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Abstract: The efficient parameter estimation of harmonics is required to effectively design filters to
mitigate their adverse effects on the power quality of electrical systems. In this study, a fractional
order swarming optimization technique is proposed for the parameter estimation of harmonics
normally present in industrial loads. The proposed fractional order particle swarm optimization
(FOPSO) effectively estimates the amplitude and phase parameters corresponding to the first, third,
fifth, seventh and eleventh harmonics. The performance of the FOPSO was evaluated for ten fractional
orders with noiseless and noisy scenarios. The robustness efficiency of the proposed FOPSO was
analyzed by considering different levels of additive white Gaussian noise in the harmonic signal.
Monte Carlo simulations confirmed the reliability of the FOPSO for a lower fractional order (λ = 0.1)
with a faster convergence rate and no divergent run compared to other fractional orders as well as to
standard PSO (λ = 1).

Keywords: fractional calculus; harmonics; parameter estimation; swarm optimization; systems

MSC: 26A33; 97M50

1. Introduction

Parameter estimation is an essential or fundamental step in solving various engi-
neering and applied sciences problems [1–4] including monitoring power quality and
assessing reliability in electrical systems [5]. Parameter estimation of electrical harmonics
is required to compensate or mitigate their adverse effects in electrical systems that may
lead to reduced lifetime of complex/sensitive equipment due to circuit breaker failure,
enhanced core losses in electrical devices/components, instrumentation malfunctioning
and excessive heat generation [6–8]. Researchers have proposed various local/global search
parameter estimation methods to address the power systems harmonics issue. For instance,
Singh et al. presented a Kalman filtering approach [9], Joorabian et al. proposed a novel
method by hybridizing least squares with Adaline [10], Enayati et al. designed a hybrid
algorithm integrating recursive least squares with an iterated Kalman filter [11], Sarkar et al.
introduced a self-organized ADALINE mechanism [12], Liu et al. presented a hierarchical
iterative estimation approach [13], and Xu et al. proposed various modifications in least
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squares and gradient descent algorithms in [14,15], and references cited therein, for the
parameter estimation of power signals.

The efficacy of evolutionary and swarm optimization techniques is well-established
in the literature for solving different optimization and estimation problems [16–18]. The
researchers exploited their renowned strength to estimate the parameters of harmonics
in electrical systems. Some of the relevant examples are as follows: Ray et al. proposed
a bacterial foraging optimization technique [19], Mehmood et al. exploited differential
evolution and backtracking search algorithms [20,21], Elvira-Ortiz et al. presented a ge-
netic algorithm approach [22], Nascimento Sepulchro et al. introduced an evolutionary
strategy [23], Subramaniyan et al. developed an improved football game optimization
approach [24], Singh at al. designed a hybrid firefly algorithm [25], and Kabalci et al.
introduced an artificial bee colony mechanism [26].

In the last decade, a new concept of designing fractional order algorithms has emerged [27,28].
Fractional order algorithms have been developed by exploiting the theories and concepts of
fractional calculus in conventional algorithms. Fractional calculus generalizes the standard
integer calculus to real values and provides better modeling and insight to the system
under study due to promising features that include history information or the long memory
principle [29–31]. Fractional order approaches are exploited to effectively solve different
problems. Examples include the following: Khan et al. developed fractional order gradient
algorithms for recommender systems [32,33], Yousri et al. designed fractional cuckoo
search, fractional flower pollination and fractional modified Harris Hawks optimization al-
gorithms for different applications [34–36], Chaudhary and Zubair et al. proposed fractional
least-mean-squares-based methods for the parameter estimation of power signals [37–39],
Machado et al. introduced the concept of particle swarm optimization (PSO) with fractional
velocity [40]. and Couceiro et al. introduced the concept of a fractional order Darwinian
PSO [41,42]. Later, different fractional order variants of PSO were introduced for diverse
applications [43–45] including power and electrical engineering [46,47]. These successful
applications of the fractional order PSO techniques motivated the authors to investigate
exploiting the fractional order swarming optimization paradigm for efficient parameter
estimation of harmonics in electrical systems.

