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Abstract: This paper is a numerical simulation of highly dispersive optical solitons in birefrin-
gent fibers with polynomial nonlinear form, which is achieved for the first time. The algorithmic
approach is applied with the usage of the Laplace–Adomian decomposition scheme. Dark and
bright soliton simulations are presented. The error measure has a very low count, and thus, the
simulations are almost an exact replica of such solitons that analytically arise from the governing
system. The suggested iterative scheme finds the solution without any discretization, linearization,
or restrictive assumptions.
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1. Introduction

The term highly dispersive (HD) optical soliton was conceived a couple of years
ago. Later, it was studied by several authors including N. Kudryashov [1–5]. The two
essential factors that make the propel of solitons through fibers and other waveguides
possible are the self-phase modulation (SPM) and chromatic dispersion (CD). When CD
runs low during soliton transmission, the balance between nonlinearity and dispersion
is compromised. This would lead to a catastrophic situation. To avoid such a scenario,
CD is compensated with other sources of dispersion, and they are sixth-order dispersion
(6OD), fifth-order dispersion (5OD), fourth-order dispersion (4OD), third-order dispersion
(3OD) and inter-modal dispersion (IMD). The inclusion of six dispersive effects secures
HD solitons. This however has other detrimental effects although they are being ignored
in the current paper. They are the presence of soliton radiation and the slowdown of
solitons due to this shedding of energy. Pulse splitting or polarization-mode dispersion
is another feature in the dynamics of optical soliton propagation that cannot be avoided.
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This leads to the effect of differential group delay, which cumulatively would lead to
birefringence. The split-pulse dynamics in birefringent fibers is the focus of attention in
the current paper. The dynamics of such soliton pulses are studied when the nonlinear
form is of the polynomial type. The numerical simulations are recovered by the aid of
the Laplace–Adomian decomposition method (LADM) that is a manifestation of the pre-
existing Adomian decomposition approach. Dark and bright solitons are addressed in this
work. The low error measure leads to an almost exact replica of solitons that have been
analytically recovered in the past. The results are displayed after a recapitulation of the
known analytical results.

Our work is divided in several sections. In the “Governing Equation” section, we pro-
vide a brief introduction to the model given by the highly dispersive nonlinear Schrödinger
equation with cubic–quintic–septic law. We also illustrate the model by taking into account
the birefringence effect. In the “Description and Application of the LADM” section, we
describe the Laplace–Adomian decomposition method to be applied to approximate the
solution of the highly dispersive nonlinear Schrödinger equation with polynomial law. In
the “Graphical Representations” section, the results of the numerical experiment are shown
in tables and graphs. Finally, in the “Conclusions” section, we summarize our findings and
present our final conclusions.

2. Governing Equation

The highly dispersive nonlinear Schrödinger with polynomial nonlinear form is pre-
sented below [6–16]:

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx
+a6qxxxxxx +

(
b1| q|2 + b2 |q|4 + b3|q|6

)
q = 0.

(1)

Here, ak (1 ≤ k ≤ 6) and bl (1 ≤ l ≤ 3) are real-valued constants, while q = q(x, t) is a
complex-valued function. a6 gives 6OD, a5 is associated with 5OD, a4 arises from 4OD, a3
stems from 3OD, a2 is related to CD, and a1 emerges from IMD. x is the spatial variable; q
stands for the soliton profile; t is the temporal variable; the first term signifies the temporal
evolution, where i =

√
−1; and b1, b2, and b3 secure the polynomial nonlinear form.

Additionally, the subscript t and x denote distinct order temporal and spatial derivatives.
The main governing system derived from the model (1) is considered as [6]

iut + ia1
1ux + a1

2uxx + ia1
3uxxx + a1

4uxxxx + ia1
5uxxxxx + a1

6uxxxxxx
+
(
b1

11|u
∣∣2 + b1

12 |v|2
)
u +

(
b2

11|u
∣∣4 + b2

12 |u|2|v
∣∣2 + b2

13 |v|4
)
u

+
(

b3
11|u|6 + b3

12|u|
4|v|2 + b3

13|u|
2|v|4 + b3

14|v|6
)

u = 0,
(2)

ivt + ia2
1vx + a2

2vxx + ia2
3vxxx + a2

4vxxxx + ia2
5vxxxxx + a2

6vxxxxxx

+
(
b1

21|v
∣∣2 + b1

22 |u|2
)
v +

(
b2

21|v|4 + b2
22|u|

2|v|2 + b2
23|u|4

)
v

+
(

b3
21|v|6 + b3

22|v|
4|u|2 + b3

23|v|
2|u|4 + b3

24|u|6
)

v = 0.
(3)

