
����������
�������

Citation: Kasu, P.; Hamandawana, P.;

Chung, T.-S. TPBF: Two-Phase

Bloom-Filter-Based End-to-End Data

Integrity Verification Framework for

Object-Based Big Data Transfer

Systems. Mathematics 2022, 10, 1591.

https://doi.org/10.3390/

math10091591

Academic Editor: Shih-Wei Lin

Received: 9 April 2022

Accepted: 2 May 2022

Published: 7 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

TPBF: Two-Phase Bloom-Filter-Based End-to-End Data Integrity
Verification Framework for Object-Based Big Data
Transfer Systems
Preethika Kasu 1 , Prince Hamandawana 2 and Tae-Sun Chung 1,*

1 Department of Artificial Intelligence, Ajou University, Suwon 16499, Korea; kasu@ajou.ac.kr
2 Department of Computer Science and Engineering, Soongsil University, Seoul 06978, Korea; princeh@ssu.ac.kr
* Correspondence: tschung@ajou.ac.kr

Abstract: Computational science simulations produce huge volumes of data for scientific research
organizations. Often, this data is shared by data centers distributed geographically for storage and
analysis. Data corruption in the end-to-end route of data transmission is one of the major challenges
in distributing the data geographically. End-to-end integrity verification is therefore critical for
transmitting such data across data centers effectively. Although several data integrity techniques
currently exist, most have a significant negative influence on the data transmission rate as well
as the storage overhead. Therefore, existing data integrity techniques are not viable solutions in
high performance computing environments where it is very common to transfer huge volumes
of data across data centers. In this study, we propose a two-phase Bloom-filter-based end-to-end
data integrity verification framework for object-based big data transfer systems. The proposed
solution effectively handles data integrity errors by reducing the memory and storage overhead and
minimizing the impact on the overall data transmission rate. We investigated the memory, storage,
and data transfer rate overheads of the proposed data integrity verification framework on the overall
data transfer performance. The experimental findings showed that the suggested framework had 5%
and 10% overhead on the total data transmission rate and on the total memory usage, respectively.
However, we observed significant savings in terms of storage requirements, when compared with
state-of-the-art solutions.

Keywords: big data; geo-distributed data centers; data integrity; Bloom filter; parallel file system;
high-performance computing

MSC: 68M14; 68M15

1. Introduction

A terabyte(s) to a petabyte(s) of data is generated every day by modern scientific
centers such as ORNL [1], CERN [2], and LIGO [3]. Furthermore, in the modern age, every
single entity is associated with some digital components or equivalents that may generate
data. Security cameras, mobile phones, smart home devices, and telemetry devices are
just a few examples of the many electronic devices that are constantly generating data and
digital content. There are more than 2.5 quintillion bytes generated by internet users every
day [4], and this pace has been increased by current technologies, such as AI (artificial
intelligence), IoT (Internet of Things), and ML (machine learning).

Service providers distribute their data centers geographically all over the globe to
give better service to consumers in terms of availability and response time, depending
on their location. This leads to a huge growth in the need for high-performance data
transmission across the data centers distributed geographically. Although network speeds
are approaching petabits per second and storage capacity is approaching a zettabyte, there

Mathematics 2022, 10, 1591. https://doi.org/10.3390/math10091591 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10091591
https://doi.org/10.3390/math10091591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8804-8276
https://orcid.org/0000-0002-1030-3844
https://doi.org/10.3390/math10091591
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10091591?type=check_update&version=2

Mathematics 2022, 10, 1591 2 of 25

is still a significant performance gap between network and storage. As a result, increasing
end-to-end data transmission rates has become a major challenge for service providers.

Data centers are equipped with PFSs (parallel file systems) to decrease the impedance
mismatch between the network and storage and also to increase the scalability [5,6]. Conse-
quently, the PFSs help to deliver the much required inter-data-center high-performance
data transfers. However, resources in such PFSs, are highly shared among users. Owing to
this, users might be contending for the same resources. As contention for these resources
increases, there can be a significant gap between the actual and estimated I/O perfor-
mance [7,8]. To avoid such contention issues and to increase the data transfer rates, scholars
have suggested object-based big data transfer frameworks [9–12] to prevent temporarily
congested servers from transferring data.

Object-based big data transfer frameworks [9–12] utilize the file(s) storage architecture
and boost data transmission rates by sending the objects of multiple files in parallel. Due to
the object nature of data and concurrent processing, data transfer frameworks might send
objects of one logical file from the host to the destination in an out-of-order fashion. If the
end-to-end path has any faults, the out-of-order nature of the data transmission will result
in data integrity errors. To avoid such data integrity issues, after recovering from the fault,
this kind of data transfer framework necessitates the retransmission of the whole file data
(objects), causing undesirable congestion.

For the authenticity of big data, the integrity of the data that is transferred must
be guaranteed. While several techniques (e.g., TCP checksum) [13] currently maintain
point-to-point data integrity in transit, explicit end-to-end data integrity validation protects
scenarios that may go unreported by usual in-transit procedures. End-to-end data integrity
in big data transfer systems refers to the reliability and trustworthiness of data throughout
the data transfer lifecycle. Without end-to-end data integrity support, it is not possible for
the data transfer system to ensure whether the data that is transferred to the sink-end PFS
is the same as the data that users or applications have created at the source-end PFS. Using
end-to-end data integrity verification, it is possible to protect the data against hardware
issues (network or servers), software bugs, and storage write errors (misplaced or partial
writes) by the hard disks or SSDs, and more.

Checksumming is the most basic implementation of end-to-end data integrity [14].
Both sink and source endpoints retrieve the data from storage after a successful data transfer
and then calculate the checksum with a hash technique including SHA1 [15] or MD5 [16].
The transfer is considered successful if the calculated checksums at both ends are the same;
otherwise, the file at the sink end is deemed to be damaged, and the transmission is redone.
Conventional checksum tools are both serial and file-based. Therefore, data integrity
verification frameworks based on the checksum method fall short as far as large-scale
datasets are concerned. If the dataset contains large files, then the checksum computation
either fails, owing to the size of the data, or takes an extremely long time to process. File-
based checksums, on the other hand, are cumbersome and unusable when the dataset
comprises millions of small files.

End-to-end data integrity verification in large scale data transfers is not only essential
but also very expensive. It increases the amount of disk I/O and processing needed for
the data transfer, thereby reducing the overall data transfer performance [17,18]. In this
work, our aim is to design a data integrity verification framework for object-based big
data transfer systems. Owing to the object nature of the data transfer, it is possible to
transfer the objects of a logical file in a random order. Therefore, serial and file-based
checksumming-based data integrity verification methods are not suitable.

To address the limitations of the traditional serial and file-based checksumming tools,
Xiong et al. [19] proposed a standalone, scalable data integrity check tool for large-scale
datasets. This tool breaks the files in the data storage into chunks of reasonable size and
calculates chunk-level checksums in parallel. However, the parallel nature of the execution
results in checksum ordering issues. To overcome checksum ordering issues, as well as
to optimize the memory, a Bloom filter data structure is used. Though this method is

Mathematics 2022, 10, 1591 3 of 25

efficient in data storage systems, this method of data integrity falls short in detecting and
recovering from silent data corruption errors in the end-to-end path of the data transfer. In
this work, our aim is to support an end-to-end data integrity verification framework for
object-based big data transfer systems while minimizing the impact on the overall data
transfer performance.

In this paper, our proposed two-phase Bloom-filter (TPBF)-based data integrity verifi-
cation framework aims to reduce the memory and storage footprint without affecting the
data transfer performance. To the best of our knowledge, our proposed framework is the
first of its kind to address end-to-end data integrity verification for object-based big data
transfer systems. The major contributions of our work are listed below.

• A data- and layout-aware Bloom filter (DLBF) mechanism for effectively handling object
and file level data integrity verification with object-based big data transfer systems.

• For efficiently handling dataset level integrity verification, we developed a two-phase
Bloom-filter (TPBF)-based end-to-end data integrity verification framework for opti-
mizing the memory and storage footprint when compared with state-of-the-art data
integrity solutions.

• We utilized a Lustre file system [20–22] that interacts over an InfiniBand (IB) net-
work [23,24] to evaluate the proposed design. Based on the experimental results, we
can conclude that the proposed data integrity framework is very effective at detecting
and resolving data integrity issues at all of object, file, and dataset levels.

• Data transfer performance, memory, and storage overhead have been evaluated to
assess the overhead of the proposed end-to-end integrity verification framework in
the context of data transmission. The experimental findings show that the suggested
framework had 5% and 10% overhead on the total data transmission rate and on the
total memory usage, respectively. Moreover, we observed significant ≥50% savings
in terms of storage requirements, when compared with state-of-the-art solutions.

• The false-positive error rate was evaluated to assess the effectiveness of the proposed
data integrity framework by manually inducing faults after transferring 20%, 40%,
60%, and 80% of the total data. Our experimental results showed that the proposed
framework significantly reduced false-positive errors and was up to 80% more effective
than current state-of-the-art solutions.

The rest of the paper is structured as follows. The background and motivation for our
work is described in Section 2. Section 3 summarizes related work. Section 4 discusses
the design and implementation details of the proposed two-phase Bloom-filter-based data
integrity verification framework. Section 5 highlights the evaluation results and in Section 6,
we conclude our study.

2. Background and Motivation
2.1. Background
2.1.1. Object-Based Big Data Transfer Systems

Traditional big data transfer frameworks ignore the underlying storage system ar-
chitecture and rely solely on file logical representation [25–27]. Due to this, objects of the
same file are transferred in sequence. If a single I/O thread is assigned to transfer the file,
it will work on that file sequentially until the entire file is transferred. As only one file is
transferred at a time, the big data transfer framework consumes a considerable amount of
time to transfer all the files in the dataset. To improve the data transfer performance, it is
possible to assign multiple I/O threads to process the data transfer. However, employing
multiple I/O threads without knowledge of the physical distribution of the file might result
in disk contention issues as multiple threads compete for the same object storage server
(OSS) or object storage target (OST) [8,21,28]. Due to this contention, the data transfer
performance of the application will be degraded.