The contributions of the current study are summarized as:

• A fractional order swarming optimization approach exploiting the inherited legacy of
the fractional calculus is presented for the nonlinear parameter estimation problem of
electrical harmonics.

• The proposed fractional order particle swarm optimization (FOPSO) effectively esti-
mates the amplitude and phase parameters of the harmonic signal compared with the
standard counterpart for different scenarios of additive white Gaussian noise.

• The best convergence performance of the FOPSO is obtained for a fractional order of 0.1
that reduces gradually with increase in the fractional order until unity (standard PSO).

• The reliability analyses, through autonomous executions of the FOPSO for harmonics
parameter identification, confirm superior performance in the case of a fractional order
of 0.1 for all noise variations.

The remaining article is structured as follows: A mathematical model for harmonics
estimation is provided in Section 2. The proposed methodology for the problem is presented
in Section 3. Simulation results, in terms of different tabular and graphical illustrations, are
provided in Section 4. The conclusions of the study are provided in Section 5.

2. Harmonics Identification Model

Mathematically, the electrical harmonic signal, in terms of the amplitude, frequency
and phase parameters signal, can be written as [13,14]:

s(t) =
K

∑
k=1

αk sin(βkt + γk) + δ(t), (1)
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where K is order of the harmonic, βk denotes the angular frequency of the kth harmonic,
defined as βk = k2π f0 with f0 as fundamental frequency, αk and γk are the amplitude
and phase corresponding to the kth harmonic, while δ is used to represent additive white
Gaussian noise. Writing Equation (1) in discrete form by sampling the signal s(t) with
period l, then tm = ml

s[tm] =
K

∑
k=1

αk sin[βktm + γk] + δ[tm]. (2)

For simplicity, assume s(tm) = s(m) and rewriting (2) as

s[m] =
K

∑
k=1

αk sin[βkm + γk] + δ[tm]. (3)

Applying the trigonometric identity to (2) and expressing this in terms of the combination
of cosine and sine forms

s[m] =
K

∑
k=1

[αk sin[βkm] cos γk + αk cos[βkm] sin γk] + δ[m], (4)

assuming xk = αk cos γk and yk = αk sin γk. Then, rewriting (4) in simplified form as

s[m] =
K

∑
k=1

[xk sin[βkm] + yk cos[βkm]] + δ[m]. (5)

Equation (5) in terms of the identification model is expressed as

s[m] = hT [m]p + δ[m]. (6)

where

h[m] = [sin[β1m], cos[β1m], sin[β2m], cos[β2m], . . . , sin[βkm], cos[βkm]]. (7)

and
p = [x1, y1, x2, y2, . . . , xk, yk]. (8)

The objective is to estimate the parameters of the harmonics by minimizing the dif-
ference between the actual harmonic signal s[m] and the estimated harmonic signal ŝ[m]
through the proposed fractional order swarming optimization approach. Thus, defining
the cost/objective function as

ε[m] = mean[s[m]− ŝ[m]]2 =
[
s[m]− hT [m]p̂

]2
, (9)

since the identification model presented in Equation (6) and the cost function given in
Equation (9) considers the intermediate variable as parameters to be identified, it is nec-
essary to use the expressions relating the intermediate variables of (8) with the actual
parameters of the harmonics signal (3). The required relations are given as

αk =

√
(xk)

2 + (yk)
2, γk = tan−1 yk

xk
, (10)

3. Methodology

The methodology for the fractional swarming optimization approach for the harmonic
identification model is described concisely in terms of mathematical development, pro-
cess flow illustrations and pseudocodes. An overview of the methodology in terms of
fundamental block structures is presented in Figure 1.
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Optimization Procedure: Fractional Swarming Computing Paradigm

A heuristic computing strategy represented with fractional order particle swarm
optimization (FOPSO) was first presented by Machado with a team of researchers by
introducing the fractional order velocity in the standard PSO [40]. Since its introduction,
the FOPSO has been extensively used by the research community for various optimization
tasks with performance better than that in integer counterparts [41–44]