Here, b1
j1, b2

j1, b3
j1, b1

j2, b2
j2, b2

j3, b3
j2, b3

j3, b3
j4 (j = 1, 2), and aj

k (1 ≤ k ≤ 6) are real-valued

constants, while v = v(x, t) and u = u(x, t) are complex-valued functions. b1
j1, b2

j1, and b3
j1

give the self-phase modulation; u and v stand for the soliton profiles; b1
j2, b2

j2, b2
j3, b3

j2, b3
j3,

and b3
j4 secure the cross-phase modulation, and the first terms imply linear evolutions. aj

6

gives 6OD, aj
5 is associated with 5OD, aj

4 arises from 4OD, aj
3 stems from 3OD, aj

2 is related

to CD, and aj
1 emerges from IMD.

It must be noted that in order to derive (2) and (3) from (1), for birefringent fibers, it is
necessary to split q(x, t) = u(x, t) + v(x, t), to substitute it into (1), and then to write the
two components of the equation after neglecting the effects of four wave mixing.
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Bright and Dark Solitons

The dark solitons with the present governing system of (2) and (3) are formulated as
following [6]: {

u(x, t) = (A1tanh(x− ν1t))ei[−κ1x+ω1t+θ1],
v(x, t) = (A2tanh(x− ν2t))ei[−κ2x+ω2t+θ2],

(4)

where the parameters are listed as [6]

A1 = ±

√√√√√√−
(

30κ4
1a1

6 − 20κ3
1a1

5 + 600κ2
1a1

6 − 12κ2
1a1

4
−200κ1a1

5 + 6κ1a1
3 + 2a1

2 + 1232a1
6 − 40a1

4

)
b1

11 + b1
12

, (5)

ν1 = 5a1
5κ4

1 − 6a1
6κ5

1 − 2a1
2κ1 − 3a1

3κ2
1 + 4a1

4κ3
1 + a1

1, (6)

A2 = ±

√√√√√√−
(

30κ4
2a2

6 − 20κ3
2a2

5 + 600κ2
2a2

6 − 12κ2
2a2

4
−200κ2a2

2 + 6κ2a2
3 + 2a2

2 + 1232a2
6 − 40a2

4

)
b1

22 + b1
21

, (7)

ν2 = 5a2
5κ4

2 − 6a2
6κ5

2 − 2a2
2κ2 − 3a2

3κ2
2 + 4a2

4κ3
2 + a2

1, (8)

with the following natural constraint:(
b1

j2 + b1
j1

)( 30κ4
2a2

6 − 20κ3
2a2

5 + 600κ2
2a2

6 − 12κ2
2a2

4
−200κ2a2

2 + 6κ2a2
3 + 2a2

2 + 1232a2
6 − 40a2

4

)
< 0. (9)

In the above, A1 and A2 are free parameters of the dark soliton, while the velocities of
the two components of the dark solitons are ν1 and ν2.

The bright solitons with the strategic governing system (2) and (3) are introduced
below [6]: {

u(x, t) = (B1sech(x− ν1t))ei[−κ1x+ω1t+θ1],
v(x, t) = (B2sech(x− ν2t))ei[−κ2x+ω2t+θ2],

(10)

where the parameters are enumerated as

B1 = ±

√√√√√√
(

30κ4
1a1

6 − 20κ3
1a1

5 + 600κ2
1a1

6 − 12κ2
1a1

4
−200κ1a1

5 + 6κ1a1
3 + 2a1

2 + 1232a1
6 − 40a1

4

)
b1

11 + b1
12

, (11)

ν1 = 5a1
5κ4

1 − 6a1
6κ5

1 − 2a1
2κ1 − 3a1

3κ2
1 + 4a1

4κ3
1 + a1

1, (12)

