in the whole space, that is, t > 0, x ∈ R, we mention the work of Quintanilla and
Ueda [3]. They obtained a standard decay structure with the assumption 4γτ > (ε1 + ε2)

2.
Furthermore, they proved that if ε1 = ε2 and either γ = 0, τ > 0 or γ > 0, τ = 0, then the
decay structure is of regularity-loss type.
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Quintanilla [4] discussed system (1) when γ = ε1 = ε2 = 0, τ > 0 and concluded that
the frictional damping (τφt) was not strong enough to exponentially stabilize the system.
However, Apalara [5] proved that the system was exponentially stable provided ακ = δρ.
Similarly, when τ = ε1 = ε2 = 0, γ > 0, Magańa and Quintanilla [6] proved that the
system was not exponentially stable. On the other hand, when ε1 = ε2 = 0, τ > 0, γ > 0,
they obtained an exponential stability result. For some other interesting results on the
porous-elastic system, we refer the reader to a non-exhaustive list of references [7–16]. We
especially refer the reader to [1] for the results on some variants and a general system of (1).

Below, we mention some results concerning system (1) with other damping mecha-
nisms. Pamplona et al. [17] considered a system of porous-thermoelasticity with microtem-
peratures, that is

ρutt − αuxx − βφx − γuxxt − ε1φxt + β1θx − `1wxx = 0,
κφtt − δφxx + βux + ηφ + τφt + ε2uxt −mθ + d1wx − k1θxx − µφxxt = 0,
c1θt − kθxx + β1uxt + mϕt − σ1wx − σ2φxxt = 0,
c2wt − σ3wxx − d2 ϕxt + k3θx + k4w− `2uxxt = 0,

(2)

for t > 0 and x ∈ (0, π), where θ and w are the temperature difference and microtempera-
ture, respectively. They proved that when µ = k1 = σ2 = 0, the semigroup generated by the
solutions was not analytic, though the system was exponentially stable. However, when
ε1 = ε2 = τ = 0, they found that the semigroup, which defined the solutions was analytic.
Analyticity means that the functions and the orbits are regular; hence, time derivatives
can recover the solutions. In the absence of microtemperature, Casas and Quintanilla [18]
investigated (2) for γ = ε1 = `1 = ε2 = d1 = k1 = µ = σ1 = σ2 = 0 and established
an exponential stability result. However, when τ was also zero, they proved in [19] that
the heat effect alone was not strong enough to bring about an exponential stability result.
Contrarily, Santos et al. [20] proved that the heat effect alone was strong enough to stabilize
the system exponentially, provided that ακ = δρ. Interestingly, when γ 6= 0, Pamplona
et al. [21] showed that the system was also not exponentially stable. We refer the reader
to [22–26] for some other interesting results.

In the present work, we considered system (1) and proved an exponential stability
result for the case 4γτ > (ε1 + ε2)

2 . We refer the reader to [2] for the well-posedness
(existence, uniqueness, and continuous dependence on the initial data) result of the system.
Meanwhile, due to the boundary conditions on u, system (1) can have solutions which do
not decay. In addition, the boundary conditions prevent the use of Poincaré’s inequality on
u. To avoid these cases, we performed the following necessary transformation. From the
first equation in (1), we have

ρ
∫ l

0
uttdx =α

∫ l

0
uxxdx + β

∫ l

0
φxdx + γ

∫ l

0
uxxtdx + ε1

∫ l

0
φxtdx

=α
�
�
���

0

ux

∣∣∣∣l
0
+ β
�
�
���

0

φ

∣∣∣∣l
0
+ γ
�
�
��7

0

uxt

∣∣∣∣l
0
+ ε1
�
�
���

0

φt

∣∣∣∣l
0
= 0,

where the last equality follows from the boundary conditions ux(0, t) = ux(l, t) = φ(0, t) =

φ(l, t) = 0. Consequently, by letting v(t) :=
∫ l

0
u(x, t)dx and bearing in mind the initial

conditions u(x, 0) = u0(x), ut(x, 0) = u1(x), we obtain the following initial value problemv′′(t) = 0, t > 0,

v(0) =
∫ l

0
u0(x)dx, v′(0) =

∫ l

0
u1(x)dx.