The FOPSO is designed by introducing the definition of the fractional order velocity
in standard PSO and the definition of the fractional derivative is given in a variety of
ways, such as Grünwald–Letnikov (GL), Riemann–Liouville, Weyl, Marchaud, Caputo,
Hadamard, Davidson–Essex and many others [48,49]. The similarity of all these definitions
is well-established for some of their own functions and they have their own significance for
different applications; however, the mathematical expressions for FOPSO with a fractional
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velocity are derived by implementing the GL definition for the fractional order λ, i.e., Dλ

of signal s(t) using the concept of a Euler gamma function Γ, as [50]:

Dλ[s(t)] = lim
h→0

[
1

hλ

∞

∑
k=0

(−1)kΓ(λ + 1)s(t− kh)
Γ(k + 1)Γ(λ− k + 1)

]
, (11)

where h is the incremental step size and the Euler gamma function is defined as,

Γ(z) =
∞∫
0

e−ttz−1.

The finite time representation of Equation (11) can be given as follows:

Dλ[s(t)] =
1

Tλ

kr

∑
k=0

(−1)kΓ(λ + 1)s(t− kT)
Γ(k + 1)Γ(λ− k + 1)

, (12)

where Kr represents the order of truncation and T denotes the sampling period. Before
proceeding regarding how Equations (11) and (12) are used to derive FOPSO, first, we
introduce the mathematical expressions for the velocity v and position x of traditional PSO
in the case of the nth particle as follows:

vn(j + 1) = ωvn(j) + ρ1r1(Lbn(j)− xn(j)) + ρ2r2(Gbn(j)− xn(j)), (13)

xn(j + 1) = xn(j) + vn(j + 1), (14)

where j is used to represent the flight index, ω stands for the inertia weight, Lb is a local
best particle, Gb is the representation for the global best particle, ρ1 and ρ2 are cognitive
and social acceleration parameters, respectively, while r1 and r2 are the pseudo-random
values taken between 0 and 1.

By assuming ω = 1 in (13), while T = 1, s(t) = vn(t) and replacing j by j + 1 in (12), one
may obtain the mathematical relation of the fractional velocity in FOPSO as follows [50]:

vn(j + 1) = −
kr
∑

k=1

(−1)kΓ(λ+1)vn(j+1−k)
Γ(k+1)Γ(λ−k+1) +

ρ1r1(Lbn(j)− xn(j)) + ρ2r2(Gbn(j)− xn(j))
(15)

The fractional velocity representation of FOPSO for nth particle with kth term, i.e.,
kr = 1, 2, . . . , k, as:

vn(j + 1) = λvn(j) + 1
2 λ(1− λ)vn(j− 1) + · · ·

+ 1
Γ(k+1) (λ(1− λ)(2− λ) · · · (k− 1− λ))vn(j− k + 1)

+ρ1r1(Lbn(j)− xn(j)) + ρ2r2(Gbn(j)− xn(j))
(16)

The velocity update Equation (16) and position update Equation (14) formulate the
FOPSO. Further details regarding the FOPSO can be found in [50].

For implementation of the FOPSO for the harmonic identification model, the workflow
procedure of methodology is shown in Figure 1, the genetic flow diagram of the FOPSO
in the form of procedural steps is given in Figure 2, while the performance of cognitive
and social learning behavior of FOPSO is illustrated in Figure 3. The pseudocode of the
FOPSO for the harmonic identification model is provided in Algorithm 1. The velocity
update equation of FOPSO for Kr = 4 is used as given below:
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vn(j + 1) = λvn(j) + 1
2 λ(1− λ)vn(j− 1) + · · ·

+ 1
24 (λ(1− λ)(2− λ) · · · (3− λ))vn(j− 3)

+ρ1r1(Lbn(j)− xn(j)) + ρ2r2(Gbn(j)− xn(j)),
(17)

and the position update is given as

xn(j + 1) = xn(j) + vn(j + 1) (18)