B2 = ±

√√√√√√
(

30κ4
2a2

6 − 20κ3
2a2

5 + 600κ2
2a2

6 − 12κ2
2a2

4
−200κ2a2

2 + 6κ2a2
3 + 2a2

2 + 1232a2
6 − 40a2

4

)
b1

22 + b1
21

, (13)

ν2 = 5a2
5κ4

2 − 6a2
6κ5

2 − 2a2
2κ2 − 3a2

3κ2
2 + 4a2

4κ3
2 + a2

1, (14)

with the following natural constraint:(
b1

j2 + b1
j1

)( 30κ4
2a2

6 − 20κ3
2a2

5 + 600κ2
2a2

6 − 12κ2
2a2

4
−200κ2a2

2 + 6κ2a2
3 + 2a2

2 + 1232a2
6 − 40a2

4

)
> 0. (15)

In this context, the parameters B1 and B2 are the amplitudes of the two components of
bright solitons that travel with velocities ν1 and ν2, respectively.
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3. Description and Application of the LADM

The integration scheme is derived from the decomposition algorithm that has been
reported in [17] by the aid of Laplace transform [18]. The solution of a governing model is
structured as the local truncation of a convergent series of functions [19].

To address this scheme, the governing system (2) and (3) is presented below:

ut = −a1
1ux + ia1

2uxx − a1
3uxxx + ia1

4uxxxx
−a1

5uxxxxx + ia1
6uxxxxxx + iN1(u, v),

(16)

vt = −a2
1vx + ia2

2vxx − a2
3vxxx + ia2

4vxxxx
−a2

5vxxxxx + ia2
6vxxxxxx + iN2(u, v).

(17)

Equations (16) and (17) are also formulated as

Dtu = iN1(u, v) +
3

∑
k=1

(
ia1

2kD2k
x − a1

2k−1D2k−1
x

)
u, (18)

Dtu = iN2(u, v) +
3

∑
k=1

(
ia2

2kD2k
x − a2

2k−1D2k−1
x

)
v (19)

by virtue of initial conditions v(x, 0) = g(x) and u(x, 0) = f (x). Here, Nj are differential
operators containing all nonlinear terms, Dk

x stands for a partial derivative of order k in
terms of the independent variable x, and Dt stands for first-order derivative in terms of the
independent variable t. Thus, the operators Nj are presented below:

N2(u, v) =
(
b2

21|v
∣∣4 + b2

22 |u|2|v
∣∣2 + b2

23 |u|4
)
v +

(
b1

21|v
∣∣2 + b1

22 |u|2
)
v

+
(

b3
21|v|6 + b3

22|v|
4|u|2 + b3

23|v|
2|u|4 + b3

24|u|6
)

v,
(20)

N1(u, v) =
(
b2

11|u
∣∣4 + b2

12 |u|2|v
∣∣2 + b2

13 |v|4
)
u +

(
b1

11|u
∣∣2 + b1

12 |v|2
)
u

+
(

b3
11|u|6 + b3

12|u|
4|v|2 + b3

13|u|
2|v|4 + b3

14|v|6
)

u.
(21)

Using the Laplace transform in the system with (18) and (19) along with the initial
conditions, one secures

v(x, s) =
1
s
L
{

3

∑
k=1

(
ia2

2kD2k
x − a2

2k−1D2k−1
x

)
v + iN2(u, v)

}
+

g(x)
s

, (22)

u(x, s) =
1
s
L
{

3

∑
k=1

(
ia1

2kD2k
x − a1

2k−1D2k−1
x

)
u + iN1(u, v)

}
+

f (x)
s

. (23)

By the aid of the conventional inverse Laplace transform L−1, we arrive at the following:

v(x, t) = L−1

[
1
s
L
{

3

∑
k=1

(
ia2

2kD2k
x − a2

2k−1D2k−1
x

)
v + iN2(u, v)

}]
+ v(x, 0), (24)

u(x, t) = L−1

[
1
s
L
{

3

∑
k=1

(
ia1

2kD2k
x − a1

2k−1D2k−1
x

)
u + iN1(u, v)

}]
+ u(x, 0). (25)