In contrast to the traditional big data transfer frameworks, object-based big data
transfer systems address storage contention issues by considering the physical distribution
of the files across different OSTs [11,29]. Owing to this, the workload is considered as

Mathematics 2022, 10, 1591 4 of 25

objects rather than files, where each object represents a maximum transmission unit (MTU)
of data. Object-based big data transfer systems utilize file(s) layout information to load
balance the OSTs. Therefore, a thread can be assigned to an object of any file on any OST
without requiring that all the objects of a particular file be transferred before objects of
another file. Due to this enhanced layout-aware scheduling and parallel processing, object-
based big data transfer systems avoid OST contention and hence, improve data transfer
rates [9–11,30].

Figure 1 depicts an illustration of OST contention in file and object-based big data
transfer systems. In this example, we consider two files, Filea and Fileb, that are distributed
across four different OSTs (OST1 to OST4). As shown in Figure 1a, traditional big data
transfer systems assign T1 and T2 I/O threads for transferring Filea and Fileb, respectively.
On initiating the data transfer, owing to the serial and file based data transfer nature of
the traditional big data transfer systems, both T1 and T2 threads attempt to access the first
object of Filea and Fileb, respectively. However, as both the objects are placed in OST1, one
of the threads has to wait until the other thread completes its job. As shown in Figure 1a,
thread T2 experiences the delay and hence consumes more time to read the first object of
Filea. Similarly, threads T1 and T2 contend for resource OST3 while processing the third
object of Filea and Fileb. Due to this, as shown in Figure 1a, thread T2 execution is delayed
and hence consumes more time to process the third object of Filea. This kind of resource
contention has a negative impact on the overall data transfer rates in traditional big data
transfer systems.

Filea Fileb

1 2 3 1 2 3 4

1 2 31 23 4

OST1 OST2 OST3 OST4

T1

1

2

3

2

1

2

23

4

3

I/O Threads Object Transfer Order

Time Quantum

4

1

2

T2

1

2

3

T1

1

2

3

4

T2

1

2

3

(a)

T1

1

Time Quantum

T1 T2

3

4

2

I/O Threads Object Transfer Order

Filea Fileb

1 2 3 1 2 3 4

1 2 31 23 4

OST1 OST2 OST3 OST4

T2

1

2

3

1 2

1 3

2 4

3

1

2

1

3

2

4

3

(b)

Figure 1. Illustration of OST contention in file and object-based transfer systems. (a) File-based
transfer system. (b) Object-based transfer system.

On the other hand, object-based big data transfer systems ensure that no two threads
compete for the same resource at any given time by scheduling the objects using their
enhanced layout-aware and congestion-aware scheduling algorithms [9–11]. For example,
as shown in Figure 1b, threads T1 and T2 contend for resource OST1 while processing
the first object of Filea and Fileb. To avoid such a contention, the layout-aware scheduler
schedules the second object of Filea ahead of the first object. A similar mechanism is used
to schedule all other objects of the dataset. Though this method of object scheduling avoids
resource contention, it also results in out-of-order object transfers. From Figure 1b, we
can observe that the second object of Filea is transferred first, followed by the first object.
Similarly, we can observe the out-of-order object transfer for Fileb too. A similar kind of

Mathematics 2022, 10, 1591 5 of 25

out-of-order object transfer mechanism can be observed for all other files in the dataset.
Due to these improved layout-aware data scheduling algorithms and data parallelism,
the data throughput of object-based big data transfer systems is much higher than the
traditional big data transfer frameworks [9–11,30].

Despite the fact that object-based big data transfer systems significantly increase data
transfer rates, the out-of-order nature of data transmission, as well as parallel processing, ne-
cessitates complex sorting algorithms, as well as higher storage and memory requirements,
to support end-to-end data integrity. Therefore, in this study, we propose a TPBF-based
integrity verification framework for handling end-to-end data integrity in object-based big
data transfer systems.

2.1.2. End-to-End Data Integrity

Figure 2 depicts the scope of the network and end-to-end data integrity verification
during large scale data transfers. As shown in Figure 2, various components, such as
source and sink host machines, storage systems, and network elements, are involved in
the end-to-end path of the data transfer. Network data integrity accounts for the data
corruption issues over the network and will be handled by the network stack. In addition
to the network, data corruption can also happen at storage systems during file read or write
operations due to hardware, storage media, firmware, and controller malfunction. This
leads to undetected silent data corruption errors. Recovering from such errors will incur
significant overheads, and it may not always be possible for the storage devices to fully
recover from these errors [31]. Thus, end-to-end data integrity verification accounts for the
integrity verification between source and sink storage devices.

Network data
Integrity

OST0 … … OSTn OST0 … … OSTnEnd-to-End data Integrity

OSS OSS

Figure 2. End-to-end data integrity.

While many intermediate data transfer components, such as file systems [32–35],
support integrity verification, they are insufficient to ensure end-to-end data integrity.
The only way to ensure that the data transferred to the sink-end PFS is the same as the
data created by a user or application at the source-end PFS is to perform end-to-end data
integrity verification. In this study, we propose methods for ensuring block, file, and dataset
level end-to-end data integrity verification.

2.1.3. Big Data Transfer Frameworks

Big data transfer frameworks face two primary issues when transferring huge amounts
of data across geographically diverse data centers: high performance and reliability. Re-
searchers have proposed different big data transfer frameworks to address high-performance
and reliability requirements.

One of the most popular protocols for rapid data transmission on the grid is
GridFTP [26,27]. This protocol is an extended version of the FTP (file transfer protocol),

Mathematics 2022, 10, 1591 6 of 25

which provides a general purpose mechanism for transmitting data in a reliable, secure, and
high-performance manner. This framework employs a parallel data transfer mechanism
to aggregate the overall bandwidth by employing multiple transmission control protocol
(TCP) streams. Striping is also used in this framework to facilitate multi-host-to-multi-host
data transmission. GridFTP also handles file-level data corruption errors by incorporating
on-the-fly checksum-based data integrity verification. However, this serial and file-based
method of data integrity verification falls short as far as large-scale datasets are concerned.
If the dataset contains large files, then the checksum computation either fails owing to the
size of the data or takes an extremely long time to process. Hence, the parallel checksum
approach is needed and preferred. In this study, we consider transferring the data as
objects based on their layout; hence, the serial and file-based data integrity verification
mechanisms cannot be implemented in our framework.

The BaBar Copy Program (BBCP) [25] is a potential alternative to GridFTP for trans-
mitting huge volumes of data between data centers. Similar to GridFTP, this tool also
divides a transfer into several concurrent streams. As a result, data is transferred at sub-
stantially higher rates than using single stream utilities, such as SCP (secure copy protocol)
and SFTP (SSH file transfer protocol). Since BBCP sequentially transfers the whole file
data, it supports network data integrity verification (data integrity verification only during
network transfer). However, this is not really end-to-end, since it does not account for all
the data integrity issues along the path between the host and destination endpoints.

The eXtreme DD Toolset (XDD) [12] offers the software infrastructure required for
transferring large scale datasets with high reliability and performance. It has several
configurable features that make it easier to transfer files efficiently, including threads,
device access methods, impedance matching, as well as I/O scheduling principles. Owing
to its improved I/O scheduling policies, objects of the same file are transferred in an out-
of-order manner from the source to the destination. Similar to our framework, this tool
also considers data transmission as objects rather than files. However, the data integrity
verification was not addressed in this tool.

Layout aware data scheduling (LADS) [9–11] leverages storage architecture at each
endpoint to optimize throughput while not affecting the functionality of shared resources
for other users. Therefore, LADS considers the physical view of the files rather than their
logical view. Owing to the physical view of the files, as well as concurrent processing, this
framework transfers the objects of the same logical file from the source endpoint to the sink
endpoint in an out-of-order fashion. However, similar to XDD, this object-based big data
transfer tool also does not provide any solution to handle data integrity verification.

Table 1 summarizes the level of data integrity verification supported by different data
transfer tools. According to this table, the GridFTP big data transfer framework supports
both network data integrity and file-level end-to-end integrity verification. However,
the serial and file-based nature of the data integrity verification of GridFTP will have a
significant negative effect on the overall data transfer performance. Although, the BBCP
data transfer tool supports network data integrity verification, it does not support any
type of end-to-end integrity verification. Furthermore, the table shows that none of the
object-based data transfer tools supports data integrity verification.

Table 1. Summary of data integrity verification.

Data Transfer Tool Network Integrity
End-to-End Integrity

Object File Dataset

Grid FTP Yes No Yes No

BBCP Yes No No No

XDD No No No No

LADS No No No No

Mathematics 2022, 10, 1591 7 of 25

2.2. Motivation

Object-based big data transfer systems, as described in Section 2.1.1, exploit the storage
layout architecture to enhance the data transfer rates. Consequently, while transferring
data, the physical distribution of the workload is taken into account rather than the logical
nature of the files. Thus, the workload is transferred in the form of objects, not files. Owing
to the object nature of the workload, as well as the parallel processing, objects of different
logical files are transferred in parallel, and objects of the same logical file are transferred out-
of-order, as shown in Figure 1b. Although this type of mechanism significantly improves
the data transfer performance, complex methodologies need to be employed for ensuring
data integrity during the data transfer.

To ensure the authenticity of the data, big data transfer frameworks should handle the
data integrity verification during the data transfer. Traditional big data transfer tools, such
as GridFTP [26,27] and BBCP [25], transfer the file data sequentially, as shown in Figure 1a.
Due to this, it is feasible to support data integrity verification using traditional serial and
file-based checksum techniques. For example, GridFTP generates a file-level root hash by
concatenating all the block-level checksums into a hash list and then computing the top
hash from that or by employing a Merkle tree. However, object-based big data transfer
systems transfer objects of the same logical file in an out-of-order fashion. Due to this, object
checksums required for data integrity verification are also generated in an out-of-order
manner. Therefore, generating a single and consistent file or dataset level signature for data
integrity verification necessitates the need for complex sorting algorithms, as well as higher
memory and storage requirements due to the sheer size of the data.