The parameter settings for implementation of the FOPSO were adopted through
experience and much experimentation. All the parameters were set after conducting
exhaustive experiments since small variations in these settings can result in premature
convergence and/or some time divergence. The parameter settings are given as follows:
eight decision variables for the optimization problem were set, i.e., particle size = 8, swarm
size = 250 particles, flights or iterations = 100, cognitive and global acceleration factors = 2,
inertia weight = 0.97, λ, maximum/minimum velocities = [0.4, −0.4], and fractional order
λ = [0.1, 0.2, . . . , 1]. The computer simulations for FOPSO were performed in the MATLAB
software package in a Windows 10 environment.
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Algorithm 1. Pseudocode for FOPSO to solve the harmonics identification model

Inputs: Create particle p with elements equivalent to number of unknown parameters in
the signal s(t) as

p = [ α γ ] =
[
(α1, α2, . . . , αna )

(
γ1, γ2, . . . , γnγ

) ]
,

and set of P formulate a swarm.

Swarm position X =


x1
x2
...

xm

 =


(α1,1, α2,1, . . . , αna ,1) (γ1,1, γ2,1, . . . , γn,1)
(α1,1, α2,1, . . . , αna ,1) (γ1,1, γ2,1, . . . , γn,1)

...
...

(α1,1, α2,1, . . . , αna ,1) (γ1,1, γ2,1, . . . , γn,1)

,

for m number of p = x in X. The associated velocity V with position is
created similarly.

Output: The particle x of FOPSO with best fitness as defined in (9)
Start FOPSO
Step 1: Initialization: Bound pseudo-real numbers are randomly generated to form

an initial swarm X with m number of particles x. Accordingly, associate the
initialize velocities v to each particle. Set the values of decision
variables, i.e., particle size, swarm size, flights or iterations, cognitive
and global acceleration factors, inertia weight, maximum and minimum
velocities, and fractional order

Step 2: Fitness evaluation: Determine the fitness of each particle x of X using
Equation (9).

Step 3: Termination: Stop the execution of FOPSO for fulfilment of any of the
following:

(a) Total number of flights/iterations are executed
(b) Tolerance limits are attained, i.e., via calculation of the difference between

present and previous local/global best particles

If termination conditions are fulfilled then proceed from step 5, otherwise
continue

Step 4: Updating mechanism: The velocity and position of FOPSO algorithms, as defined in
Equaitons (14) and (16), respectively, are updated on each flight taking into
consideration the local/global best particle x of the swarm X.
Go to Step 2 with updated swarm X.

Step 5: Analysis of fractional order: Repeat steps 1 to 4 by varying the fractional order
α of the velocity in the FOPSO algorithms.

Step 6: Storage: Store the values of the parameter for global best particle x, align
the fitness, execution time for the current run of FOPSO with different
fractional orders.

Step 7: Replication: Conduct repetition of steps 1 to 6 for the harmonic
identification model with small as well as large signal-to-noise ratios.

Step 8: Statistics: Create a resaonable dataset by repetition of the FOPSO algorithm from
step 1 to 7 for multiple trials to perform a reliable and exhaustive
statistical analysis.

End FOPSO
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4. Results and Discussion

In this section, numerical experimentation for power systems harmonics estimation
was conducted through FOPSO and the results are presented in tabular/graphical il-
lustrations, along with necessary discussion. The estimation was not real-time and the
measurement data needed to be provided before the estimation. The following example rep-
resenting the harmonics signal normally present in industrial loads was considered [25,26].

s(t) =

 1.5 sin(2π f1t + 1.396) + 0.5 sin(2π f3t + 1.047)+
0.2 sin(2π f5t + 0.785) + 0.15 sin(2π f7t + 0.628)+
0.1 sin(2π f11t + 0.523)

. (19)

The parameters of the harmonics signal to be estimated were[
(α1, α2, α3, α4, α5)
(γ1, γ2, γ3, γ4, γ5)

