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Abstract: With the fast development of networks, one has to focus on the security of information
running in real networks. A technology that might be able to resist attacks equipped with AI
techniques and quantum computers is the so-called topological graphic password of topological
coding. In order to further study topological coding, we use the multiple constraints of graph
colorings and labelings to propose 6C-labeling, 6C-complementary labeling, and its reciprocal-inverse
labeling, since they can be applied to build up topological coding. We show some connections
between 6C-labeling and other graph labelings/colorings and show graphs admitting twin-type
6C-labelings, as well as the construction of graphs admitting twin-type 6C-labelings.

Keywords: topological authentication; coloring; 6C-labeling; reciprocal-inverse matching; topological
coding
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1. Introduction

In addition to RSA, DSA, and ECDSA [1], there are many important cryptographic
systems that are considered to be resistant to classical and quantum computers, such as
hash-based cryptography, code-based cryptography [2,3], lattice-based cryptography [4],
and key cryptography. Another technology that might be able to resist attacks equipped
with AI techniques and quantum computers is the so-called topological graphic passwordof
topological coding. The foundation of topological cryptography is based on topological
graphic passwords consisting of topological structures and mathematical restrictions [5],
and topological graphic passwords belong to a combined branch of topological coding,
graph theory, and cryptography. Since topological graphic passwords are related to many
mathematical conjectures and NP-hard problems [6,7], topological graphic passwords are
computationally unbreakable or have provable security, and the investigation of topological
graphic passwords was introduced in [8–10].

Topological authentication is a new technique based on topological coding, a mixed
branch of discrete mathematics, number theory, algebraic groups, graph theory, and so
on. Wang et al. in [8] designed a topological code consisting of a topological structure
and graph colorings and labeling. Graph labelings were first introduced in the mid-1960s.
In the intervening years, over 200 graph labeling techniques have been studied in over
3000 papers, which provides some technical support for topology coding. As is known,
topological coding is related to many mathematical conjectures or NP-hardproblems in
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graph theory [11], and operations research [7], so topological coding is computationally unbreak-
able or has provable security.

1.1. An Example of Topological Cryptosystems

To understand topological graphic passwords, we provide an example as follows:
Four colored graphs H, H1, H2, H3 shown in Figure 1 are topological graphic passwords in
topological coding, and they are used as public keys and private keys. The first graph H is
a public key, and H1, H2, H3 are private keys, respectively. We obtain a matrix for vertices,
edges, and vertices in order, which we call a topological matrix; a topological matrix of
order 3× q is a graph G with p vertices and q edges, that is

Tcode =

 α(x1) α(x2) · · · α(xq)
α(x1y1) α(x2y2) · · · α(xqyq)
α(y1) α(y2) · · · α(yq)


3×q

(1)

α represents a function to obtain the color of vertices and edges. The topological matrix of G
can derive (3q)! number strings, which can be used as digital-based passwords, and preset
coloring may be needed during authentication, called topological authentication. We obtain
the topological matrix Tcode(H) from Figure 1 and then convert it into a many-number-
based string Ni(H), i ∈ [1, n] as follows:

Tcode(H) =

 0 0 2 2 2 6 6 6 8 8 10
21 17 19 15 13 9 5 11 7 3 1
21 17 21 17 15 15 11 17 15 11 11

 (2)

N1(H) = 021210171721921215172131569156511611178715831110111

N2(H) = 002226668810137115913151917212117211715151117151111

N3(H) = 101000038871517116651115962131517152219211717002121

and so on. In the same way, the topological matrix and number-based string of the other
three private keys can be obtained.
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Figure 1. A set-ordered odd-graceful topological public key H and its own topological private keys
H1, H2, H3.

We use the multiple constraints of graph colorings and labelings to propose 6C-
labeling, 6C-complementary labeling, and its reciprocal-inverse labeling, since they can be
applied to building up topological coding. We show some connections between 6C-labeling
and other graph labelings/colorings and show graphs admitting twin-type 6C-labelings,
as well as the construction of graphs admitting twin-type 6C-labelings and constructing
graph classes with new labels to provide a new technology for topological coding. See the
examples in Figures 2 and 3.