(3)
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Solving the differential equation v′′(t) = 0, we obtain

v(t) = b1t + b2, (4)

where b1 and b2 are some constants. Applying the initial condition v(0) =
∫ l

0
u0(x)dx, we

obtain ∫ l

0
u0(x)dx = b2.

By differentiating (4) with respect to t and using the initial condition v′(0) =
∫ l

0
u1(x)dx,

we have ∫ l

0
u1(x)dx = b1.

By substituting b1 and b2 into (4), we obtain

v(t) =
∫ l

0
u(x, t)dx = t

∫ l

0
u1(x)dx +

∫ l

0
u0(x)dx. (5)

Consequently, by setting

u(x, t) = u(x, t)− t
l

∫ l

0
u1(x)dx− 1

l

∫ l

0
u0(x)dx

and using (5), we end up with

∫ l

0
u(x, t)dx = 0, ∀t > 0.

Thus, Poincaré’s inequality can be administered on u. In addition, simple substitution
shows that (u, φ) is the solution to problem (1) with initial data for u given as

u0(x) = u0(x)− 1
l

∫ l

0
u0(x)dx and u1(x) = u1(x)− 1

l

∫ l

0
u1(x)dx.

Henceforth, we work with (u, φ) instead of (u, φ) but write (u, φ) for simplicity.
The breakdown of the remaining sections is as follows: We devote Section 2 to the

statements and proofs of some essential technical lemmas. Our stability result is established
in Section 3. The paper ends with some general comments and interesting open problems
in Section 4. We use cp throughout this paper to denote Poincaré’s constant.

2. Technical Lemmas

At the beginning of this section, let us indicate that the energy functional E associated
with system (1) is given by

E(t) = 1
2

∫ l

0

[
ρu2

t + κφ2
t + δφ2

x + αu2
x + ηφ2 + 2βuxφ

]
dx, ∀t > 0. (6)

Remark 1. Assumption αη > β2 guarantees that the energy functional E , defined by (6), is
nonnegative. To establish this, it is enough to show that the combination of the last three terms on
the right side of (6) is nonnegative, that is

αu2
x + ηφ2 + 2βuxφ > 0. (7)
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Clearly, we have

αu2
x + ηφ2 + 2βuxφ =

(
α− β2

η

)
u2

x +

(
√

ηφ +
β
√

η
ux

)2
.

So, the energy functional E becomes

E(t) = 1
2

∫ l

0

[
ρu2

t + κφ2
t + δφ2

x +

(
α− β2

η

)
u2

x +

(
√

ηφ +
β
√

η
ux

)2]
dx, ∀t > 0. (8)

Consequently, by using the fact that αη > β2, the nonnegativity is guaranteed.

The following lemmas are designed to capture some important functionals and the
estimate of their derivatives.

Lemma 1. Assume 4γτ > (ε1 + ε2)
2. Then, the energy functional E associated with system (1)

and given by (6), satisfies
d
dt
E(t) ≤ −γ0

∫ l

0
u2

xtdx, ∀t > 0. (9)

Proof. Multiplying the first equation in (1) by ut, integrating by parts over (0, l), and taking
advantage of the boundary conditions, we obtain, for any t > 0,

ρ
∫ l

0
uttutdx + α

∫ l

0
uxuxtdx + β

∫ l

0
φuxtdx + γ

∫ l

0
u2

xtdx + ε1

∫ l

0
φtuxtdx = 0

ρ

2
d
dt

∫ l

0
u2

t dx +
α

2
d
dt

∫ l

0
u2

xdx + β
d
dt

∫ l

0
φuxdx− β

∫ l

0
φtuxdx + γ

∫ l

0
u2

xtdx

+ ε1

∫ l

0
φtuxtdx = 0.