]
=

[
1.50, 0.50, 0.20, 0.15, 0.10

1.396, 1.047, 0.785, 0.628, 0.523

]
. (20)

The actual harmonic signal s(t) in (19) was generated in Matlab, and was sampled
at a 2 kHz sampling frequency. In (19), f1 = 50, f3 = 150, f5 = 250, f7 = 350, f11 = 550 and
additive white Gaussian noise δ with 200 dB, 70 dB and 50 dB levels were added to assess
the robustness of the proposed FOPSO scheme. The FOPSO was deeply analyzed for the
harmonics estimation problem by considering ten fractional orders λ, ranging from 0.1 to 1,
i.e., λ = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

The graphs of iterative learning of the FOPSO for harmonics estimation are presented
in Figure 4 for λ = [0.2, 0.4, 0.6, 0.8, 1.0]. Figure 4a provides the plots for δ = 200 dB, while
Figure 4b,c gives the graphs for δ = 70 dB and, δ = 50 dB respectively. The convergence
speed was faster for lower λ and decreased gradually with increasing λ, as seen in Figure 4.
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In order to assess the accuracy of the parameter estimates, the results of the obtained
parameters through FOPSO at different iterations are presented in Tables 1–3 for λ = 0.1,
0.5 and 1.0, respectively. The final fitness values for the case of λ = 0.1 were 8.99 × 10−21,
5.46 × 10−8 and 5.80 × 10−6 for δ = 200 dB, 70 dB and 50 dB, respectively. While the
respective values for the case of λ = 0.5 and λ = 1.0 were 8.05 × 10−21, 4.89 × 10−8 and
6.01 × 10−6, and 2.99 × 10−17, 5.63 × 10−8 and 5.62 × 10−6, respectively. The parameter
estimates results for the remaining fractional orders, λ = 0.2, 0.3, 0.4, 0.6, 0.7, 0.8 and 0.9
are provided in Supplementary Tables S1–S7 in the Supplementary Material. The results
indicated that the FOPSO was accurate and convergent in estimating the parameters of the
power system harmonics for all λ and δ, with decrease in the precision of the estimates as
the noise δ increased.
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Table 1. Fitness results along with the estimated values for λ = 0.1.

δ t α1 α2 α3 α4 α5 γ1 γ2 γ3 γ4 γ5 ε

200 10 1.3877 0.4372 0.3642 0.3479 0.3401 1.5774 1.2000 1.4482 1.2608 0.4896 1.32 × 10−1

20 1.4907 0.4986 0.2045 0.1439 0.1062 1.3967 1.0491 0.7894 0.6153 0.5417 9.76 × 10−5

30 1.5000 0.5001 0.1998 0.1499 0.0998 1.3962 1.0466 0.7853 0.6287 0.5228 1.24 × 10−7

40 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5229 1.12 × 10−10

50 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 2.51 × 10−13

60 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 7.46 × 10−17

70 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 8.40 × 10−20

80 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 8.05 × 10−21

90 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 7.90 × 10−21

100 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 6.43 × 10−21

70 10 1.2489 0.7684 0.1411 0.1246 0.3677 0.9979 0.6191 1.3253 1.2996 1.1829 3.02 × 10−1

20 1.4961 0.5006 0.1952 0.1432 0.1041 1.3980 1.0495 0.8365 0.6433 0.5207 1.11 × 10−4

30 1.5000 0.5001 0.1997 0.1500 0.1000 1.3960 1.0470 0.7860 0.6279 0.5258 1.75 × 10−7

40 1.4999 0.5001 0.1998 0.1501 0.1001 1.3960 1.0471 0.7849 0.6278 0.5238 9.86 × 10−8

50 1.4999 0.5000 0.1999 0.1500 0.1000 1.3960 1.0470 0.7850 0.6277 0.5236 7.05 × 10−8

60 1.4999 0.5000 0.1999 0.1500 0.1000 1.3960 1.0470 0.7850 0.6277 0.5236 7.05 × 10−8