The major challenges for supporting data integrity with object-based big data transfer
systems are memory, storage, and computational overheads. In our research, we aimed to
address the following issues:

• How can the impact of the data integrity framework on the overall data transfer rate
of object-based big data transfer systems be minimized?

• How can the memory and storage requirements of the data integrity framework be
reduced?

To address the aforementioned challenges, we propose a two-phase Bloom-filter-based
end-to-end data integrity verification framework for reducing the memory, storage, and
computational overheads of object-based big data transfer systems.

3. Related Work

Ensuring the correctness of the transferred data is one of the primary concerns of
data transfer frameworks. Many studies have been performed on the design and imple-
mentation of data integrity verification and their optimization in data storage [34,36,37],
cloud storage [38–42], file systems [32–35,43], databases [32,44,45], and data transfer
systems [18,19,46,47].

GridFTP [26,27], a widely used protocol for scientific data transfer, has built-in data
integrity verification support. This file transfer service computes a 128-bit checksum by
reading the file at the destination after it is written to the disk, and the same is compared
against the source-end checksum to verify file data integrity. It supports file-level pipelining
to minimize the integrity verification overhead. File-level pipelining transfers the file data
by overlapping with the checksum calculation of the previously transferred file in multi-file
transfers. However, this pipelining approach fails when the dataset comprises mixed file
sizes, where the file transfer takes longer than the checksum computation of the previously
transferred file or vice versa. To optimize this, Jung et al. [18,46] proposed block-level
pipelining (with various block sizes) to overlap the processes of data transfer and checksum
computation. As GridFTP transfers the logical file data sequentially, concatenating all
block-level checksums to a hash list and calculating the top hash based on it (or) using a
Merkle tree to generate the root hash is possible. However, our work considers transferring
the data as objects based on their layout; hence, the objects of the same logical file are
transferred out-of-order. Therefore, to generate a hash list or a Merkle tree, storing the

Mathematics 2022, 10, 1591 8 of 25

checksums of all objects is necessary. However, this method is not feasible for datasets
containing large file sizes. Hence, this method cannot be implemented using our data
transfer framework.

I/O overhead is reduced and improved pipelining is achieved by using FIVER [47]
for data integrity verification. FIVER focuses on overlapping checksum calculation and
transfer procedures for the same file, unlike prior research that focused on overlapping
operations for distinct files or blocks. In addition, as opposed to reading each file from
storage twice (once for file transfer and the second time for checksum computation), FIVER
reads the files only once and shares the I/O between checksum and transfer operations.
It offers the same level of integrity protection as other existing techniques, but with a
significant performance advantage. However, similar to GridFTP, FIVER also transfers
logical file data sequentially. Hence, this method of data integrity is not suitable for our
data transfer framework.

Xiong et al. [19] proposed a scalable parallel dataset checksumming tool called fsum.
It is built upon the principle of parallel tree walk and work stealing patterns to maximize
parallelism and overcome the limitations of traditional serial and file-based checksumming
tools. This method of data integrity generates a single and consistent dataset-level signature
by aggregating chunk-level checksums. However, owing to the parallel nature of execution,
checksums are generated in different orders. Therefore, sorting is necessary to generate
root hashes. However, it is not scalable because the root process has to gather checksums
from all processes and store them in memory as a hash list or a Merkle tree at some point.
To avoid these drawbacks due to sorting, a Bloom filter is used to aggregate the chunk-level
checksums. This method of data integrity is both memory and computation efficient than
other approaches. However, owing to its false-positive detections, data integrity errors
went unnoticed when duplicate contents were present in the dataset. In this study, our
proposed two-phase Bloom filter structure effectively handles the end-to-end integrity
verification for all types of datasets by reducing the storage footprint and false-positive
detections when compared with the fsum tool.

4. Data Integrity Verification Framework

In this section, we present the design and implementation details of the proposed
data integrity verification framework. First the design aspects of the Bloom filter are
described. Next, we present two-phase Bloom filter (TPBF) design and implementation
details. Finally, we conclude by analyzing the memory requirements of the proposed
two-phase Bloom filter.

4.1. Bloom Filter Design

In this section, we first describe the Bloom filter data structure. Subsequently, we focus
on the hash function optimization details to reduce computational overhead. Next, we
discuss the design details of the data and the layout-aware Bloom filter (DLBF) [48] used
for verifying the file-level data integrity. Finally, we conclude by illustrating an example of
DLBF for insert and query operations.

4.1.1. Bloom Filter Data Structure

A Bloom filter is a compact data structure which supports constant time insert and
query operations [49–51]. The Bloom filter representing a set of n elements is composed of
m-bits. Initially, all these m-bits of the Bloom filter array are set to 0. Bloom filter utilizes k
independent hash functions, for inserting an element or for querying the membership of an
element. These hash functions generate k hash values that are uniformly distributed over
the range, 1 . . . m. When an element is inserted, the bits at these k-positions in the Bloom
filter array are set to 1. When an object membership query is performed, the Bloom filter
array values at these k-positions are compared, and, if any of the bits at these positions is
equal to 0, then the element is presumed to be not present in the set. Otherwise, we assume

Mathematics 2022, 10, 1591 9 of 25

that the element is in the set. However, if any of the bits at these k-positions were set as a
result of hash collisions, this assumption leads to false-positive errors.

The probability that an object is not existing in the set, often known as the false-positive
error probability, is calculated as below. For a given number of hash functions, k, and larger
m, the probability, p, that a specific bit will remain 0, after all the entries in a dataset have
been hashed into the Bloom filter, may be described as

p = (1− 1
m
)kn ≈ (e−kn/m). (1)

As a result, the probability that the bit is 1 is represented as

p = 1− (1− 1
m
)kn ≈ (1− e−kn/m). (2)

While testing the membership of an object that is not present in set, the false-positive
error probability, ε, can be represented as

ε = (1− (1− 1
m
)kn)k ≈ (1− e−kn/m)k. (3)

The number of objects in the dataset (n), hash functions (k), and total filter size (m)
all influence the Bloom filter’s false-positive error probability (ε). Practically k would be
an integer; a suboptimal smaller k is preferable since it minimizes the number of hash
functions to be computed and thus reduces the overall computational overhead of the
Bloom filter. The number of hash functions needed to reduce false-positive errors for a
given m and n can be represented as

k =
m
n

ln2. (4)

4.1.2. Hash Optimization

Multiple independent hash functions are used for building a Bloom filter. Thus, hash
functions are the core computational operations of the Bloom filter. Therefore, minimizing
the computational overhead of these hash functions is very much necessary for optimiz-
ing the overall Bloom filter computation. For optimizing hash function computational
overhead, researchers have proposed strategies to generate distinct hash values using a
fewer number of hash functions [52–54]. Using this approach, in our experiments, we
employed murmur [55] and DJB2 [56] as base hash functions, and additional hash values
were generated using these two hash algorithms. Specifically, Equation (5) was used to
compute the additional k hash values:

hi(x) = h1(x) + i ∗ h2(x) mod m (5)

where:

i = 0 ≤ i ≤ k− 1
m = Bloom filter size

4.1.3. Data- and Layout-Aware Bloom Filter (DLBF)

Space efficiency and insertion order independence are the two major design consid-
erations in using a Bloom filter data structure for supporting data integrity verification
with object-based big data transfer systems. However, the probabilistic nature of the Bloom
filter results in false-positive errors [57,58]. Therefore, in this section, we present a modified
Bloom filter, the data and layout aware Bloom filter (DLBF), for efficiently handling the
false-positive errors of a standard Bloom filter.

Mathematics 2022, 10, 1591 10 of 25

A data- and layout-aware Bloom filter is generated by mapping the object of an
arbitrary size to a fixed size using an SHA-1 engine as depicted in Figure 3. This block hash
is deterministic and serves as the input to the hash functions.

(a) (b)

Figure 3. Illustrative example of data- and layout-aware Bloom filter data structure. (a) Insert
operation. (b) Query operation.

The Bloom filter, as described in Section 4.1.1, is an m-bit vector (B) with k independent
hash functions (h1, . . . , hk) that translates every element in a dataset (S = {x1, . . . , xn}) to a
range (Rm = {0, 1, . . . , m− 1}). We suppose that every hash function hk uniformly maps
each element in the dataset to a random integer with equal probability across the range Rm.
All m-bits of bit vector B are initially set to “0”.

• Insert: For each object xi ∈ S, compute h1(xi), . . . , hk(xi) and set B[h1(xi)] = B[h2(xi)]
= . . . = B[hk(xi)] = 1.

• Query: To check whether an object, xi, is in S, compute h1(xi), . . . , hk(xi). If B[h1(xi)]
= B[h2(xi)] = . . . = B[hk(xi)] = 1, the answer is yes; otherwise, the answer is no.
However, if h1(xi),. . . , hk(xi) in the bit vector B are set to 1 as a result of hash collisions,
then it results in false-positive errors.

To avoid such false-positive membership query results of the Bloom filter, the object
layout data (n-bits) is prepended as additional information about the object. As a result, the
Bloom filter’s total size is extended to (n+m) bits, and all these bits are initially set to “0”.

• Insert: For each object xi ∈ S, compute h1(xi), . . . , hk(xi), and set B[n + h1(xi)]
= B[n + h2(xi)] = . . . = B[n + hk(xi)] = 1, and also set the object layout information
bit, B[i] = 1. Where, ‘i’ represents the layout of the object.

• Query: To check whether an object, xi, is in S, compute h1(xi), . . . , hk(xi). If
B[n + h1(xi)] = B[n + h2(xi)] = . . . = B[n + hk(xi)] = 1 and B[i] = 1, the answer is
yes; otherwise, the answer is no.