The last equation can be written as:

ρ

2
d
dt

∫ l

0
u2

t dx+
α

2
d
dt

∫ l

0
u2

xdx + β
d
dt

∫ l

0
φuxdx = β

∫ l

0
φtuxdx− γ

∫ l

0
u2

xtdx− ε1

∫ l

0
φtuxtdx. (10)

Similarly, by multiplying the second equation in (1) by φt, we obtain, for any t > 0,

κ

2
d
dt

∫ l

0
φ2

t dx +
δ

2
d
dt

∫ l

0
φ2

xdx +
η

2
d
dt

∫ l

0
φ2dx = −β

∫ l

0
φtuxdx− τ

∫ l

0
φ2

t dx− ε2

∫ l

0
φtuxtdx. (11)

Summing up (10) and (11), we have, for any t > 0,

1
2

d
dt

∫ l

0

[
ρu2

t + κφ2
t + δφ2

x + αu2
x + ηφ2 + 2βuxφ

]
dx

= −γ
∫ l

0
u2

xtdx− τ
∫ l

0
φ2

t dx− (ε1 + ε2)
∫ l

0
uxtφtdx.

Thus, bearing in mind (6), we obtain

d
dt
E(t) = −γ

∫ l

0
u2

xtdx− τ
∫ l

0
φ2

t dx− (ε1 + ε2)
∫ l

0
uxtφtdx, ∀t > 0. (12)

Using the fact that 4γτ > (ε1 + ε2)
2, we have γ0 := γ−

(
ε1 + ε2

2
√

τ

)2
> 0. So, from

(12), we have, for any t > 0,
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d
dt
E(t) =−

(
γ−

(
ε1 + ε2

2
√

τ

)2
) ∫ l

0
u2

xtdx−
∫ l

0

(√
τφt +

(
ε1 + ε2

2
√

τ

)
uxt

)2
dx

=− γ0

∫ l

0
u2

xtdx−
∫ l

0

(√
τφt +

(
ε1 + ε2

2
√

τ

)
uxt

)2
dx ≤ −γ0

∫ l

0
u2

xtdx ≤ 0.

(13)

Remark 2. The condition 4γτ > (ε1 + ε2)
2 guarantees the dissipative nature of the system. In

other words, the energy E of the system is decreasing when 4γτ > (ε1 + ε2)
2. See the proof of

Lemma 1.

Lemma 2. The functional Q1 given by

Q1(t) := αε1

∫ l

0
uxφdx− ε1ρ

∫ l

0
φt

∫ x

0
ut(s)dsdx +

βε1

2

∫ l

0
φ2dx +

ρβε1

2κ

∫ l

0
u2dx, ∀t > 0,

satisfies, for any δ1 > 0, the estimate

d
dt
Q1(t) ≤ −

ε2
1

2

∫ l

0
φ2

t dx + δ1

∫ l

0
φ2dx

+

(
|ε1ε2|ρcp

κ
+ γ2 +

ε2
1

2δ1

(
α− ρδ

κ

)2
+

ε2
1ρ2η2lcp

2δ1κ2 +
ρ2lcp

κ2 τ2

) ∫ l

0
u2

xtdx, ∀t > 0.
(14)

Proof. The direct derivative of Q1 gives, for any t > 0,

d
dt
Q1(t) = αε1

∫ l

0
uxtφdx + αε1

∫ l

0
uxφtdx− ε1ρ

∫ l

0
φtt

∫ x

0
ut(s)dsdx

− ε1ρ
∫ l

0
φt

∫ x

0
utt(s)dsdx + βε1

∫ l

0
φφtdx +

ρβε1

κ

∫ l

0
uutdx.

(15)

Using the second equation in (1), we see that the third term on the right-hand side of
Equation (15) can be written as

−ε1ρ
∫ l

0
φtt

∫ x

0
ut(s)dsdx =

ε1ρ

κ

∫ l

0
[−δφxx + βux + ηφ + τφt + ε2uxt]

∫ x

0
ut(s)dsdx.