70 1.4999 0.5000 0.1999 0.1500 0.1000 1.3960 1.0471 0.7850 0.6277 0.5236 6.76 × 10−8

80 1.4999 0.5000 0.1999 0.1500 0.1000 1.3960 1.0471 0.7850 0.6277 0.5236 6.76 × 10−8

90 1.5000 0.5000 0.1999 0.1500 0.1000 1.3960 1.0470 0.7850 0.6277 0.5235 5.45 × 10−8

100 1.5000 0.5000 0.1999 0.1500 0.1000 1.3960 1.0470 0.7850 0.6277 0.5235 5.45 × 10−8

50 10 1.4930 0.8742 0.1745 0.2108 0.3877 1.2681 0.9908 1.1505 1.4367 0.9066 1.47 × 10−1

20 1.4996 0.5051 0.2012 0.1467 0.1043 1.3972 1.0443 0.7541 0.6253 0.5286 5.76 × 10−5

30 1.5002 0.5000 0.1993 0.1505 0.0999 1.3958 1.0477 0.7860 0.6285 0.5187 6.83 × 10−6

40 1.5003 0.5000 0.1992 0.1505 0.0999 1.3963 1.0477 0.7860 0.6282 0.5187 6.33 × 10−6

50 1.5003 0.5000 0.1992 0.1505 0.0999 1.3963 1.0477 0.7860 0.6282 0.5187 6.33 × 10−6

60 1.5003 0.5000 0.1992 0.1505 0.0999 1.3963 1.0477 0.7860 0.6282 0.5187 6.33 × 10−6

70 1.5003 0.5000 0.1992 0.1505 0.0999 1.3963 1.0477 0.7860 0.6282 0.5187 6.33 × 10−6

80 1.5003 0.5000 0.1992 0.1501 0.0999 1.3963 1.0480 0.7859 0.6275 0.5168 4.64 × 10−6

90 1.5003 0.5000 0.1992 0.1501 0.0999 1.3963 1.0480 0.7859 0.6275 0.5168 4.64 × 10−6

100 1.5003 0.5000 0.1992 0.1501 0.0999 1.3963 1.0480 0.7859 0.6275 0.5168 4.64 × 10−6

1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 0
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Table 2. Fitness results along with the estimated values for λ = 0.5.

δ t α1 α2 α3 α4 α5 γ1 γ2 γ3 γ4 γ5 ε

200 10 1.7149 0.8193 0.2604 0.3166 0.0804 1.1801 0.9806 0.9897 1.1337 0.7780 1.58 × 10−1

20 1.4966 0.4795 0.1939 0.1439 0.0000 1.3913 0.9986 0.7302 0.6952 0.5229 5.67 × 10−3

30 1.5018 0.4988 0.2040 0.1509 0.1030 1.3982 1.0404 0.7921 0.6052 0.5065 3.39 × 10−5

40 1.5001 0.5003 0.2004 0.1502 0.1003 1.3961 1.0477 0.7860 0.6303 0.5165 5.68 × 10−7

50 1.5000 0.4999 0.2000 0.1500 0.0999 1.3960 1.0471 0.7845 0.6277 0.5226 1.43 × 10−8

60 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 1.16 × 10−11

70 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 2.84 × 10−14

80 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 1.28 × 10−17

90 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 2.32 × 10−20

100 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 8.05 × 10−21

70 10 1.4459 0.5354 0.2790 0.5387 0.2333 1.0436 1.2585 0.7510 1.3152 1.1649 2.52 × 10−1

20 1.4894 0.5209 0.2076 0.1430 0.0312 1.4307 1.0613 0.6887 0.7014 1.3438 5.31 × 10−3

30 1.4894 0.5037 0.1941 0.1530 0.1050 1.3910 1.0508 0.8394 0.6228 0.5125 1.84 × 10−4

40 1.4997 0.5004 0.1998 0.1508 0.1009 1.3955 1.0476 0.7831 0.6226 0.5192 1.69 × 10−6