1.2. Definitions

The standard terminology and notation of graph theory can be found in [12,13]. The
following terminology, notation, labelings, particular graphs, and definitions will be used
in later discussions:
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• A symbol [a, b] stands for a consecutive set {a, a + 1, . . . , b} with integers a, b holding
0 ≤ a < b; [a, b]o denotes an odd-set {a, a + 2, . . . , b} with odd integers a, b with respect
to 1 ≤ a < b; [α, β]e is an even-set {α, α + 2, . . . , β} with even integers α, β.

• The cardinality of a set X is denoted as |X|.
• The number degG(v) = |N(v)| is called the degree of the vertex v, where N(v) is the

set of neighbors of the vertex v. If degG(v) = 1. we call the vertex v a leaf.
• G is a (p, q)-graph having p vertices and q edges.

Definition 1 ([13]). Let a connected (p, q)-graph G with 1 ≤ p− 1 ≤ q admit a mapping α :
V(G)→ {0, 1, 2, . . . }. For each xy ∈ E(G), the labelings are defined as α(xy) = |α(x)− α(y)|,
and we write the vertex color set by α(V(G)) = {α(u) : u ∈ V(G)} and the edge color set as
α(E(G)) = {α(xy) : xy ∈ E(G)}. We have the following restrictions:

(1) |α(V(G))| = p;
(2) α(V(G)) ⊆ [0, q], min α(V(G)) = 0;
(3) α(V(G)) ⊂ [0, 2q− 1], min α(V(G)) = 0;
(4) α(E(G)) = {α(xy) : xy ∈ E(G)} = [1, q];
(5) α(E(G)) = {α(xy) : xy ∈ E(G)} = [1, 2q− 1]o;
(6) α(uv) = α(u) + α(v) (mod 2q);
(7) G is a bipartite graph with the bipartition (X, Y) such that max{α(x) : x ∈ X} <

min{α(y) : y ∈ Y} (α(X) < α(Y) for short).

We define: a graceful labeling α satisfying the restriction (1), (2), and (4); a set-ordered
graceful labeling α satisfies (1), (2), (4), and (7), simultaneously; an odd-graceful labeling
α satisfies the restriction (1), (3), and (5); a set-ordered odd-graceful labeling θ satisfies the
restriction (1), (3), (5), and (7); a set-ordered odd-elegant labeling α satisfies the restriction (1),
(3), (5), (6), and (7).

Definition 2 ([14]). A total labeling α : V(G) ∪ E(G) → [1, p + q] for a bipartite (p, q)-graph
G is a bijection holding:

(i) α(uv) + |α(u)− α(v)| = k;
(ii) Each edge uv corresponding to another edge xy holds α(uv) = |α(x)− α(y)| (or α(uv) =

(p + q + 1)− |α(x)− α(y)|);
(iii) Let s(uv) = |α(u) − α(v)| − α(uv) for uv ∈ E(G), then there exists a constant k ′

such that each edge uv corresponds to another edge u ′v ′ holding s(uv) + s(u ′v ′) = k ′ (or
(p + q + 1) + s(uv) + s(u ′v ′) = k ′) true;

(iv) min α(V(G)) > max α(E(G)) (or max α(V(G)) < min α(E(G)), or α(V(G)) ⊆
α(E(G)), or α(E(G)) ⊆ α(V(G)), or α(V(G)) is an odd-set, and α(E(G)) is an even-set;

(v) (ve-corresponding) each edge uv corresponds to one vertex w such that α(uv)+ α(w) = k ′′,
where k ′′ is a fixed constant, and each vertex z corresponds to one edge xy such that α(z)+ α(xy) =
k ′′, except the singularity α(x0) = b p+q+1

2 c;
(vi) max α(X) < min α(Y) (or min α(X) > max α(Y)) for the bipartition (X, Y) of V(G).
Then, α is called a 6C-labeling of the bipartite (p, q)-graph G.

Definition 3. Let (p, q)-tree G admit a 6C-labeling f and g be a 6C-labeling of (p, q)-tree H; if
they hold, f (V(G)) \ X∗ = g(E(H)), f (E(G)) = g(V(H)) \ X∗ and f (V(G)) ∩ g(V(H)) =

X∗ = {z0} with z0 = b p+q+1
2 c, then f and g are pairwise reciprocal-inverse. The graph�1〈G, H〉

obtained by the coinciding of the vertex x0 of G having f (x0) = z0 with the vertex w0 of H having
g(w0) = z0 is called a 6C-complementary labeling.