Now, the solution functions v and u in the Adomian decomposition algorithm are
extracted as

v(x, t) =
∞

∑
n=0

vn(x, t), u(x, t) =
∞

∑
n=0

un(x, t). (26)
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Additionally, the nonlinear terms in Equations (20) and (21) are decomposed in Ado-
mian polynomials [17–19] as

N2(u, v) =
(
b2

21|v
∣∣4 + b2

22 |u|2|v
∣∣2 + b2

23 |u|4
)
v +

(
b1

21|v
∣∣2 + b1

22 |u|2
)
v

+
(
b3

21|v|6 + b3
22|v|4|u

∣∣2 + b3
23 |v|2|u

∣∣4 + b3
24 |u|6

)
v

=
∞
∑

n=0
Bn(u0, . . . , un; v0, . . . , vn),

(27)

N1(u, v) =
(
b2

11|u
∣∣4 + b2

12 |u|2|v
∣∣2 + b2

13 |v|4
)
u +

(
b1

11|u
∣∣2 + b1

12 |v|2
)
u

+
(

b3
11|u|6 + b3

12|u|
4|v|2 + b3

13|u|
2|v|4 + b3

14|v|6
)

u

=
∞
∑

n=0
An(u0, . . . , un; v0, . . . , vn),

(28)

where An and Bn are enumerated as follows [20]:
B0 =

(
b1

21|v0
∣∣2 + b1

22 |u0|2
)
v0 +

(
b2

21|v0|4 + b2
22|u0|2|v0|2 + b2

23|u0|4
)

v0

+
(

b3
21|v0|6 + b3

22|v0|4|u0|2 + b3
23|v0|2|u0|4 + b3

24|u0|6
)

v0,

Bn = 1
n

n−1
∑

k=0
(k + 1)

(
uk+1

∂
∂uk

Bn−1 + vk+1
∂

∂vk
Bn−1

)
, n ≥ 1,

(29)


A0 =

(
b1

11|u0
∣∣2 + b1

12 |v0|2
)
u0 +

(
b2

11|u0|4 + b2
12|u0|2|v0|2 + b2

13|v0|4
)

u0

+
(

b3
11|u0|6 + b3

12|u0|4|v0|2 + b3
13|u0|2|v0|4 + b3

14|v0|6
)

u0,

An = 1
n

n−1
∑

k=0
(k + 1)

(
uk+1

∂
∂uk

An−1 + vk+1
∂

∂vk
An−1

)
, n ≥ 1.

(30)

Plugging (26)–(28) into (24) and (25) yields the solution functions:

∞

∑
n=0

vn = L−1

[
1
s
L
{

3

∑
k=1

(
ia2

2kD2k
x − a2

2k−1D2k−1
x

) ∞

∑
n=0

vn + i
∞

∑
n=0

Bn

}]
+ v(x, 0), (31)

∞

∑
n=0

un = L−1

[
1
s
L
{

3

∑
k=1

(
ia1

2kD2k
x − a1

2k−1D2k−1
x

) ∞

∑
n=0

un + i
∞

∑
n=0

An

}]
+ u(x, 0). (32)

Therefore, the vn and un components for the system with (16) and (17) are yielded by
the following algorithm: un+1(x, t) = L−1

[
1
sL
{

3
∑

k=1

(
ia1

2kD2k
x − a1

2k−1D2k−1
x

)
un + iAn

}]
, n ≥ 0,

u0(x, t) = u(x, 0) = f (x),
(33)

 vn+1(x, t) = L−1
[

1
sL
{

3
∑

k=1

(
ia2

2kD2k
x − a2

2k−1D2k−1
x

)
vn + iBn

}]
, n ≥ 0,

v0(x, t) = v(x, 0) = g(x).
(34)

Finally, adding the components un(x, t) and vn(x, t) along with the solution functions
in (26), an approximation for the system with (16) and (17) is obtained.

Convergence of the Proposed Method

The following theorem provides a necessary condition for the convergence of the
proposed technique. The results are standard and can be seen in [21].

Theorem 1. Let N be an operator from a Hilbert Space H into H, and let u be an exact solution
of Equation (1). ∑∞

j=0 uj converges to the exact solution u, if there exists β, 0 ≤ β < 1, such that
||uk+1||≤ β||uk||, for every k ≥ 0.
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Proof of Theorem 1. We have

S0 = 0,
S1 = S0 + u1 = u1,

S2 = S1 + u2 = u1 + u2,
...