As shown above, by using object layout information along with the standard Bloom
filter, we are able to avoid the false-positive errors of the Bloom filter data structure.

4.1.4. Illustration of Data and Layout Aware Bloom Filter

Figure 3 shows an example of a data- and layout-aware Bloom filter. In this example,
we considered the total number of objects in the dataset n = 6, the number of hash functions
k = 3, and the total size of the Bloom filter as m = 30. For demonstration purposes, we
illustrate the example where objects A, B, and C are inserted into the Bloom filter and
objects C, D, and E to exhibit success, fail, as well as false-positive match queries.

The Bloom filter array is categorized into two sections, as illustrated in Figure 3, the
Bloom filter and the layout sections. Following successful object transfer and integrity veri-

Mathematics 2022, 10, 1591 11 of 25

fication, the layout section of the Bloom filter array is filled with object layout information.
On the other hand, the Bloom filter section of the array is used to map the objects into k
positions randomly by utilizing k independent hash functions. All (n + m) bits of the filter
array are set to zero when the data transfer is initialized.

• Insert: The insert operation is shown in Figure 3a. To uniquely represent the object, the
SHA-1 engine is employed to calculate the block hash on the dataset. In this illustrative
example, objects A, B, and C are inserted into the Bloom filter. Hash functions {h1, h2,
and h3} are employed on the hashed object data to uniformly map the objects into k
random positions. The Bloom filter bits at positions {13, 16, and 20} are set to 1 using
the {h1, h2, and h3} hash functions on hashed ObjectA data. Additionally, bit {0} of the
Bloom filter array is set to 1 as the layout of ObjectA is zero. Similarly, bits at positions
{1, 8, 28 32}, and {2, 20, 24, 26} are set to 1 for ObjectB and ObjectC, respectively.

• Query: The query operation is shown in Figure 3b. We considered objects C, D, and
E for membership query operation. We presume the object membership if all the k
bits in the Bloom filter section, along with the layout bit in the layout sections, are
set to 1. For ObjectC the Bloom filter returns “Positive” for membership query as the
hash positions {20, 24, and 26} along with its layout bit at position {2} is set to 1. The
membership query of ObjectD returns “Negative” as the bit at position {11} is not
set. On the other hand, ObjectE membership query results in “Negative”, despite the
fact that the bits at positions {8, 28, and 32} are all set. This is due to the fact that the
object layout bit at position {4} is not set. Without the layout information, ObjectE
membership query may result in “False Positive” since the bits at positions {8, 28,
and 32} are all set. Hence, we prevented false-positive matches of the Bloom filter by
utilizing the object layout information in conjunction with the Bloom filter.

4.2. System Architecture

Figure 4 depicts the system architecture of the proposed data integrity verification
framework for object-based big data transfer systems. File Handler and Object Handler are the
two core components of the data integrity verification framework. The File Handler manages
the file-level activities, such as scheduling the file objects for transfer and performing the
file level data integrity verification. On the other hand, the Object Handler handles the core
operations of data transfer, as well as object-level data integrity management.

Object
Scheduler

Sink

R
EC

EIV
ER

File Handler

Object Handler

Object Integrity Verification

File Integrity Verification

Dataset Integrity Verification

DLBF

SHA1

Reader

SHA1

SE
N

D
ER

Writer

Reader

SHA1

SHA1

Source

DLBF

TPBFTPBF

DLBF -Data and Layout aware Bloom Filter
TPBF - Two Phase Bloom Filter

Figure 4. Two-phase Bloom-filter-based end-to-end data integrity framework architecture.

On initiating the data transfer, the source end File Handler prepares the list of the files
to be transferred and schedules the file(s) objects for transfer. The sink-end File Handler

Mathematics 2022, 10, 1591 12 of 25

acknowledges the objects and files that were successfully written to the sink-end PFS after
ensuring the data integrity. As shown in Figure 4, DLBF and TPBF are used to maintain
information about the successfully transferred objects and files in the dataset, respectively.
On successful object transfer and integrity verification, DLBF is populated with k-hash
positions, computed on the object signature, along with its layout information. Similarly,
upon successful file transfer and integrity verification, TPBF is populated with k-hash
positions computed on the file level signature. If a fault occurs during the data transfer
and the transfer is resumed from the fault point, TPBF and DLBF are used to retrieve the
successfully transferred files and file(s) objects, respectively. These successfully transferred
files and objects will be excluded from the re-transfer. For the remaining objects, the source-
end File Handler schedules the transfer. This process is repeated until all objects and files in
the dataset are successfully transferred to the sink endpoint without any integrity errors.

4.3. Design and Implementation

The design and implementation details of the proposed two-phase Bloom-filter-based
data integrity verification framework is described in this section.

4.3.1. Communication Protocol

The communication protocol of the proposed data integrity framework is as shown
in Figure 5 and Listing 1 lists the communication messages between the source and sink
endpoints. On initiating the data transfer,

1. The source endpoint sends a CONNECT request to the sink endpoint, and the sink
endpoint responds with SUCCESS if the connection is successful.

2. The source endpoint compiles a list of files to be transferred and then issues a
NEW_FILE request for each file. The sink endpoint opens the file based on the
information in the NEW_FILE request and adds the file descriptor to the FILE_ID
response.

3. The source endpoint schedules all the objects of a file and initiates object transfer using
NEW_OBJECT request. The sink endpoint receives the object data and writes the
same to the sink-end PFS. On successful write operation, the sink endpoint compares
the block hash with the hash received in the NEW_OBJECT request and responds
with OBJECT_SYNC.

4. On successful integrity verification, both source and sink endpoints aggregate the
file-based data and the layout-aware Bloom filter; otherwise, the source endpoint
schedules the object for re-transfer.

5. Steps 3 and 4 are repeated for all the objects in the file.
6. On transferring all the objects of a file successfully, the sink endpoint compares the file

hash with the hash received in the last object’s NEW_OBJECT request and responds
with FILE_CLOSE response.

7. On successful integrity verification, both source and sink endpoints aggregate the
dataset level two phase Bloom filter; otherwise, the source endpoint schedules the file
for re-transfer.

8. Steps 2 to 7 are repeated for all the files in the dataset.
9. After successfully transferring all of the files in the dataset, dataset level integrity

verification is performed. If the integrity check is successful, the source endpoint will
send a DISCONNECT request; otherwise, steps 2 to 9 will be repeated.

Mathematics 2022, 10, 1591 13 of 25

Listing 1. Communication message type.

typedef enum msg_type {
CONNECT = 0, // Connection Request
SUCCESS , // Connection accepted
NEW_FILE , //New File request
FILE_ID , //Sink File ID.
NEW_OBJECT , // Ready for object transfer
OBJECT_SYNC , //Sync with Sink PFS
FILE_CLOSE , //File close
DISCONNECT // Ready to disconnect
} msg_type_t;

Source Sink

CONNECT

SUCCESS

connect() handle_connect()

NEW_FILE

FILE_ID

process_file() handle_file()

NEW_OBJECT

OBJECT_SYNC

process_object() handle_object()

write_object()

read_object()

integrity_check_object()

process_object_sync() handle_object_sync()

compose_dlbf()compose_dlbf()

<for all objects>

<for all files>

FILE_CLOSE handle_file_close()process_file_close()

DISCONNECTdisconnect() handle_disconnect()

compose_tpbf()compose_tpbf()

integrity_check_file()

integrity_check_dataset()

Figure 5. Communication sequence of two-phase Bloom-filter-based end-to-end data integrity
framework.

4.3.2. Data- and Layout-Aware Bloom Filter (DLBF)

The design and implementation aspects of DLBF are described in this section. Figure 6
depicts the flowchart of the proposed data integrity framework. On initiating the data
transfer, the source-end object handler reads the object data from storage and computes a
block hash, to uniquely represent the object, using the SHA1 engine and issues a transfer
request to the sink. Upon receiving the object data, the sink-end object handler writes the
object data to the storage and, on successful write operation, the object handler reads the
object data back from the storage and then computes the object hash using the SHA1 engine.
This computed hash value is compared against the received hash value from the source
endpoint to validate the block data. If both the hash values are the same, then it marks
the block as successful and acknowledges the source endpoint about the successful object
transfer. Otherwise, it marks the block as corrupted and then sends a retransmit request to
the source endpoint. Upon successful completion of the block transfer, both source and sink

Mathematics 2022, 10, 1591 14 of 25

endpoints update the file level, data- and layout-aware Bloom filter (DLBF) using the block
hash. On receiving the retransmit request from the sink endpoint, the source endpoint
schedules the block again for transfer. This procedure is repeated until all the objects of the
logical file have been successfully transmitted to the sink endpoint.

Algorithm 1 depicts the pseudo-code for generating the data- and layout-aware Bloom
filter (procedure GenerateDLBF). As shown in Algorithm 1, k-hash functions are used for
generating the k-hash bit positions. On successful object transfer and integrity verification,
the k-hash bit positions along with the object layout bit of DLBF are set to 1. On transmitting
all the objects of a logical file, a file level signature is generated by hashing file level DLBF.