Definition 4. Let (p, q)-graph G admit a total labeling f : V(G) ∪ E(G) → [1, p + q] and
a (q, p)-graph H admit another total labeling g : V(H) ∪ E(H) → [1, p + q]. If f (E(G)) =
g(V(H)) \ X∗ and f (V(G)) \ X∗ = g(E(H)) for X∗ = f (V(G)) ∩ g(V(H)), then f and g are
reciprocal-inverse (or reciprocal complementary) to each other, and H (or G) is an inverse labeling of
G (or H).
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Figure 2. Examples The graphs T, G1, G2, G3 for illustrating the 6C-labeling defined in Definition 2,
the graphs TH1, H2, H3 reciprocal-inverse labeling defined in Definition 3, and the 6C-complimentary
matching defined in Definition 4.

Example 1. In Figure 3, a tree T admits a 6C-labeling fT , and other trees Gi admit a 6C-labeling
fi for i = 1, 3, where:

(i) fT(uv) + | fT(u)− fT(v)| = 13 for each edge uv ∈ E(T);
(ii) f1(xy) + | f1(x)− f1(y)| = 13 for each edge xy ∈ E(G1);
(iii) f3(xy) + | f3(x)− f3(y)| = 26 for each edge xy ∈ E(G3);
The graph T and G2 are as defined, then fT and g are reciprocal-inverse (or reciprocal comple-

mentary) to each other, and T (or G2) is an inverse labeling of G2 (or T).
Moreover, each 6C-labeling fi is a reciprocal-inverse labeling of the 6C-labeling fT , that is

fT(V(T)) \ {13} = fi(E(Gi)) and fT(E(T)) = fi(V(Gi)) \ {13} for i = [1, 3].
The 6C-labeling fT and its reciprocal-inverse labeling fi form a 6C-complimentary labeling

〈 fT , fi〉 for i = [1, 3]. Each vertex-coinciding tree Hi = �〈T, Gi〉 admits a 6C-complimentary
labeling gi = 〈 fT , fi〉 for i = [1, 3], where �〈T, G1〉 is a self-isomorphic ve-image, since T ∼= G1;

(iv) gj(uv) + |gj(u)− gj(v)| = 13 or gj(uv)− |gj(u)− gj(v)| = 13 with uv ∈ E(Hj) and
j = 1, 2;

(v) g3(xy) + |g3(x)− g3(y)| = 13 or g3(xy) + |g3(x)− g3(y)| = 26 with xy ∈ E(H3).

If a (p, q)-graph T has two subgraphs T1 and T2 such that V(T1) ∩ V(T2) = {w}
and E(T) = E(T1) ∪ E(T2), we denote T as T = T1 � T2, called a vertex-identified graph
(vi-graph for short). Moreover, we call T a uniformly vertex-identified graph (uniformly
vi-(p, q)-graph) if q = 2|E(T1)| = 2|E(T2)|.

Definition 5. Let a uniformly vi-(p, q)-graph T = T1 � T2 have a mapping f : V(T) → [0, q]
such that:

(i) f (x) 6= f (y) for any pair of vertices x, y ∈ V(T);
(ii) f is an odd-graceful labeling (ogl) of T1;
(iii) The edge label set f (E(T1)) = { f (uv) = | f (u)− f (v)| : uv ∈ E(T1)} = [1, q− 1]o.

Then, T is called a twin odd-graceful vi-(p, q)-graph, f a twin odd-graceful labeling (togl) of
T, T1 a source graph, and T2 an associated graph of T1.
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Figure 3. Examples for illustrating Corollary 2. (a–d) are T, T ′, T ′′, and T ′ � T ′′, respectively.

2. Connections between 6C-Labeling and Other Labelings

Lemma 1. A (p, q)-tree T admits a set-ordered graceful labeling if and only if it admits a
6C-labeling.

Proof. Let X = {xi : i ∈ [1, s]} and Y = {yj : j ∈ [1, t]} be the bipartition of vertex set
(X, Y) of a tree T, where |V(T)| = p = s + t and |E(T)| = s + t− 1.