Sn = Sn−1 + un = u1 + u2 + . . . + un,

and we show that {Sn} is a Cauchy sequence in a Hilbert Space H. Now, for

||Sn+1 − Sn||=||un+1||≤ β||un|| ≤ β2||un−1|| ≤ . . . ≤ βn+1||u0||,

for every n, m ∈ N, n ≥ m, we have

||Sn − Sm|| = ||(Sn − Sn−1) + (Sn−1 − Sn−2) + · · ·+ (Sm+1 − Sm)||
≤ ||Sn − Sn−1||+||Sn−1 − Sn−2||+ · · ·+||Sm+1 − Sm||
≤ βn||u0||+ βn−1||u0||+ · · ·+ βm+1||u0||
≤
(

βm+1 + βm+2 + · · ·
)
||u0|| = βm+1

1−β ||u0||

From the previous inequality, we have

||Sn − Sm|| → 0, as n→ ∞, m→ ∞.

Hence, {Sn} is the Cauchy sequence in the Hilbert space H; therefore, it has a limit
u ∈ H, which is the exact solution of Equation (1), namely

u = lim
n→∞

Sn.

Now, we have the following theorem, of which the proof is a direct consequence of
Theorem 1. �

Theorem 2. Assume that u is the exact solution of Equation (1). Let {SN} be the sequence of the
approximate series solutions defined by Equation (26). Then, it holds for every t ≥ 0.

max
a≤x,y≤b

|u(x, y, t)−
N

∑
j=0

uj(x, y, t)| ≤ βm+1

1− β
||u0||.

From this analysis, it is evident that the Adomian decomposition method combined
with the Laplace transform requires less effort in comparison with the traditional Adomian
decomposition method. This method considerably decreases the number of calculations. In
addition, the Adomian decomposition procedure is easily established without requiring
the problem to be linearized.

4. Graphical Representations

In this section, we solve some numerical examples, and we also present the results
obtained graphically as well as the absolute error committed by the LADM approximation.
Additional references to the recent application of LADM to a similar mathematical model
can be seen in [22–24].

4.1. Dark Soliton Simulation

To display the dark soliton numerical simulation for the governing system (2) and (3),
we consider the following coefficients:
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Case A: Let us consider the following:
a1

1 = 1.34, a1
2 = 1.5, a1

3 = −3.2, a1
4 = −2.1, a1

5 = 5.2, a1
6 = 0.21,

b1
1 = 6.2, b2

11 = 3.3, b2
12 = 0.11, a2

1 = 0.67, a2
2 = 3.1, a2

3 = −0.3,
a2

4 = 1.1, a2
5 = −5.9, a2

6 = 0.33, b1
2 = 4.6, b2

21 = 2.2, b2
22 = 3.7.

(35)

Together with the initial conditions, we obtain the following:

f (x) = 3.04tanh(x)ei[−0.22x+0.76],

g(x) = 2.91tanh(x)ei[1.13x−2.34].

The 2D and 3D illustrations for |v|2 and |u|2 for this case are shown in Figure 1. In
Table 1, we show the absolute error committed in the numerical simulation of the present
case for different values of the (x, t) pair and for N = 15.
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Figure 1. (Above) Three-dimensional illustrations of the numerical simulation and exact solution, and
two-dimensional illustration of the approximation of |u|2; (Below) three-dimensional illustrations of
the numerical simulation and exact solution, and two-dimensional illustration of the approximation
of |v|2 for Case A.

Table 1. Case A: Absolute error for different values of (x, t) considering N = 15 steps.

(t,x) −2.0 −1.0 0 1.0 2.0

0.1 4.7× 10−8 3.5× 10−8 2.3× 10−9 3.9× 10−8 5.2× 10−8

0.3 5.0× 10−7 4.6× 10−7 3.7× 10−8 4.9× 10−7 6.1× 10−7

0.5 5.2× 10−7 5.6× 10−7 4.9× 10−7 5.8× 10−7 7.0× 10−6

0.8 6.1× 10−5 4.8× 10−5 5.5× 10−7 4.3× 10−5 6.9× 10−5

Case B: Let us consider the following:
a1

1 = 0.33, a1
2 = 0.89, a1

3 = −1.4, a1
4 = 0.9, a1

5 = 1.1, a1
6 = 0.59,

b1
1 = 2.2, b2

11 = 1.23, b2
12 = 0.5, a2

1 = 8.1, a2
2 = 0.36, a2

3 = 1.1,
a2

4 = −0.27, a2
5 = 3.22, a2

6 = 1.06, b1
2 = 2.8, b2

21 = 0.66, b2
22 = 2.3.