Algorithm 1 Two-phase Bloom Filter

1: procedure GENERATEDLBF((S))
2: for each si ∈ S do . For all objects in a file
3: Objsig(si)← SHA1(si) . Map object of arbitrary size to fixed size
4: for each j← 1 to j ≤ k do . k hash functions
5: pos← hj(Objsig(si)) . Calculate k hash bit positions
6: Sb f (pos) = 1 . Set k hash positions of DLBF to 1
7: end for
8: Sb f (i) = 1 . Set the layout bit of DLBF to 1
9: end for

10: Ssig ← SHA1(Sb f) . File signature
11: return Ssig
12: end procedure

13: procedure GENERATETPBF((N))
14: for each fi ∈ N do . For all files in a dataset
15: Filesig(fi)← GenerateDLBF(fi) . Generate file level DLBF
16: for each j← 1 to j ≤ k do . k hash functions
17: pos← hj(Filesig(fi)) . Calculate k hash bit positions
18: Nb f (pos) = 1 . Set k hash positions of TPBF to 1
19: end for
20: end for
21: Nsig ← SHA1(Nb f) . Dataset signature
22: return Nsig
23: end procedure

4.3.3. Two-Phase Bloom Filter (TPBF)

This section describes the design and implementation aspects of the TPBF. As shown in
Figure 6, after successfully transferring all of the objects of a logical file, both the endpoints
compute the file level hash from the aggregated data- and layout-aware Bloom filter (DLBF).
This hash value is verified to ensure the file level data integrity. If the computed hash value
matches at both the endpoints, then the file transfer is considered successful and the dataset
level-two-phase Bloom filter (TPBF) is updated at both endpoints using the hash value of
DLBF. Otherwise, it marks the file as corrupted and schedules it for retransmission. This
procedure is repeated until all of the files in the dataset have been successfully transmitted
to the sink endpoint.

Mathematics 2022, 10, 1591 15 of 25

Read

Object Data

Compute

SHA-1
Transfer

Object

Source Sink

Object data

Received?

Write

Object Data

Read

Object Data

Compute

SHA-1

Object Transfer

Success?

Fail

Initiate file

transfer

Compute

DLBF

Is last

object ?

Is last

object ?

Compute

SHA-1 of

DLBF

File Transfer

Success?

Success

Yes

Compute

DLBF

Compute

SHA-1 of

DLBF

Yes

Yes

Compute

TPBF

Success

Compute

TPBF

Fail

Is last

file?Is last

file?

Compute

SHA-1 of

TPBF

Compute

SHA-1 of

TPBF

Yes

Is Transfer

Success?
Dataset Integrity Verification

Fail

Yes

Success

Object Integrity Verification

File Integrity Verification

End

Start

No

Figure 6. Flow chart of two-phase Bloom-filter-based end-to-end data integrity framework.

The pseudo-code for generating the two-phase Bloom filter (procedure GenerateTPBF)
is represented by the Algorithm 1. As shown in Algorithm 1, k-hash functions are used for
generating k-hash bit positions. On successful file transfer and integrity verification, the
k-hash bit positions of TPBF are set to 1. After transferring all of the files in the dataset,
the dataset level signature is computed from the aggregated two-phase Bloom filter. This
signature is used to verify the dataset level data integrity.

4.4. Memory Overhead Analysis

In this section, we analyze and compare the memory overhead of the proposed
two-phase Bloom filter with that of a state-of-the-art Bloom filter-based data integrity
solution [19].

Given the number of elements to be inserted, n, the desired false-positive probability,
ε, and the number of hash functions, k, the number of bits required for the Bloom filter,
m, can be computed by substituting the value of k from Equation (4) in the probability
expression, Equation (3).

ε = (1− e(
m
n ln2) n

m)
m
n ln2. (6)

which can be simplified as

lnε = −m
n

ln22 (7)

Thus, the optimal number of bits required are

m = −nlnε

ln22 (8)

Mathematics 2022, 10, 1591 16 of 25

Consider a dataset with a total number of files, N, each with S objects or blocks. For
this dataset, for a given false-positive probability, the minimum number of bits required for
the standard Bloom-filter-based data integrity is

m = − (N ∗ S)lnε

ln22 (9)

Assuming S == N and ignoring the constant values, we can approximate the number
of bits required as follows:

m ≈ (N2) (10)

Whereas, for the two-phase Bloom filter, the total number of bits required are the sum
of bits required for both DLBF and TPBF Bloom filters. Substituting n at each phase of the
Bloom filter in Equation (7), the total number of bits required are

m = −((S ∗ C)lnε

ln22) +−((N)lnε

ln22) (11)

where

C = number of active file transfers

Assuming S == N and C � N, and ignoring the constant values, we can approximate
the number of bits required as

m = − (2N)lnε

ln22 ≈ N (12)

From Equation (12), we can observe that the number of bits required for the two-
phase Bloom filter are linearly proportional to the number of elements in the dataset, while
Equation (10) suggests the number of bits required by the state-of-the-art Bloom-filter-based
data integrity solution has a quadratic relation with the number of elements in the dataset.
From this, we can conclude that the proposed two-phase Bloom filter efficiently reduces
memory and storage requirements.

5. Evaluation

This section describes the testbed and workload specifications and provides the ex-
perimental findings, along with their interpretation. First, we assess the overhead of the
proposed data integrity verification framework on the overall data transfer performance.
Subsequently, we explore the effectiveness of the suggested two-phase Bloom-filter-based
data integrity verification framework by comparing the computational time overhead,
memory overhead, storage overhead, and the number of false-positive errors with that of
a state-of-the-art solution, which is based on fsum [19]. All of our trials were carried out
under the same conditions.

5.1. Testbed and Workload Specifications
5.1.1. Testbed

For our evaluations, we employed a testbed with source and sink nodes interfaced by
an InfiniBand (IB) network interface. Servers powered by Intel(R) Xeon(R) CPU E5-2650 v4
@ 2.10GHz, having 16GB DRAM and 32 cores with Linux kernel version 3.10.0-1062, were
employed at both source and sink endpoints. Furthermore, both these servers employed
the Lustre file system (version 2.9.0) [59] with a single OSS (object storage server) and four
OSTs (object storage targets), mounted over a 1TB drive. The Lustre file system at both the
endpoints was configured with a stripe count (the stripe count defines the number of OSTs
a file is written across) of four and a stripe size (stripe size refers to the size of the stripe
written as a single block to an OST) of 1 megabyte (MB).

Mathematics 2022, 10, 1591 17 of 25

5.1.2. Workload

We utilized the Lustre Atlas 1 and 2 file system distribution data [60] provided by the
“Oak Ridge Leadership Computing Facility” [1] to examine the file size distribution. The
file size versus number of files is shown in Figure 7. It may be seen from the statistics that
91.55 percent of the files were under 4 MB and 84.17 percent were under 1 MB. Moreover,
only around 10 percent of the files were larger than 4 MB, even though such files took up
the majority of the file system capacity. As a result, we employed three sets of files with
varied sizes for our assessment. The first group (D1) had large workloads (100 1 GB files);
the second group (D2) contained smaller workloads (100,000 1 MB files); and the third
group (D3) contained mixed workloads with 50 1 GB files, 10,000 4 MB files, and 10,000
1 MB files. For evaluating our framework, we populated the source file system with D1,
D2 and D3 workloads by striping the data across all the source end OSTs. As described in
Section 5.1.1, a stripe count of four and a stripe size of 1 MB were used for striping the data
to OSTs.

Mathematics 2022, 1, 0 17 of 25

5.1.2. Workload

We utilized the Lustre Atlas 1 and 2 file system distribution data [60] provided by the
“Oak Ridge Leadership Computing Facility” [1] to examine the file size distribution. The
file size versus number of files is shown in Figure 7. It may be seen from the statistics that
91.55 percent of the files were under 4 MB and 84.17 percent were under 1MB. Moreover,
only around 10 percent of the files were larger than 4 MB, even though such files took up
the majority of the file system capacity. As a result, we employed three sets of files with
varied sizes for our assessment. The first group (D1) had large workloads (100 1 GB files);
the second group (D2) contained smaller workloads (100,000 1 MB files); and the third
group (D3) contained mixed workloads with 50 1 GB files, 10,000 4 MB files, and 10,000
1 MB files. For evaluating our framework, we populated the source file system with D1,
D2 and D3 workloads by striping the data across all the source end OSTs. As described in
Section 5.1.1, a stripe count of four and a stripe size of 1 MB were used for striping the data
to OSTs.

 0

 1×107

 2×107

 3×107

 4×107

 5×107

 6×107

 7×107

 8×107

 9×107

 1×108

0-4K
4-8K

8-16K
16-32K

32-64K
64-128K

128-256K

256-512K

512-1M
1-2M

2-4M
4-16M

16-32M
32-64M

64-128M

128-256M

256-512M

0.5-1G
1-4G

4-64G
64-128G

128-256G

256-512G

512G-1T

1-4T
>4T

N
u

m
b

er
 o

f
F

il
es

File Size (in Bytes)

File size distribution

Atlas 1

Atlas 2

Figure 7. File size distribution.

5.1.3. Bloom Filter Configuration

The false-positive rate, ε, is a function of the Bloom filter size, m as expressed in
Equation (9). Thus, increasing the Bloom filter size reduces the false-positive error rate and
vice versa. Therefore, a trade-off between the Bloom filter size and the false-positive error
rate is an important design aspect of the Bloom filter. To optimize the memory and storage
overheads of the Bloom filter, the false-positive error rate was considered as�0.0001%
for all workloads. Based on this configuration, the Bloom filter size was calculated using
Equation (8) and the optimum number of hash functions was calculated using Equation (4).

5.2. Performance Evaluation
5.2.1. Data Transfer Time

Using a two-phase Bloom-filter-based data integrity verification framework, we in-
vestigated the effect on the overall data transfer time. The data transmission time for all
workloads, as described in Section 5.1.2, is shown in Figure 8. In this figure, we compared
the total data transfer time of the proposed two-phase Bloom filter (TPBF) with that of the
standalone (without integrity) data transfer time. We represented the total data transfer

Figure 7. File size distribution.

5.1.3. Bloom Filter Configuration

The false-positive rate, ε, is a function of the Bloom filter size, m as expressed in
Equation (9). Thus, increasing the Bloom filter size reduces the false-positive error rate and
vice versa. Therefore, a trade-off between the Bloom filter size and the false-positive error
rate is an important design aspect of the Bloom filter. To optimize the memory and storage
overheads of the Bloom filter, the false-positive error rate was considered as�0.0001%
for all workloads. Based on this configuration, the Bloom filter size was calculated using
Equation (8) and the optimum number of hash functions was calculated using Equation (4).