50 1.4999 0.5001 0.2000 0.1500 0.1000 1.3961 1.0472 0.7847 0.6286 0.5233 9.23 × 10−8

60 1.4999 0.5000 0.2000 0.1500 0.1000 1.3960 1.0469 0.7848 0.6277 0.5231 6.43 × 10−8

70 1.4999 0.5000 0.2000 0.1500 0.1000 1.3960 1.0469 0.7848 0.6277 0.5231 6.18 × 10−8

80 1.4999 0.5000 0.2000 0.1500 0.1000 1.3960 1.0469 0.7848 0.6277 0.5231 4.89 × 10−8

90 1.4999 0.5000 0.2000 0.1500 0.1000 1.3960 1.0469 0.7848 0.6277 0.5231 4.89 × 10−8

100 1.4999 0.5000 0.2000 0.1500 0.1000 1.3960 1.0469 0.7848 0.6277 0.5231 4.89 × 10−8

50 10 1.3047 0.6259 0.3958 0.3571 0.2654 1.4606 0.7557 1.1532 0.8701 1.2466 1.12 × 10−1

20 1.5127 0.4693 0.2060 0.1364 0.0201 1.3911 1.0300 0.8900 0.6272 1.8194 5.59 × 10−3

30 1.5050 0.5031 0.2086 0.1531 0.1055 1.4021 1.0264 0.7782 0.6881 0.4985 2.15 × 10−4

40 1.4993 0.5008 0.1981 0.1501 0.1000 1.3964 1.0508 0.7831 0.6198 0.5258 1.48 × 10−5

50 1.5006 0.4999 0.2015 0.1499 0.0996 1.3958 1.0480 0.7879 0.6253 0.5195 8.72 × 10−6

60 1.4996 0.5002 0.2001 0.1501 0.0996 1.3965 1.0473 0.7839 0.6175 0.5195 7.21 × 10−6

70 1.4996 0.5002 0.2001 0.1501 0.0996 1.3965 1.0473 0.7839 0.6175 0.5195 7.21 × 10−6

80 1.4996 0.5005 0.1997 0.1501 0.0998 1.3964 1.0470 0.7839 0.6302 0.5203 6.65 × 10−6

90 1.4996 0.5004 0.2001 0.1501 0.0998 1.3964 1.0471 0.7839 0.6302 0.5213 6.01 × 10−6

100 1.4996 0.5004 0.2001 0.1501 0.0998 1.3964 1.0471 0.7839 0.6302 0.5213 6.01 × 10−6

1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 0

Table 3. Fitness results along with the estimated values for λ = 1.

δ t α1 α2 α3 α4 α5 γ1 γ2 γ3 γ4 γ5 ε

200 10 1.4720 0.3721 0.1285 0.4860 0.3704 1.6671 0.3728 0.6035 0.5516 0.1737 2.28 × 10−1

20 1.5674 0.4953 0.1743 0.1362 0.0507 1.4016 0.9911 0.6795 0.8966 0.9360 5.70 × 10−3

30 1.4885 0.5049 0.2047 0.1766 0.0768 1.4086 1.0527 0.6944 0.7198 0.7086 1.30 × 10−3

40 1.4919 0.5047 0.2056 0.1569 0.0956 1.3961 1.0382 0.7966 0.6743 0.6329 1.89 × 10−4

50 1.4993 0.5008 0.1996 0.1498 0.1008 1.3967 1.0397 0.7948 0.6177 0.5172 1.15 × 10−5

60 1.5001 0.5000 0.2002 0.1498 0.0996 1.3956 1.0473 0.7842 0.6292 0.5216 3.39 × 10−7

70 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0471 0.7850 0.6279 0.5225 3.06 × 10−9

80 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 1.17 × 10−11

90 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 1.14 × 10−14

100 1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 2.99 × 10−17

70 10 1.2932 0.4226 0.2798 0.2903 0.1402 1.5028 0.6010 0.7288 0.6064 1.0279 7.18 × 10−2