Using integration by parts and the boundary conditions, we end up with

−ε1ρ
∫ l

0
φtt

∫ x

0
ut(s)dsdx = −ρδε1

κ

∫ l

0
uxtφdx− ρβε1

κ

∫ l

0
uutdx− ε1ε2ρ

κ

∫ l

0
u2

t dx

+
ε1ρη

κ

∫ l

0
φ
∫ x

0
ut(s)dsdx +

τε1ρ

κ

∫ l

0
φt

∫ x

0
ut(s)dsdx.

(16)

Similarly, using the first equation in (1), we obtain that the fourth term on the right-
hand side of Equation (15) equals

−ε1ρ
∫ l

0
φt

∫ x

0
utt(s)dsdx = −αε1

∫ l

0
uxφtdx− βε1

∫ l

0
φφtdx− ε1γ

∫ l

0
uxtφtdx− ε2

1

∫ l

0
φ2

t dx. (17)
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The combination of (15)–(17) gives, for any t > 0,

d
dt
Q1(t) = −ε2

1

∫ l

0
φ2

t dx− ε1ε2ρ

κ

∫ l

0
u2

t dx︸ ︷︷ ︸
f1

−ε1γ
∫ l

0
uxtφtdx︸ ︷︷ ︸

f2

+
ε1ρτ

κ

∫ l

0
φt

∫ x

0
ut(s)dsdx︸ ︷︷ ︸

f3

+ ε1

(
α− ρδ

κ

) ∫ l

0
uxtφdx︸ ︷︷ ︸

f4

+
ε1ρη

κ

∫ l

0
φ
∫ x

0
ut(s)dsdx︸ ︷︷ ︸

f5

.
(18)

The estimation of fi, i = 1 · · · 5, using Young’s, Cauchy-Schwarz, and Poincaré’s
inequalities gives, for any t > 0,

f1(t) ≤
|ε1ε2|ρcp

κ

∫ l

0
u2

xtdx

f2(t) ≤
ε2

1
4

∫ l

0
φ2

t dx + γ2
∫ l

0
u2

xtdx

f3(t) ≤
ε2

1
4

∫ l

0
φ2

t dx +
ρ2

κ2 τ2
∫ l

0

(∫ x

0
ut(s)ds

)2
dx

≤
ε2

1
4

∫ l

0
φ2

t dx +
ρ2l
κ2 τ2

∫ l

0
u2

t dx

≤
ε2

1
4

∫ l

0
φ2

t dx +
ρ2lcp

κ2 τ2
∫ l

0
u2

xtdx

f4(t) ≤
δ1

2

∫ l

0
φ2dx +

ε2
1

2δ1

(
α− ρδ

κ

)2 ∫ l

0
u2

xtdx

f5(t) ≤
δ1

2

∫ l

0
φ2dx +

ε2
1ρ2η2lcp

2δ1κ2

∫ l

0
u2

xtdx.

Replacing fi, i = 1 · · · 5, in (18) with their respective estimates yields (14).

Lemma 3. Suppose that αη > β2. The functional Q2 given by

Q2(t) := κ
∫ l

0
φtφdx +

βρ

α

∫ l

0
φ
∫ x

0
ut(s)dsdx +

1
2

(
τ − βε1

α

) ∫ l

0
φ2dx, ∀t > 0,

can be estimated, for some positive constant η0, by the the following expression:

d
dt
Q2(t) ≤ −δ

∫ l

0
φ2

xdx− η0

2

∫ l

0
φ2dx +

(
κ +

β2ρ

2α

) ∫ l

0
φ2

t dx

+

(
1

2η0

(
βγ

α
− ε2

)2
+

ρcp

2α

) ∫ l

0
u2

txdx, ∀t > 0.
(19)

Proof. Multiplying the second equation in (1) by φ, then integrating it by parts over (0, l),
and taking into account the boundary conditions φ(0, t) = φ(l, t) = 0, we obtain, for any
t > 0,