5.2. Performance Evaluation
5.2.1. Data Transfer Time

Using a two-phase Bloom-filter-based data integrity verification framework, we in-
vestigated the effect on the overall data transfer time. The data transmission time for all
workloads, as described in Section 5.1.2, is shown in Figure 8. In this figure, we compared
the total data transfer time of the proposed two-phase Bloom filter (TPBF) with that of the

Mathematics 2022, 10, 1591 18 of 25

standalone (without integrity) data transfer time. We represented the total data transfer
time for both standalone and TPBF solutions as bar graphs. Error bars were also used to
denote the 99% confidence intervals.

 0

 50

 100

 150

 200

 250

 300

 350

D1 D2 D3

A
v

er
ag

e
R

u
n

ti
m

e
(s

ec
)

Without Integrity
TPBF Integrity

Figure 8. Data transfer time.

From Figure 8, we observe that, the TPBF method of data integrity verification exhib-
ited overheads of 3%, 7%, and 4%, respectively, for D1, D2, and D3 workloads. Despite
the fact that TPBF computation is expensive, we optimized the overhead by using hash
optimization and pipelining techniques. Hash optimization, as stated in Section 5.1.2, mini-
mizes the computational overhead of hash functions and hence the Bloom filter. Along with
the hash optimization, we also utilized a pipelining technique to achieve high-performance
data transfer with two-phase Bloom-filter-based data integrity. Our pipeline included the
read(write), hash, Bloom filter generation, and data transfer operations. Each function in
our system was designed to overlap with the activities of a different block. On the whole,
based on the results of Figure 8, we can infer that the TPBF method of data integrity had a
minimum to insignificant impact on the overall data transmission time.

5.2.2. Computational Overhead

One of the primary goals of the suggested TPBF method of data integrity is to minimize
the total data transmission time by reducing the computational overhead. The computa-
tional overhead of the proposed TPBF method of data integrity is estimated as below

DIt = TPt − SAt (13)

where,

DIt = Estimated data integrity overhead
TPt = TPBF average runtime
SAt = Standalone average runtime

Figure 9 depicts the computational overhead of the proposed data and layout aware
TPBF method of data integrity with a state-of-the-art solution, fsum for all the workloads, as
described in Section 5.1.2. From Figure 9, we observe that the overhead of the proposed data
integrity verification framework was much less than that of the state-of-the-art solution.
However, we observed slightly higher overhead for the D2 workloads when compared
with the D1 and D3 workloads. This variation may have been due to the Lustre file system’s
file management (metadata retrieval) overhead. Based on this, we can conclude that the

Mathematics 2022, 10, 1591 19 of 25

proposed data- and layout-aware TPBF method of data integrity had fewer computational
requirements than the state-of-the-art solution.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

D1 D2 D3

D
at

a
In

te
g

ri
ty

 O
v

er
h

ea
d

 (
se

c)

fsum Integrity TPBF Integrity

Figure 9. Computational overhead comparison of fsum and TPBF.

5.2.3. Memory Overhead

Memory efficiency is a prominent aspect of the Bloom filter data structure. Section 4.4
describes the memory overhead analysis of the proposed TPBF method of data integrity.
In this section, we discuss the memory load requirements for the TPBF data integrity
verification framework.

Figure 10 depicts the memory load comparison for all workloads, as described in
Section 5.1.2. In this figure, we compared the total memory load of the proposed two-phase
Bloom filter with that of the standalone method (without integrity). The bar graph is used
to represent the memory load for both the standalone and TPBF methods. From Figure 10,
we observe that the TPBF method of data integrity exhibited an overhead of 10% for all
workloads. However, this was quite a lot less compared with the traditional serial and
file-based data integrity mechanisms, which needed ≈2 GiB of memory to store all the
chunk level checksums (assuming each chunk is represented using a 160-bit SHA-1 hash
value). Overall, from Figure 10, we can conclude that the suggested TPBF method of the
data integrity verification framework had a negligible influence on the overall memory
requirements.

Mathematics 2022, 10, 1591 20 of 25

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

D1 D2 D3

M
em

o
ry

 L
o

ad
 (

in
 M

B
)

Without Integrity
TPBF Integrity

Figure 10. Memory usage.

5.2.4. Storage Overhead

Another important aspect of adopting the TPBF technique for data integrity is reducing
the amount of storage occupied by the data integrity framework metadata during data
transfer. Figure 11 depicts the storage overhead of the state-of-the-art data integrity solution,
fsum, along with the TPBF method of data integrity for all workloads, as described in
Section 5.1.2. For analysis, we calculated the theoretical storage overhead for the state-
of-the-art data integrity solution, fsum, by configuring the Bloom filter with a similar
false-positive error rate as the TPBF method of data integrity.

 0

 200

 400

 600

 800

 1000

 1200

D1 D2 D3

S
to

ra
g

e
O

v
er

h
ea

d
 (

in
 K

B
)

fsum Integrity TPBF Integrity

Figure 11. Storage overhead comparison of fsum and TPBF.

From Figure 11, we can observe that, for big and mixed workloads (D1 and D3), the
storage overhead of the proposed TPBF method of data integrity was considerably lower
than that of the state-of-the-art solution. This is because the storage overhead of the TPBF
method of data integrity is directly proportional to the number of files in the dataset. In
contrast, the state-of-the-art solution has a quadratic relationship with the number of files
in the dataset, as described in Section 5.1.2. However, we observed a slightly higher storage
overhead for small workloads (D2) than that of the state-of-the-art solution. This is because
the file size and the stripe size of the small workload were the same, that is, 1 MB. Hence,

Mathematics 2022, 10, 1591 21 of 25

the total number of objects to be transferred matched the total number of files. As a result,
the storage overhead associated with the TPBF data integrity approach was equivalent
to that associated with the state-of-the-art solution. In general, as seen in Figure 11, the
TPBF method of data integrity resulted in significant savings with respect to the storage
requirements.

5.2.5. False-Positive Matches

Owing to the probabilistic nature of the Bloom filter, the TPBF method of data integrity
framework is prone to false-positive matches for membership queries. As a result, certain
items that have not been moved to the sink end are incorrectly assumed to have been
sent. As a consequence, data gets corrupted, rendering it unsuitable for further processing.
Reducing the false-positive matches of the object membership queries is another important
design aspect of this framework. In this section, we present the average false-positive
matches of the proposed TPBF method of the data integrity framework for all the workloads
defined in Section 5.1.2. Additionally, to assess the suggested solution’s efficacy, we
compared the false-positive matches of the TPBF method of data integrity verification
framework to the state-of-the-art solution, fsum.

To analyze false-positive matches, we created and simulated faults after transmitting
20%, 40%, 60%, and 80% of the total data. Due to the fact that these faults might occur at
any point in the end-to-end data transfer path, it is possible to simulate these faults at either
end of the data transfer. However, in our verification, we generated these faults at the
source endpoint. In addition, as the number of false-positive errors varied from iteration
to iteration, we presented the average number of false-positives detected over multiple
iterations of the experiments.

Figure 12 depicts the average false-positive matches for all workloads, as described in
Section 5.1.2, at varying fault points. We can see from Figure 12 that the average number
of false-positive matches was quite low for all the workloads. In addition, we can see
that the later the fault point, the lower the frequency of the false-positive matches. This is
because the later the fault point, the lower was the number of objects to be transferred to
the sink end.

Figure 13 illustrates the average false-positive errors of the proposed TPBF method of
data integrity with a state-of-the-art solution, fsum, for mixed workloads (D3), as described
in Section 5.1.2. From this Figure 13, we observe that the proposed data and layout-aware
TPBF method of data integrity outperformed the state-of-the-art solution, fsum, and was
80% more efficient in avoiding false-positive matches at all simulated fault points. With
this, we can conclude that the TPBF data integrity verification framework was superior in
avoiding false-positive errors compared to the state-of-the-art solution.

Mathematics 2022, 10, 1591 22 of 25

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

20 40 60 80

A
v

g
.

F
al

se
 p

o
si

ti
v

e
er

ro
rs

D1

D2

D3

Figure 12. False-positive match analysis at different fault points.

 0

 1

 2

 3

 4

 5

 6

 7

 8

20 40 60 80

A
v

g
.

F
al

se
 p

o
si

ti
v

e
er

ro
rs

fsum Integrity
TPBF integrity

Figure 13. False-positive errors comparison of fsum and TPBF.

6. Conclusions

Object-based data transfer systems outperform existing data transfer tools with respect
to data transfer rates. However, this method of data transfer, due to its out-of-order nature
of object transfer, has a significant effect on the memory, storage, and computational
overhead in ensuring the correctness of the transferred data. In the present work, we
implemented an end-to-end data integrity verification framework using a two-phase Bloom
filter to effectively handle data integrity errors by minimizing the memory, storage, and
computational overhead. We analyzed and compared the impact of the TPBF method of
data integrity on the overall data transfer performance and determined that the suggested
framework had no apparent effect on data transfer performance for all kinds of workloads.
Moreover, to evaluate the computational and memory overhead, we compared the data
integrity overhead of the suggested framework with a state-of-the-art solution, fsum. The
experimental results demonstrated that the proposed framework had fewer computational
and memory requirements than the state-of-the-art solution. We also evaluated the storage
overhead, and compared it with the state-of-the-art data integrity solution, fsum. The
experimental results demonstrated 90% and 50% lower storage requirements than fsum for
the D1 and D3 workloads, respectively. However, we observed similar storage requirements
as fsum for the D2 workloads.

Mathematics 2022, 10, 1591 23 of 25

Although the proposed TPBF method of data integrity verification framework is very
effective concerning computational, memory, and storage requirements, the probabilistic
nature of the data structure leads to false-positive errors. Therefore, to assess the sug-
gested framework’s efficiency in decreasing false-positive errors, we created a simulation
environment that generated faults at 20%, 40%, 60%, and 80% of data transfer points.
The experimental outcomes revealed that the proposed TPBF data integrity verification
framework outperformed the state-of-the-art solution, fsum, and was 80% more efficient in
avoiding false-positive matches at all simulated fault points.