First, notice that σ is a set-ordered graceful labeling of T, then σ(xi) = i − 1 for
i ∈ [1, s] and σ(yj) = s + j − 1 for j ∈ [1, t], and each edge xiyj ∈ E(T) has its label
σ(xiyj) = σ(yj)− σ(xi) = s + j− i.

Another labeling Φ is defined for the tree T as: Φ(w) = p + σ(w) for w ∈ V(T), and

Φ(xiyj) = p− σ(xiyj) = p− |σ(xi)− σ(yj)| (3)

for xiyj ∈ E(T). The vertex set and edge set is

Φ(V(T)) = [p, 2p− 1], Φ(E(T)) = [1, p− 1]. (4)

then we obtain:
(i) Φ(xiyj) + |Φ(xi)−Φ(yj)| = p− σ(xiyj) + σ(xiyj) = p.
(ii) Each edge xiyj ∈ E(T) with another edge x ′iy

′
j ∈ E(T) corresponds and holds

p− σ(xiyj) = σ(x ′iy
′
j) such that

Φ(xiyj) = p− σ(xiyj) = σ(x ′iy
′
j) = |σ(x ′i)− σ(y ′j)|

= |p + σ(x ′i)− [p + σ(y ′j)]| = |Φ(x ′i)−Φ(y ′j)|.
(5)

(iii) Let s(xiyj) = |Φ(xi)−Φ(yj)| −Φ(xiyj) for xiyj ∈ E(T), so

s(xiyj) = |Φ(xi)−Φ(yj)| −Φ(xiyj) = |σ(x ′i)− σ(y ′j)| − p + σ(xiyj) = 2σ(xiyj)− p, (6)

then we obtain a set [2− p, p − 2]e, where p is even, or a set [2− p, p − 2]o, where p is
odd. Therefore, each edge xiyj ∈ E(T) and another edge x ′′i y ′′j ∈ E(T) correspond, so
s(xiyj) + s(x ′′i y ′′j ) = 0, except that edge e holds s(e) = 0 as p is even.

(iv) max Φ(E(T)) < min Φ(V(T)) from Equation (4).
(v) Φ(uv) + Φ(w) = 2p for each edge uv corresponding to one vertex w, and Φ(z) +

Φ(xy) = 2p for each vertex z corresponding to one edge xy, except the singularity f (w ′) = p.
(vi) We obtain max f (X) < min f (Y) for the bipartition (X, Y) of V(G).
Therefore, Φ admits a 6C-labeling.
For the converse, let ψ be a 6C-labeling of T. According to the property (iv) and

ψ(V(T)∪ E(T)) = [1, 2p− 1], we obtain the edge label and the vertices’ label set ψ(E(T)) =
[1, p− 1] and ψ(V(T)) = [p, 2p− 1], respectively. A labeling ψ∗ is defined as: ψ∗(w) =
ψ(w) − p for w ∈ V(T), which gives ψ∗(V(T)) = [0, p − 1]; ψ∗(xiyj) = p − ψ(xiyj) for
each edge xiyj ∈ E(T), so ψ∗(E(T)) = [1, p− 1]. The property (i) enables us to compute
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ψ∗(xiyj) = p− ψ(xiyj) = p− [p− |ψ(xi)− ψ(yj)|]
= |[ψ(xi)− p]− [ψ(yj)− p]| = |ψ∗(xi)− ψ∗(yj)|,

(7)

that is ψ∗ is graceful. The graceful labeling ψ∗ is set-ordered according to the
property (vi).

Theorem 1. If two (p, q)-trees admit set-ordered graceful labelings, then they are a 6C-
complementary labeling.

Proof. Let each tree Ti of p vertices admit a set-ordered graceful labeling fi and (Xi, Yi)
be the bipartition of Ti with i = 1, 2. Therefore, we have max fi(Xi) < min fi(Yi) where
Xi = {xi,j : j ∈ [1, si]} and Yi = {yi,j : j ∈ [1, ti]} for si + ti = p with i = 1, 2. Then, we can
label the vertices’ set as fi(xi,j) = j− 1 for j ∈ [1, si], fi(yi,j) = si + j− 1 for j ∈ [1, ti] and
label the edge set as fi(xi,syi,t) = fi(yi,t)− fi(xi,s) = si + t− s for each edge xi,syi,t ∈ E(Ti),
and fi(E(Ti)) = [1, p] for i = 1, 2.