κ
d
dt

∫ l

0
φtφdx− κ

∫ l

0
φ2

t dx + δ
∫ l

0
φ2

xdx + β
∫ l

0
uxφdx + η

∫ l

0
φ2dx +

τ

2
d
dt

∫ l

0
φ2dx

+ ε2

∫ l

0
uxtφdx = 0,

which implies
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κ
d
dt

∫ l

0
φtφdx +

τ

2
d
dt

∫ l

0
φ2dx = −δ

∫ l

0
φ2

xdx− η
∫ l

0
φ2dx + κ

∫ l

0
φ2

t dx

− β
∫ l

0
uxφdx− ε2

∫ l

0
uxtφdx.

(20)

Integrating the first equation in (1) over (0, x) and using the boundary conditions
ux(0, t) = φ(0, t) = 0, we obtain, for any t > 0,

ρ
∫ x

0
utt(s)ds− αux − βφ− γuxt − ε1φt = 0. (21)

Multiplying (21) by φ and integrating over (0, l), we obtain, for any t > 0,

ρ
d
dt

∫ l

0
φ
∫ x

0
ut(s)dsdx− ρ

∫ l

0
φt

∫ x

0
ut(s)dsdx− α

∫ l

0
uxφdx− β

∫ l

0
φ2dx

− γ
∫ l

0
uxtφdx− ε1

2
d
dt

∫ l

0
φ2dx = 0.

(22)

Multiplying (22) by
β

α
, we end up with

βρ

α

d
dt

∫ l

0
φ
∫ x

0
ut(s)dsdx− βε1

2α

d
dt

∫ l

0
φ2dx =

βρ

α

∫ l

0
φt

∫ x

0
ut(s)dsdx + β

∫ l

0
uxφdx

+
β2

α

∫ l

0
φ2dx +

βγ

α

∫ l

0
uxtφdx.

(23)

The addition of (20) and (23) gives, for any t > 0,

d
dt

(
κ
∫ l

0
φtφdx +

βρ

α

∫ l

0
φ
∫ x

0
ut(s)dsdx +

1
2

(
τ − βε1

α

) ∫ l

0
φ2dx

)
︸ ︷︷ ︸

=Q2(t)

= −δ
∫ l

0
φ2

xdx−
(

η − β2

α

) ∫ l

0
φ2dx + κ

∫ l

0
φ2

t dx

+

(
βγ

α
− ε2

) ∫ l

0
uxtφdx︸ ︷︷ ︸

f6

+
βρ

α

∫ l

0
φt

∫ x

0
ut(s)dsdx︸ ︷︷ ︸

f7

.

(24)

Using the fact that αη > β2, we have η0 = η − β2

α > 0. Therefore, proceeding similarly
as in the proof of Lemma 2, while estimating the functions f2 and f3, we obtain, for any
t > 0,

f6(t) ≤
η0

2

∫ l

0
φ2dx +

1
2η0

(
βγ

α
− ε2

)2 ∫ l

0
u2

xtdx

f7(t) ≤
β2ρ

2α

∫ l

0
φ2

t dx +
ρcp

2α

∫ l

0
u2

xtdx.

By replacing f6 and f7 in (24) with the above estimates, we obtain (19).

Lemma 4. The functional Q3 given by

Q3(t) := ρ
∫ l

0
utudx +

γ

2

∫ l

0
u2

xdx + ε1

∫ l

0
uxφdx, ∀t > 0,

satisfies
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d
dt
Q3(t) ≤ −

α

2

∫ l

0
u2

xdx +
(

ρcp +
ε1

2

) ∫ l

0
u2

xtdx +

(
β2

2α
+

ε1

2

) ∫ l

0
φ2dx, ∀t > 0. (25)

Proof. Multiplying the first equation in (1) by u, we have

ρuttu− αuxxu− βφxu− γuxxtu− ε1φxtu = 0, ∀t > 0.