In summary, the proposed two-phase Bloom-filter-based data integrity framework
complements existing object-based big data transfer systems with end-to-end data integrity
support without negatively impacting data transfer performance.

Author Contributions: Conceptualization, P.K. and P.H.; data curation, P.K.; formal analysis, P.K.,
P.H. and T.-S.C.; funding acquisition, T.-S.C.; investigation, P.K. and P.H.; methodology, P.K.; project
administration, T.-S.C.; resources, T.-S.C.; software, P.K.; supervision, T.-S.C.; validation, P.K.; writing—
original draft, P.K.; writing—review and editing, P.K., P.H. and T.-S.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support program (IITP-2021-0-02051) supervised by
the IITP (Institute for Information and Communications Technology Planning and Evaluation) and
the BK21 FOUR program of the National Research Foundation of Korea funded by the Ministry of
Education (NRF5199991014091).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. ORNL. Available online: https://www.ornl.gov/ (accessed on 20 April 2021).
2. CERN. Available online: https://home.cern/ (accessed on 20 April 2021).
3. LIGO. Available online: https://www.ligo.caltech.edu/ (accessed on 20 April 2021).
4. Data Never Sleeps 5.0. Available online: https://www.domo.com/learn/infographic/data-never-sleeps-5 (accessed on 25

May 2021).
5. Carns, P.H.; Ligon, W.B., III; Ross, R.B.; Thakur, R. PVFS: A Parallel File System for Linux Clusters. In Proceedings of the 4th

Annual Linux Showcase & Conference (ALS 2000), Atlanta, GA, USA, 10–14 October 2000.
6. Enhancing Scalability and Performance of Parallel File Systems. Available online: https://www.intel.com/content/dam/www/

public/us/en/documents/white-papers/enhancing-scalability-and-performance-white-paper.pdf (accessed on 25 February
2022).

7. Welch, B.; Unangst, M.; Abbasi, Z.; Gibson, G.; Mueller, B.; Small, J.; Zelenka, J.; Zhou, B. Scalable Performance of the Panasas
Parallel File System. In Proceedings of the 6th USENIX Conference on File and Storage Technologies, FAST’08, San Jose, CA,
USA, 26–29 February 2008; pp. 1–17.

8. Lofstead, J.; Zheng, F.; Liu, Q.; Klasky, S.; Oldfield, R.; Kordenbrock, T.; Schwan, K.; Wolf, M. Managing Variability in the IO
Performance of Petascale Storage Systems. In Proceedings of the SC’10: 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, New Orleans, LA, USA, 13–19 November 2010; pp. 1–12. [CrossRef]

9. Kim, Y.; Atchley, S.; Vallee, G.R.; Shipman, G.M. Layout-aware I/O Scheduling for terabits data movement. In Proceedings of the
2013 IEEE International Conference on Big Data, Santa Clara, CA, USA, 6–9 October 2013; pp. 44–51. [CrossRef]

10. Kim, Y.; Atchley, S.; Vallée, G.R.; Shipman, G.M. LADS: Optimizing Data Transfers using Layout-Aware Data Scheduling; Technical
Report ORNL/TM-2014/251; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2015.

11. Kim, Y.; Atchley, S.; Vallee, G.R.; Lee, S.; Shipman, G.M. Optimizing End-to-End Big Data Transfers over Terabits Network
Infrastructure. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 188–201. [CrossRef]

12. Settlemyer, B.; Dobson, J.M.; Hodson, S.W.; Kuehn, J.A.; Poole, S.W.; Ruwart, T.M. A Technique for Moving Large Data Sets
over High-Performance Long Distance Networks. In Proceedings of the IEEE Symposium on Massive Storage Systems and
Technologies, MSST’11, Denver, CO, USA, 23–27 May 2011; pp. 1–6.

13. Stone, J.; Partridge, C. When the CRC and TCP checksum disagree. ACM SIGCOMM Comput. Commun. Rev. 2001, 30, 309–319.
[CrossRef]

https://www.ornl.gov/
https://home.cern/
https://www.ligo.caltech.edu/
https://www.domo.com/learn/infographic/data-never-sleeps-5
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enhancing-scalability-and-performance-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enhancing-scalability-and-performance-white-paper.pdf
http://doi.org/10.1109/SC.2010.32
http://dx.doi.org/10.1109/BigData.2013.6691661
http://dx.doi.org/10.1109/TPDS.2016.2550439
http://dx.doi.org/10.1145/347057.347561

Mathematics 2022, 10, 1591 24 of 25

14. Meylan, A.; Cherubini, M.; Chapuis, B.; Humbert, M.; Bilogrevic, I.; Huguenin, K. A Study on the Use of Checksums for Integrity
Verification of Web Downloads. ACM Trans. Priv. Secur. 2020, 24, 4. [CrossRef]

15. Hash Functions: CSRC. Available online: https://csrc.nist.gov/projects/hash-functions (accessed on 25 February 2022).
16. RFC 1321—The MD5 Message-Digest Algorithm. Available online: https://datatracker.ietf.org/doc/html/rfc1321 (accessed on

25 February 2022).
17. Kettimuthu, R.; Liu, Z.; Wheeler, D.; Foster, I.; Heitmann, K.; Cappello, F. Transferring a Petabyte in a Day. Future Gener. Comput.

Syst. 2018, 88, 191–198. [CrossRef]
18. Jung, E.S.; LIU, S.; Kettimuthu, R.; CHUNG, S. High-Performance End-to-End Integrity Verification on Big Data Transfer. IEICE

Trans. Inf. Syst. 2019, E102.D, 1478–1488. [CrossRef]
19. Xiong, S.; Wang, F.; Cao, Q. A Bloom Filter Based Scalable Data Integrity Check Tool for Large-Scale Dataset. In Proceedings of

the 1st Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems, PDSW-DISCS’16,
Salt Lake City, UT, USA, 14 November 2016; pp. 55–60.

20. Lustre: A Scalable, High-Performance File System Cluster. Available online: https://cse.buffalo.edu/faculty/tkosar/cse710
/papers/lustre-whitepaper.pdf (accessed on 25 February 2022).

21. Xie, B.; Chase, J.; Dillow, D.; Drokin, O.; Klasky, S.; Oral, S.; Podhorszki, N. Characterizing output bottlenecks in a supercomputer.
In Proceedings of the SC’12: International Conference on High Performance Computing, Networking, Storage and Analysis, Salt
Lake City, UT, USA, 11–15 November 2012; pp. 1–11. [CrossRef]

22. Schwan, P. Lustre: Building a File System for 1,000-node Clusters. In Proceedings of the Linux Symposium, Ottawa, ON, Canada,
23–26 July 2003; p. 9.

23. Introduction to InfiniBand. Available online: https://network.nvidia.com/sites/default/files/pdf/whitepapers/IB_Intro_WP_
190.pdf (accessed on 25 February 2022).

24. Wu, J.; Wyckoff, P.; Panda, D. PVFS over InfiniBand: Design and performance evaluation. In Proceedings of the 2003 International
Conference on Parallel Processing, Kaohsiung, Taiwan, 6–9 October 2003; pp. 125–132. [CrossRef]

25. Hanushevsky, A. BBCP. Available online: http://www.slac.stanford.edu/~abh/bbcp/ (accessed on 24 September 2021).
26. Allcock, W.; Bresnahan, J.; Kettimuthu, R.; Link, M.; Dumitrescu, C.; Raicu, I.; Foster, I. The Globus Striped GridFTP Framework

and Server. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
SC’05, Seattle, WA, USA, 12–18 November 2005; pp. 54–64. [CrossRef]

27. Alliance, G. The Globus Toolkit. Available online: http://http://www.globus.org/toolkit/ (accessed on 24 September 2021).
28. Malensek, M.; Pallickara, S.; Pallickara, S. Alleviation of Disk I/O Contention in Virtualized Settings for Data-Intensive

Computing. In Proceedings of the 2015 IEEE/ACM 2nd International Symposium on Big Data Computing (BDC), Limassol,
Cyprus, 7–10 December 2015; pp. 1–10. [CrossRef]

29. Kim, Y.; Atchley, S.; Vallée, G.R.; Shipman, G.M. LADS: Optimizing Data Transfers using Layout-Aware Data Scheduling. In
Proceedings of the 1st USENIX Conference on File and Storage Technologies, FAST’15, Santa Clara, CA, USA, 16–19 February 2015.

30. Kasu, P.; Kim, T.; Um, J.; Park, K.; Atchley, S.; Kim, Y. FTLADS: Object-Logging Based Fault-Tolerant Big Data Transfer System
Using Layout Aware Data Scheduling. IEEE Access 2019, 7, 37448–37462. [CrossRef]

31. Bairavasundaram, L.N.; Goodson, G.; Schroeder, B.; Arpaci-Dusseau, A.C.; Arpaci-Dusseau, R.H. An Analysis of Data Corruption
in the Storage Stack. In Proceedings of the 6th USENIX Conference on File and Storage Technologies (FAST 08), San Jose, CA,
USA, 26–29 February 2008.

32. Zhang, Y.; Rajimwale, A.; Arpaci-Dusseau, A.C.; Arpaci-Dusseau, R.H. End-to-end Data Integrity for File Systems: A ZFS Case
Study. In Proceedings of the 8th USENIX Conference on File and Storage Technologies (FAST 10), San Jose, CA, USA, 23–26
February 2010.

33. Lustre, ZFS, and Data Integrity. Available online: https://wiki.lustre.org/images/0/00/Tuesday_shpc-2009-zfs.pdf (accessed
on 25 February 2022).