We define another labeling f ∗1 of T1 as: f ∗1 (w) = p + f1(w) for w ∈ V(T1) and
f ∗1 (x1,sy1,t) = p− f (x1,sy1,t) for each edge x1,sy1,t ∈ E(T1). Therefore, we can compute
f ∗1 (V(T1)) = [p, 2p− 1] and f ∗1 (E(T1)) = [1, p− 1].

Next, we define another labeling f ∗2 of T2 as: f ∗2 (w) = f2(w) + 1 for each vertex
w ∈ V(T2) and f ∗2 (x2,iy2,j) = p + f2(x2,iy2,j) for each edge x2,iy2,j ∈ E(T2). Thereby, we
obtain f ∗2 (V(T2)) = [1, p], f ∗2 (E(T2)) = [p + 1, 2p− 1].

Notice that f ∗1 (V(T1)) \ {p} = f ∗2 (E(T2)) and f ∗1 (E(T1)) = f ∗2 (V(T2)) \ {p}. By
Lemma 1, we have proven the theorem.

Theorem 2. If a (p, q)-tree T admits a 6C-labeling such that �1〈T, T ′〉 is a 6C-complementary
matching, where the tree T ′ is a 6C-labeling tree.

Proof. Let tree T admit a 6C-labeling f , another labeling g of T as g(x) = 2(p + q + 1)−
f (x) for each vertex x ∈ V(T) and g(uv) = (p + q + 1)− f (uv) for each edge uv ∈ E(T).
We obtain E(T) = {uivi : i ∈ [1, q]} with g(ujvj) < g(uj+1vj+1) true with j ∈ [1, q− 1].
Next, a labeling π is defined for a copy T ′ of T in this way: π(x) = g(x) for x ∈ V(T ′) =
V(T), and π(uivi) = 2p + q + 1− g(uivi) for uivi ∈ E(T ′) = E(T). Notice that

π(uivi) = 2p + q + 1− g(uivi) = 2p + q + 1− [(p + q + 1)− f (uivi)]

= f (uivi) + p
(8)

for uivi ∈ E(T ′) = E(T). We claim that π is a 6C-labeling of T ′ as well, which means that
the proof of Theorem 2 is complete.

Corollary 1. Let two trees T and H with p vertices admit set-ordered graceful labelings. Then,
G∗ = �1〈T, H〉 admits a 6C-labeling τ with τ(xy) + |τ(x)− τ(y)| = p for each edge xy ∈ E(T),
and τ(uv)− |τ(u)− τ(v)| = p for each edge xy ∈ E(H).

Corollary 2. Let a tree T admit a set-ordered odd-graceful labeling, then there exists H admitting
a twin odd-graceful labeling, where H is a self-corresponding H = T ′ � T ′′ graph.

Proof. According to the supposition of the corollary, let a tree T have its own vertex
bipartition (X, Y) with X = {x1, x2, . . . , xs} and Y = {y1, y2, . . . , yt} with |V(T)| = p =
s + t and |E(T)| = s + t− 1 = p− 1. For a set-ordered graceful labeling f of T, we obtain
φ(xi) = i− 1 for i ∈ [1, s] and φ(yj) = s + j− 1 for j ∈ [1, t], and φ(xiyj) = φ(yj)− φ(xi) =
s + j− i for each edge xiyj ∈ E(T):

(1) The labeling φ∗ is defined for a copy T ′ of T with (X ′, Y ′) = (X, Y) as: φ∗(x ′i) =
2 f (xi) = 2(i − 1) for i ∈ [1, s] and φ∗(y ′j) = 2 f (yj) − 1 = 2(s + j) − 3 for j ∈ [1, t];
immediately,
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φ∗(x ′iy
′
j) = |φ∗(y ′j)− φ∗(x ′i)| = |2(s + j)− 3− 2(i− 1)| = 2s + 2(j− i)− 1

= 2(s + j− i)− 1 = 2φ(xiyj)− 1.
(9)

Therefore, φ∗1 is an ogl of T ′, since φ∗1 (X ′) = [0, 2(s− 1)]e is an even-set, φ∗1 (Y
′) =