Now, integrating by parts over (0, l) and using the boundary conditions ux(0, t) =
ux(l, t) = φ(0, t) = φ(l, t) = 0, we obtain, for any t > 0,

ρ
∫ l

0
uttudx + α

∫ l

0
u2

xdx + β
∫ l

0
φuxdx + γ

∫ l

0
uxuxtdx + ε1

∫ l

0
uxφtdx = 0

ρ
d
dt

∫ l

0
utudx− ρ

∫ l

0
u2

t dx + α
∫ l

0
u2

xdx + β
∫ l

0
φuxdx +

γ

2
d
dt

∫ l

0
u2

xdx

+ ε1
d
dt

∫ l

0
uxφdx− ε1

∫ l

0
uxtφdx = 0,

which implies

d
dt

(
ρ
∫ l

0
utudx +

γ

2

∫ l

0
u2

xdx + ε1

∫ l

0
uxφdx

)
︸ ︷︷ ︸

Q3(t)

= −α
∫ l

0
u2

xdx + ρ
∫ l

0
u2

t dx

−β
∫ l

0
uxφdx︸ ︷︷ ︸

f8

+ ε1

∫ l

0
uxtφdx︸ ︷︷ ︸
f9

.

(26)

Using Young’s inequality, we have, for any t > 0,

f8(t) ≤
α

2

∫ l

0
u2

xdx +
β2

2α

∫ l

0
φ2dx

f9(t) ≤
ε1

2

∫ l

0
u2

xtdx +
ε1

2

∫ l

0
φ2dx.

Using the above estimates as well as Poincaré’s inequality, we establish (25), and so
the proof is complete.

3. Exponential Stability

The following is our exponential stability result.

Theorem 1. Suppose that 4γτ > (ε1 + ε2)
2 and αη > β2. Then, the energy E(t) of the system

(1) decays exponentially. In other words, there exist two positive constants k0 and k1 such that the
energy functional given by (6) satisfies

E(t) ≤ k0 exp(−k1t), ∀t > 0. (27)

Proof. We define a Lyapunov functional (which is a linear combination of the functionals
defined in the previous section)

L(t) := NE(t) +
3

∑
i=1
NiQi(t), ∀t > 0, (28)

where N and Ni, i = 1 · · · 3, are positive constants to be appropriately chosen later on in
the proof. By differentiating (28) and using (9), (14), (19) and (25), we have, for any t > 0,
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d
dt
L(t) ≤ −δN2

∫ l

0
φ2

xdx− α

2
N3

∫ l

0
u2

xdx

−
[

ε2
1

2
N1 −

(
κ +

β2ρ

2α

)
N2

] ∫ l

0
φ2

t dx−
[

η0

2
N2 − δ1N1 −

(
β2

2α
+

ε1

2

)
N3

] ∫ l

0
φ2dx

−
[

γ0N −
(

1
2η0

(
βγ

α
− ε2

)2
+

ρcp

2α

)
N2 −

(
ρcp +

ε1

2

)
N3

−
(

γ2 +
|ε1ε2|ρcp

κ
+

ε2
1

2δ1

(
α− ρδ

κ

)2
+

ε2
1ρ2η2lcp

2δ1κ2 +
ρ2lcp

κ2 τ2
)
N1

] ∫ l

0
u2

xtdx.

(29)

We let N3 = 1, and take N2 large enough so that

c0 :=
η0

2
N2 −

(
β2

2α
+

ε1

2

)
N3 > 0.

Next, we choose N1 large enough so that

c1 :=
ε2

1
2
N1 −

(
κ +

β2ρ

2α

)
N2 > 0

and, then, let
δ1 =

c0

2N1
.

Thus, we have, for any t > 0,

d
dt
L(t) ≤ −c2

∫ l

0
φ2

xdx− c3

∫ l

0
u2

xdx− c1

∫ l

0
φ2

t dx− c0

2

∫ l

0
φ2dx−

[
γ0N − c4

] ∫ l

0
u2

xtdx, (30)

where

c2 :=δN2 > 0,

c3 :=
α

2
N3 > 0,

c4 :=

(
1

2η0

(
βγ

α
− ε2

)2
+

ρcp

2α

)
N2 +

(
ρcp +

ε1

2

)
N3

+

(
γ2 +

|ε1ε2|ρcp

κ
+

ε2
1

2δ1

(
α− ρδ

κ

)2
+

ε2
1ρ2η2lcp

2δ1κ2 +
ρ2lcp

κ2 τ2
)
N1 > 0.