(36)

By the aid of the initial conditions, we obtain the following:

g(x) = 4.09tanh(x)ei[2.09x+0.95],
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f (x) = 6.11tanh(x)ei[5.5x+1.23].

The 2D and 3D illustrations for |v|2 and |u|2 for this case are shown in Figure 2. In
Table 2, we show the absolute error committed in the numerical simulation of the present
case for different values of the (x, t) pair and for N = 15.
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Figure 2. (Above) Three-dimensional illustrations of the numerical simulation and exact solution, and
two-dimensional illustration of the approximation of |u|2; (Below) three-dimensional illustrations of
the numerical simulation and exact solution, and two-dimensional illustration of the approximation
of |v|2 for Case B.

Table 2. Case B: Absolute error for different values of (x, t) considering N = 15 steps.

(t,x) −2.0 −1.0 0 1.0 2.0

0.1 3.2× 10−8 3.0× 10−8 2.1× 10−9 3.3× 10−8 3.8× 10−8

0.3 6.1× 10−7 5.1× 10−7 3.4× 10−8 5.6× 10−7 6.7× 10−7

0.5 6.8× 10−7 6.0× 10−7 2.9× 10−7 6.2× 10−7 6.9× 10−6

0.8 7.2× 10−5 6.4× 10−5 3.5× 10−7 6.6× 10−5 8.0× 10−5

4.2. Bright Soliton Simulation

To depict the bright soliton numerical simulation for the governing system (2) and (3),
we consider the following coefficients:

Case C: Let us consider the following:
a1

1 = 0.01, a1
2 = 1.23, a1

3 = 0.53, a1
4 = 0.11, a1

5 = 0.97, a1
6 = 1.6,

b1
1 = 3.6, b2

11 = 1.11, b2
12 = 2.6, a2

1 = 3.01, a2
2 = 0.12, a2

3 = 3.6,
a2

4 = −4.7, a2
5 = −2.01, a2

6 = 0.2, b1
2 = 0.3, b2

21 = 6.1, b2
22 = 2.11.

(37)

With the help of the initial conditions, we obtain the following:

g(x) = 2.74sech(x)ei[8.34x−0.35],

f (x) = 2.23sech(x)ei[−3.09x−1.01].

The 2D and 3D illustrations for |v|2 and |u|2 for this case are shown in Figure 3. In
Table 3, we show the absolute error committed in the numerical simulation of the present
case for different values of the (x, t) pair and for N = 15.
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Figure 3. (Above) Three-dimensional illustrations of the numerical simulation and exact solution, and
two-dimensional illustration of the approximation of |u|2; (Below) three-dimensional illustrations of
the numerical simulation and exact solution, and two-dimensional illustration of the approximation
of |v|2 for Case C.

Table 3. Case C: Absolute error for different values of (x, t) considering N = 15 steps.

(t,x) −2.0 −1.0 0 1.0 2.0

0.1 4.5× 10−8 3.7× 10−8 1.8× 10−9 3.2× 10−8 4.9× 10−8

0.3 4.4× 10−7 4.7× 10−7 2.3× 10−9 4.6× 10−7 4.0× 10−7

0.5 8.8× 10−7 5.7× 10−7 3.3× 10−8 5.2× 10−7 8.3× 10−6

0.8 7.2× 10−5 3.4× 10−5 7.5× 10−8 2.9× 10−5 7.0× 10−5

Case D: Let us consider the following:
a1

1 = 9.0, a1
2 = 4.2, a1

3 = 0.33, a1
4 = 0.31, a1

5 = 0.08, a1
6 = 0.03,

b1
1 = 5.08, b2

11 = 4.1, b2
12 = −9.2, a2

1 = 1.16, a2
2 = 0.4, a2

3 = −9.0,
a2

4 = −2.03, a2
5 = 0.1, a2

6 = 0.21, b1
2 = 2.1, b2

21 = 0.7, b2
22 = 0.33.