[2s− 1, 2p− 3]o is an odd-set, and φ∗1 (E(T)) = [1, 2p− 3]o is an odd-set as well. Next, we
another another graph T ′′ obtained by copying T with (X ′′, Y ′′) = (X, Y) and make a
complementary labeling φ∗2 of the ogl φ∗1 by setting φ∗2 (w) = φ∗1 + 1 for w ∈ V(T); clearly,
φ∗2 (E(T)) = φ∗1 (E(T)). Moreover, φ∗2 (X) = [1, 2s− 1]o, φ∗2 (Y) = [2s, 2p− 2]e; we can see
φ∗2 (V(T)) ∩ φ∗1 (V(T)) = {2s− 1} and φ∗2 (V(T)) ∪ φ∗1 (V(T)) = [0, 2p− 2]. Therefore, T ′′

is the complementary of T ′. Therefore, T ′ � T ′′ admits a togl.
The proof is finished for the corollary.

Theorem 3. Let T1, T2, . . . , Tm−1, Tm be disjoint trees, and each Ti admit a set-ordered graceful
labeling for i ∈ [1, m− 1]; Tm is a graceful tree. Then, there are vertices ui ∈ V(Ti) (i ∈ [1, m])
such that joining uj ∈ V(Tj) and uj+1 ∈ V(Tj+1) for j ∈ [1, m − 1] produces a new tree T
admitting a 6C-labeling.

Proof. For each i ∈ [1, m], each tree Ti has ni vertices and bipartition (Xi, Yi), where
Xi = {xi,r : r ∈ [1, si]} and Yi = {yi,j : j ∈ [1, ti]} with si + ti = |V(Ti)| = ni.

By the assumption of the theorem, each tree Ti for i ∈ [1, m− 1] has a set-ordered
graceful coloring fi holding fi(Xi) < fi(Yi), fi(xi,r) = r − 1, fi(yi,j) = si − 1 + j, as well
as fi(xi,ryi,j) = | fi(xi,r) − fi(yi,j)| = si + j − r, which shows that fi(V(Ti)) = [0, ni − 1]
and fi(E(Ti)) = [1, ni − 1]. Tm has a graceful labeling fm defined as fm(xi) = i − 1 for
xi ∈ V(Tm) and i ∈ [1, nm] such that fm(V(Tm)) = [0, nm − 1] and fm(E(Tm)) = [1, nm − 1].

We join the vertex yl,1 ∈ V(Tl) with the vertex xl+1,1 ∈ V(Tl+1) by an edge, l ∈
[1, m− 2]; we join the vertex ym−1,1 ∈ V(Tm−1) with the vertex x1 ∈ V(Tm) by an edge, so
the resulting tree is denoted as T. Next, we define a labeling g of T in the following steps.
Let A(a, b) = ∑b

l=a nl and B(a, b) = ∑b
l=a sl , A(1, m) = ∑m

l=1 nl = p.
We define another labeling g as follows:
Step 1.For each k ∈ [1, m− 1], the vertices’ color of xi,r as g(xi,r) = fi(xr,i) + B(1, i−

1) + A(1, m), i ∈ [1, si], where xi,r ∈ Xi ⊂ V(Ti).
Step 2. The vertices’ color of xi as g(xi) = fm(xi) + B(1, m− 1) + A(1, m), xi ∈ V(Tm),

where i ∈ [1, nm].
Step 3. The vertices’ color of yi,j as g(yi,j) = fi(yi,j)+ B(1, i− 1)+ A(i+ 1, m)+ A(1, m)

for each i ∈ [1, m− 1], j ∈ [1, ti], where yi,j ∈ Yi ⊂ V(Ti).
Step 4. The edges xi,ryi,j are colored as g(xi,ryi,j) = A(1, m) − |g(xi,r) − g(yi,j)| for

i ∈ [1, m− 1], g(xixj) = A(1, m)− |g(xi)− h(xj)|, i, j ∈ [1, nm].
Step 5. The edges xl+1,1yl,1 are colored as h(xl+1,1yl,1) = A(1, m)−{h(yl,1)− h(xl+1,1)}