On the other hand, from (28), we have, for any t > 0,

|L(t)−NE(t)| ≤N1

∣∣∣∣αε1

∫ l

0
uxφdx− ρε1

∫ l

0
φt

∫ x

0
ut(s)dsdx +

βε1

2

∫ l

0
φ2dx

+
ρβε1

2κ

∫ l

0
u2dx

∣∣∣∣+N3

∣∣∣∣ρ ∫ l

0
utudx +

γ

2

∫ l

0
u2

xdx + ε1

∫ l

0
uxφdx

∣∣∣∣
+N2

∣∣∣∣κ ∫ l

0
φtφdx +

βρ

α

∫ l

0
φ
∫ x

0
ut(s)dsdx +

1
2

(
τ − βε1

α

) ∫ l

0
φ2dx

∣∣∣∣.
Using Young’s, Cauchy-Schwarz, and Poincaré’s inequalities, we obtain, for any t > 0,
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|L(t)−NE(t)| ≤
[

α|ε1|
2
N1 +

ρ|βε1|cp

2κ
N1 +

ρcp

2
N3 +

γ

2
N3 +

|ε1|
2
N3

] ∫ l

0
u2

xdx

+

[
α|ε1|

2
N1 +

|βε1|
2
N1 +

|ε1|
2
N3 +

κ

2
N2 +

|β|ρ
2α
N2 +

1
2

∣∣∣∣τ − βε1

α

∣∣∣∣]cp

∫ l

0
φ2

xdx

+

[
ρ|ε1|

2
N1 +

κ

2
N2

] ∫ l

0
φ2

t dx +

[
ρ|ε1|

2
N1 +

ρ

2
N3 +

|β|ρ
2α
N2

] ∫ l

0
u2

t dx

≤k
∫ l

0

(
u2

x + φ2
x + φ2

t + u2
t

)
dx,

where the constant k > 0 can be taken as

k =
α|ε1|

2
N1 +

ρ|βε1|cp

2κ
N1 +

ρcp

2
N3 +

γ

2
N3 +

|ε1|
2
N3 +

α|ε1|cp

2
N1 +

|βε1|cp

2
N1 +

|ε1|cp

2
N3

+
κcp

2
N2 +

|β|ρcp

2α
N2 +

cp

2

∣∣∣∣τ − βε1

α

∣∣∣∣+ ρ|ε1|
2
N1 +

κ

2
N2 +

ρ|ε1|
2
N1 +

ρ

2
N3 +

|β|ρ
2α
N2.

Using (8), it is obvious that

∫ l

0
u2

t dx ≤ 2
ρ
E(t),

∫ l

0
φ2

xdx ≤ 2
δ
E(t),

∫ l

0
φ2

t dx ≤ 2
κ
E(t),

∫ l

0
u2

xdx ≤ 2

α− β2

η

E(t).

Consequently, we have, for any t > 0,

|L(t)−NE(t)| ≤ a0E(t), a0 > 0,

which implies

(N − a0)E(t) ≤ L(t) ≤ (N + a0)E(t), ∀t > 0. (31)

Finally, we choose N large enough so that

c5 := γ0N − c4 > 0 and c6 := N − a0 > 0.

Thus, for some positive constants σ1 and σ2, the following equivalence relation holds

σ1E(t) ≤ L(t) ≤ σ2E(t), ∀t > 0. (32)

Moreover, referring to (30), we obtain, for any t > 0,

d
dt
L(t) ≤ −c2

∫ l

0
φ2

xdx− c3

∫ l

0
u2

xdx− c1

∫ l

0
φ2

t dx− c0

2

∫ l

0
φ2dx− c5

∫ l

0
u2

xtdx. (33)

Using Poincaré’s inequality, we have

−c5

∫ l

0
u2

xtdx ≤ − c5

cp

∫ l

0
u2

t dx.