34. Zhang, Y.; Myers, D.S.; Arpaci-Dusseau, A.C.; Arpaci-Dusseau, R.H. Zettabyte reliability with flexible end-to-end data integrity.
In Proceedings of the 2013 IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST), Long Beach, CA, USA,
6–10 May 2013; pp. 1–14. [CrossRef]

35. Improvements in Lustre Data Integrity—Opensfs. Available online: https://www.opensfs.org/wp-content/uploads/2011/11/
Improvements-in-Lustre-Data-Integrity.pdf (accessed on 25 February 2022).

36. Sivathanu, G.; Wright, C.P.; Zadok, E. Ensuring Data Integrity in Storage: Techniques and Applications. In Proceedings of the
2005 ACM Workshop on Storage Security and Survivability, StorageSS’05, Fairfax, VA, USA, 11 November 2005; Association for
Computing Machinery: New York, NY, USA, 2005; pp. 26–36. [CrossRef]

37. Kumar, M.; Meena, J.; Singh, R.; Vardhan, M. Data outsourcing: A threat to confidentiality, integrity, and availability. In
Proceedings of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Greater Noida, India,
8–10 October 2015; pp. 1496–1501. [CrossRef]

38. Reyes-Anastacio, H.G.; Gonzalez-Compean, J.; Morales-Sandoval, M.; Carretero, J. A data integrity verification service for cloud
storage based on building blocks. In Proceedings of the 2018 8th International Conference on Computer Science and Information
Technology (CSIT), Amman, Jordan, 11–12 July 2018; pp. 201–206. [CrossRef]

39. Sravan Kumar, R.; Saxena, A. Data integrity proofs in cloud storage. In Proceedings of the 2011 Third International Conference
on Communication Systems and Networks (COMSNETS 2011), Bangalore, India, 4–8 January 2011; pp. 1–4. [CrossRef]

http://dx.doi.org/10.1145/3410154
https://csrc.nist.gov/projects/hash-functions
https://datatracker.ietf.org/doc/html/rfc1321
http://dx.doi.org/10.1016/j.future.2018.05.051
http://dx.doi.org/10.1587/transinf.2018EDP7297
https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
https://cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
http://dx.doi.org/10.1109/SC.2012.28
https://network.nvidia.com/sites/default/files/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/sites/default/files/pdf/whitepapers/IB_Intro_WP_190.pdf
http://dx.doi.org/10.1109/ICPP.2003.1240573
http://www.slac.stanford.edu/~abh/bbcp/
http://dx.doi.org/10.1109/SC.2005.72
http://http://www.globus.org/toolkit/
http://dx.doi.org/10.1109/BDC.2015.32
http://dx.doi.org/10.1109/ACCESS.2019.2905158
https://wiki.lustre.org/images/0/00/Tuesday_shpc-2009-zfs.pdf
http://dx.doi.org/10.1109/MSST.2013.6558423
https://www.opensfs.org/wp-content/uploads/2011/11/Improvements-in-Lustre-Data-Integrity.pdf
https://www.opensfs.org/wp-content/uploads/2011/11/Improvements-in-Lustre-Data-Integrity.pdf
http://dx.doi.org/10.1145/1103780.1103784
http://dx.doi.org/10.1109/ICGCIoT.2015.7380703
http://dx.doi.org/10.1109/CSIT.2018.8486274
http://dx.doi.org/10.1109/COMSNETS.2011.5716422

Mathematics 2022, 10, 1591 25 of 25

40. George, A.S.; Nargunam, A.S. Multi-Replica Integrity Verification in Cloud: A Review and A Comparative Study. In Proceedings
of the 2021 International Conference on Communication, Control and Information Sciences (ICCISc), Idukki, India, 16–18 June
2021; Volume 1, pp. 1–5. [CrossRef]

41. Luo, W.; Bai, G. Ensuring the data integrity in cloud data storage. In Proceedings of the 2011 IEEE International Conference on
Cloud Computing and Intelligence Systems, Beijing, China, 15–17 September 2011; pp. 240–243.
[CrossRef]

42. Wang, H.; Zhang, J. Blockchain Based Data Integrity Verification for Large-Scale IoT Data. IEEE Access 2019, 7, 164996–165006.
[CrossRef]

43. Ma, A.; Dragga, C.; Arpaci-Dusseau, A.C.; Arpaci-Dusseau, R.H. Ffsck: The Fast File System Checker. In Proceedings of the 11th
USENIX Conference on File and Storage Technologies (FAST 13), San Jose, CA, USA, 12–15 February 2013; pp. 1–15.

44. Abu-Rayyan, L.; Hacid, H.; Leoncé, A. Towards an End-User Layer for Data Integrity. In Proceedings of the 2019 IEEE/WIC/ACM
International Conference on Web Intelligence (WI), Thessaloniki, Greece, 14–17 October 2019; pp. 317–320.

45. Arasu, A.; Eguro, K.; Kaushik, R.; Kossmann, D.; Meng, P.; Pandey, V.; Ramamurthy, R. Concerto: A High Concurrency Key-Value
Store with Integrity. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD’17, Chicago,
IL, USA, 14–19 May 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 251–266. [CrossRef]

46. Liu, S.; Jung, E.S.; Kettimuthu, R.; Sun, X.H.; Papka, M. Towards optimizing large-scale data transfers with end-to-end integrity
verification. In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8
December 2016; pp. 3002–3007. [CrossRef]

47. Arslan, E.; Alhussen, A. A Low-Overhead Integrity Verification for Big Data Transfers. In Proceedings of the 2018 IEEE
International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 4227–4236. [CrossRef]

48. Kasu, P.; Hamandawana, P.; Chung, T.S. DLFT: Data and Layout Aware Fault Tolerance Framework for Big Data Transfer Systems.
IEEE Access 2021, 9, 22939–22954. [CrossRef]

49. Bloom, B.H. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 1970, 13, 422–426. [CrossRef]
50. Broder, A.; Mitzenmacher, M. Survey: Network Applications of Bloom Filters: A Survey. Internet Math. 2003, 1, 485–509.

[CrossRef]
51. Bloom Filter. Available online: https://en.wikipedia.org/wiki/Bloom_filter (accessed on 20 April 2021).
52. Kirsch, A.; Mitzenmacher, M. Less Hashing, Same Performance: Building a Better Bloom Filter. Random Struct. Algorithms 2008,

33, 187–218. [CrossRef]
53. Lu, J.; Yang, T.; Wang, Y.; Dai, H.; Jin, L.; Song, H.; Liu, B. One-hashing Bloom filter. In Proceedings of the 2015 IEEE 23rd

International Symposium on Quality of Service (IWQoS), Portland, OR, USA, 15–16 June 2015; pp. 289–298.
54. Luo, L.; Guo, D.; Ma, R.T.B.; Rottenstreich, O.; Luo, X. Optimizing Bloom Filter: Challenges, Solutions, and Comparisons. IEEE

Commun. Surv. Tutor. 2019, 21, 1912–1949. [CrossRef]
55. Murmur Hash. Available online: https://en.wikipedia.org/wiki/MurmurHash (accessed on 25 May 2021).
56. Hash Functions. Available online: http://www.cse.yorku.ca/~oz/hash.html (accessed on 25 May 2021).
57. Tarkoma, S.; Rothenberg, C.E.; Lagerspetz, E. Theory and Practice of Bloom Filters for Distributed Systems. IEEE Commun. Surv.

Tutor. 2012, 14, 131–155. [CrossRef]
58. Jiang, M.; Zhao, C.; Mo, Z.; Wen, J. An improved algorithm based on Bloom filter and its application in bar code recognition and

processing. EURASIP J. Image Video Process. 2018, 2018, 139. [CrossRef]
59. George, A.; Mohr, R.; Simmons, J.; Oral, S. Understanding Lustre Internals Second Edition; Oak Ridge National Lab. (ORNL): Oak

Ridge, TN, USA, 2021. [CrossRef]
60. Atlas. Available online: https://github.com/ORNL-TechInt/Atlas_File_Size_Data (accessed on 20 April 2021).

http://dx.doi.org/10.1109/ICCISc52257.2021.9484985
http://dx.doi.org/10.1109/CCIS.2011.6045067
http://dx.doi.org/10.1109/ACCESS.2019.2952635
http://dx.doi.org/10.1145/3035918.3064030
http://dx.doi.org/10.1109/BigData.2016.7840953
http://dx.doi.org/10.1109/BigData.2018.8622116
http://dx.doi.org/10.1109/ACCESS.2021.3055731
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1080/15427951.2004.10129096
https://en.wikipedia.org/wiki/Bloom_filter
http://dx.doi.org/10.1002/rsa.20208
http://dx.doi.org/10.1109/COMST.2018.2889329
https://en.wikipedia.org/wiki/MurmurHash
http://www.cse.yorku.ca/~oz/hash.html
http://dx.doi.org/10.1109/SURV.2011.031611.00024
http://dx.doi.org/10.1186/s13640-018-0375-6
http://dx.doi.org/10.2172/1824954
https://github.com/ORNL-TechInt/Atlas_File_Size_Data

	Introduction
	Background and Motivation
	Background
	Object-Based Big Data Transfer Systems
	End-to-End Data Integrity
	Big Data Transfer Frameworks

	Motivation

	Related Work
	Data Integrity Verification Framework
	Bloom Filter Design
	Bloom Filter Data Structure
	Hash Optimization
	Data- and Layout-Aware Bloom Filter (DLBF)
	Illustration of Data and Layout Aware Bloom Filter

	System Architecture
	Design and Implementation
	Communication Protocol
	Data- and Layout-Aware Bloom Filter (DLBF)
	Two-Phase Bloom Filter (TPBF)

	Memory Overhead Analysis

	Evaluation
	Testbed and Workload Specifications
	Testbed
	Workload
	Bloom Filter Configuration

	Performance Evaluation
	Data Transfer Time
	Computational Overhead
	Memory Overhead
	Storage Overhead
	False-Positive Matches

	Conclusions
	References