(38)

By virtue of the initial conditions, we obtain the following:

f (x) = 6.02sech(x)ei[−0.57x−36.01],

g(x) = 5.74sech(x)ei[11.6x+3.08].

The 2D and 3D illustrations for |v|2 and |u|2 for this case are shown in Figure 4. In
Table 4, we show the absolute error committed in the numerical simulation of the present
case for different values of the (x, t) pair and for N = 15.

Table 4. Case D: Absolute error for different values of (x, t) considering N = 15 steps.

(t,x) −2.0 −1.0 0 1.0 2.0

0.1 7.2× 10−8 4.4× 10−8 5.2× 10−9 4.2× 10−8 6.9× 10−8

0.3 6.3× 10−7 4.7× 10−7 6.3× 10−9 4.6× 10−7 5.3× 10−7

0.5 7.8× 10−7 5.9× 10−7 7.7× 10−8 5.5× 10−7 8.0× 10−6

0.8 8.3× 10−5 2.4× 10−5 9.0× 10−7 3.1× 10−5 9.1× 10−5
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From the physics perspective, the surface plots of HD bright and dark solitons are 
accurate representations of the actual pulses that travel down an optical fiber based on 
the studied model. The error measure is impressive and acceptable as computed. These 
pulses are computed in such a way that the radiation component is completely avoided 
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source to receive a visual effect to the model would be an oscilloscope, which is outside 
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The current results are going to be pretty helpful with its implementation in a pho-
tonics lab when the experimental research is conducted to take a look at the eye dia-
grams without the soliton radiation. The results of this paper would therefore provide a 
forefront view of the bright and dark HD solitons. Thus, apart from physicists and 
mathematicians, the results would reach the desk of electrical engineers, whose success-
ful observations on an oscilloscope would be closer to reality. These observations would 
be just before rubber meets the road. 
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effect of soliton radiation. With HD solitons, soliton radiation is unavoidable and that 

Figure 4. (Above) Three-dimensional illustrations of the numerical simulation and exact solution, and
two-dimensional illustration of the approximation of |u|2; (Below) three-dimensional illustrations of
the numerical simulation and exact solution, and two-dimensional illustration of the approximation
of |v|2 for Case D.

From the physics perspective, the surface plots of HD bright and dark solitons are
accurate representations of the actual pulses that travel down an optical fiber based on the
studied model. The error measure is impressive and acceptable as computed. These pulses
are computed in such a way that the radiation component is completely avoided so that
the core soliton regime is under focus, both for bright and dark solitons. Another source to
receive a visual effect to the model would be an oscilloscope, which is outside the scope
of the current work since this paper focuses on a specific numerical scheme, namely the
application of LADM to handle HD solitons with polynomial law of nonlinear refractive
index change.

5. Conclusions

This paper is an exhibit of numerical simulations for dark and bright HD solitons
with polynomial nonlinear form. The LADM scheme has made this display possible. Dark
and bright soliton surface plots are included with an error measure that is impressively
small. The results are thus a step towards the final goal that is to address the model in
dispersion-flattened fibers. The immediate next thought, however, is the study of HD
solitons with non-local nonlinearity.

The current results are going to be pretty helpful with its implementation in a photonics
lab when the experimental research is conducted to take a look at the eye diagrams without
the soliton radiation. The results of this paper would therefore provide a forefront view
of the bright and dark HD solitons. Thus, apart from physicists and mathematicians, the
results would reach the desk of electrical engineers, whose successful observations on an
oscilloscope would be closer to reality. These observations would be just before rubber
meets the road.

Other areas of expansion would be to address the model with the inclusion of the
effect of soliton radiation. With HD solitons, soliton radiation is unavoidable and that
would unavoidably be quite pronounced. Therefore, it is imperative to include its effect
and to study the model with its presence. This would require the usage of beyond all-order
asymptotics and/or the theory of unfoldings to quantify the radiation effect followed by its
numerical implementation. Such studies will be taken up with time, and the results will be
disseminated thereafter.
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