= A[l + 1, m] for l ∈ [1, m− 2], h(x1ym−1,1) = A(1, m)− {h(ym−1,1)− h(x1)} = nm.
We can verify the vertices’ and edges’ set as follows:
h(xi,r) ∈ [A(1, m), B(1, m− 1) + A(1, m)− 1], i ∈ [1, si], i ∈ [1, m− 1];
h(xi) ∈ [B(1, m− 1) + A(1, m), B(1, m− 1) + A(1, m) + nm − 1], i ∈ [1, nm];
h(yi,j) ∈ [B(1, m− 1) + A(1, m) + nm, 2A(1, m)− 1], j ∈ [1, ti], i ∈ [1, m− 1];
g(xi,ryi,j) = A(1, m)− |g(xi,r)− g(yi,j)| = A(1, m)− { fi(yi,j)− fi(xi,r) + A(i + 1, m)}

= A(1, m)− fi(xi,ryi,j)− A(i + 1, m) ∈ [1 + A(i + 1, m), A(i, m)− 1], i ∈ [1, m− 1];
h(xixj) ∈ [1, nm − 1] for xixj ∈ E(Tm).
Let us continue to validate the restriction of labeling g as follows:
(i) Each edge xi,ryi,j ∈ E(T):

g(xi,ryi,j) + |g(xi,r)− g(yi,j)| = p− | f (xi,ryi,j)− f (xi,ryi,j)| = A(1, m) (10)

holds true.
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(ii) Each edge xi,ryi,j ∈ E(T) corresponding to another edge x ′i,ry ′i,j ∈ E(T) holds
p− g(xi,ryi,j) = g(x ′i,ry ′i,j) such that

f (xi,ryi,j) = p− g(xiyj) = g(x ′i,ry ′i,j) = |g(x ′i,r)− g(y ′i,j)|

= |p + g(x ′i,r)− [p + g(y ′i,j)]| = | f (x ′i,r)− f (y ′i,j)|.
(11)

(iii) Let s(xiyj) = | f (xi)− f (yj)| − f (xiyj) for xiyj ∈ E(T), so

s(xiyj) = | f (xi)− f (yj)| − f (xiyj) = |g(x ′i)− g(y ′j)| − p + g(xiyj)

= 2g(xiyj)− p,
(12)

which distributes a set [2− p, p− 2]e if p is even or a set [2− p, p− 2]o if p is odd. Thereby,
each edge xiyj ∈ E(T) corresponds to another edge x ′′i y ′′j ∈ E(T) such that s(xiyj) +

s(x ′′i y ′′j ) = 0, except that edge e holdss(e) = 0 as p is even.
The proof of (iv)–(vi) is the same as Lemma 1.
Hence, we claim that the labeling f admits really a 6C-labeling defined in Definition 2.
Thereby, we claim that g(V(T)) = [A(1, m), 2A(1, m)− 1] and g(E(T)) = [1, A(1, m)−

1], which shows that g is a 6C-labeling of T. See an example in Figures 4 and 5.
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Figure 4. Four graphs Ti with i ∈ [1, 4] for understanding the proof of Theorem 3.
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Figure 5. An example for illustrating the proof of Theorem 3.

3. Conclusions

This paper studied the 6C-labeling having multiple restrictive conditions and showed
the graphic codes. We showed some connections between 6C-labeling and other graph la-
belings/colorings and showed graphs admitting twin-type 6C-labelings, as well as the con-
struction of graphs admitting twin-type 6C-labelings and constructing graph classes with
new labels to provide a new technology for topology coding. The result of Theorem 3 can be
used to construct some graphic lattice [15]. If artificial intelligence technology and quantum
computer attacks use labels and coloring-generated passwords, the decryption process will
involve the determination of the graph isomorphism and some coloring conjectures, so it is
not easy to crack. In addition, according to the method proposed in this paper, the topologi-
cal coding has a variety of graph structures, topological matrices, and number-based strings
of topological coding. We can use labeled graphs to design topology coding, so as to ensure
information security. We can see that this is easy to obtain from the graph to the matrix and
then to the string, and the reverse is difficult. Multiple restrictions also ensure the security
of encryption.

Topological graphic passwords are based on the open structural cryptographic plat-
form, that is this platform allows people to make themselves pan-topological graphic
passwords by their remembered and favorite knowledge kept firmly in mind. We believe:
“If a project has practical and effective applications and is supported by mathematics, it can
go farther and farther. Practical application makes it live longer, and mathematics makes it
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stronger and faster. This project gives people feedback on material enjoyment and returns
new objects and problems to mathematics”.
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