Accordingly, we end up with

d
dt
L(t) ≤ −ν

∫ l

0

(
u2

t + u2
x + φ2

t + φ2
x + φ2

)
dx, ∀t > 0, (34)

for some positive constant ν. Meanwhile, by considering (6) and using Young’s inequality,
we obtain
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E(t) ≤ 1
2

∫ l

0

[
ρu2

t +

(
α +

β2

2

)
u2

x + κφ2
t + δφ2

x +

(
η +

1
2

)
φ2
]

dx, ∀t > 0.

Letting c7 := ρ +

(
α +

β2

2

)
+ κ + δ +

(
η +

1
2

)
> 0, we have

E(t) ≤c7

∫ l

0

[
u2

t + u2
x + φ2

t + φ2
x + φ2

]
dx, ∀t > 0. (35)

Consequently, from (34) and (35), we have, for some a1 > 0

d
dt
L(t) ≤ −a1E(t), ∀t > 0.

Using the equivalence relation (32), we obtain

d
dt
L(t) ≤ −k1L(t), ∀t > 0. (36)

Simple integration of (36), as well as the application of (32), yields the desired expo-
nential stability result (27).

Remark 3. If the condition 4γτ > (ε1 + ε2)
2 is replaced with 2γτ ≥ (ε1 + ε2)

2, then the energy
functional E statisfies

d
dt
E(t) ≤ −γ0

∫ l

0
u2

xtdx, ∀t > 0.

Consequently, the exponential stability result (27) also holds when 2γτ = (ε1 + ε2)
2.

4. General Comments and Open Problems

This last section gives some comments and highlights some open problems. The result
in this paper completes the result obtained by Quintanilla and Ueda [3] for unbounded
domains. Our exponential decay result also holds when 2γτ = (ε1 + ε2)

2; however, we
do not know whether or not it is valid for the case of 4γτ = (ε1 + ε2)

2. Júnior et al. [2]
established an optimal polynomial stability result for the case ε1 = ε2, which is equivalent to
the result obtained by Quintanilla and Ueda [3] for the same case but unbounded domains.
An interesting open problem is establishing an optimal polynomial stability result for
the general case 4γτ = (ε1 + ε2)

2. More importantly, it is interesting to investigate the
system for multidimensional cases, perhaps with nonlinear terms corresponding to the
Navier–Stokes equations. Some numerical analysis could also be carried out to illustrate
some of the results. Other open problems include:

(a) The case when γ = 0, τ > 0 is an interesting problem to investigate. It would not be
easy to obtain an exponential stability result; perhaps setting ε1 = ε2 might help. This
is the same for the case γ > 0, τ = 0.

(b) The case when the term τφt is nonlinear, that is, τg(φt), is also an interesting problem
to consider.

(c) Another interesting problem is to consider the more general system proposed by
Munoz et al. [1]

ρutt − αuxx − βφx − γuxxt − ε1φxt − d1φxx − b1φxxt = 0,
κφtt − δφxx + βux + ηφ + τφt + ε2uxt − d1uxx − kφxxt − b2uxxt − µφxt = 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), φ(x, 0) = φ0(x), φt(x, 0) = φ1(x),
u(0, t) = u(l, t) = φ(0, t) = φ(l, t) = 0.

(37)
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The necessary assumption to guarantee the positivity of the internal energy of system
(37) is

α >
β2

η
+

d2
1

δ
. (38)

In addition, the following assumption

4γ >
(ε1 + ε2)

2

τ
+

(b1 + b2)
2

k
(39)

assures the dissipation of the energy. The inequality 2γ ≥ (ε1 + ε2)
2

τ
+

(b1 + b2)
2

k
could also be considered instead of (39), see Remark 3.
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