20 1.5047 0.4803 0.2312 0.2018 0.0000 1.3832 1.0399 0.7084 0.8538 0.8948 8.14 × 10−3

30 1.5053 0.4840 0.1851 0.1331 0.0000 1.4128 1.0874 0.7003 0.5753 0.7488 6.08 × 10−3

40 1.5007 0.5009 0.1953 0.1508 0.0000 1.4056 1.0537 0.7632 0.6765 0.6764 5.16 × 10−3

50 1.5017 0.5035 0.1986 0.1537 0.1001 1.3918 1.0516 0.7845 0.6395 0.5623 4.66 × 10−5

60 1.5000 0.5006 0.2005 0.1505 0.1003 1.3960 1.0454 0.7843 0.6269 0.5236 9.40 × 10−7

70 1.5001 0.4999 0.1999 0.1501 0.0999 1.3961 1.0471 0.7846 0.6281 0.5215 1.25 × 10−7

80 1.5000 0.5000 0.1999 0.1501 0.0999 1.3960 1.0470 0.7847 0.6277 0.5235 5.63 × 10−8

90 1.5000 0.5000 0.1999 0.1501 0.0999 1.3960 1.0470 0.7847 0.6277 0.5235 5.63 × 10−8

100 1.5000 0.5000 0.1999 0.1501 0.0999 1.3960 1.0470 0.7847 0.6277 0.5235 5.63 × 10−8
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Table 3. Cont.

δ t α1 α2 α3 α4 α5 γ1 γ2 γ3 γ4 γ5 ε

50 10 1.3944 0.6793 0.3021 0.2184 0.4664 1.4693 0.4017 0.3648 0.8624 0.9475 1.81 × 10−1

20 1.5278 0.3971 0.2207 0.1943 0.0615 1.3839 0.9626 0.8229 0.6980 1.1946 1.01 × 10−2

30 1.5164 0.4768 0.1746 0.1624 0.0547 1.3931 1.0690 0.9385 0.5258 0.5986 2.48 × 10−3

40 1.5042 0.4994 0.1987 0.1366 0.0978 1.3983 1.0246 0.8289 0.6534 0.6263 2.86 × 10−4

50 1.5027 0.4948 0.1966 0.1521 0.0993 1.3954 1.0362 0.7925 0.6314 0.5302 5.65 × 10−5

60 1.5008 0.5022 0.1980 0.1493 0.0991 1.3962 1.0479 0.7838 0.6311 0.5326 1.10 × 10−5

70 1.5004 0.4992 0.1989 0.1482 0.0991 1.3963 1.0478 0.7831 0.6265 0.5328 8.87 × 10−6

80 1.4997 0.4998 0.2001 0.1501 0.0993 1.3965 1.0480 0.7838 0.6325 0.5262 5.62 × 10−6

90 1.4997 0.4998 0.2001 0.1501 0.0993 1.3965 1.0480 0.7838 0.6325 0.5262 5.62 × 10−6

100 1.4997 0.4998 0.2001 0.1501 0.0993 1.3965 1.0480 0.7838 0.6325 0.5262 5.62 × 10−6

1.5000 0.5000 0.2000 0.1500 0.1000 1.3960 1.0470 0.7850 0.6280 0.5230 0

The learning plots of the amplitude and phase parameters estimates, along with the
constructed harmonic signal from the estimated parameters, are presented in Figures 5–8
for λ = 0.1, 0.4, 0.7 and 1.0, respectively, for the case of δ = 70 dB, while the respective plots
for δ = 200 dB and 50 dB are provided in Supplementary Figures S1–S8, respectively, in
the Supplementary Material. The results indicated that the FOPSO correctly estimated the
amplitude and phase parameters of the harmonic signal and hence accurately reconstructed
the actual signal through the estimated parameters.
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results indicated that the proposed FOPSO was more reliable for λ = 0.1, with almost the
same trend in independent trials of the scheme, while for the case of standard PSO (FOPSO
for λ = 1.0), variation in the results was observed, i.e., sometimes giving good results and
sometimes not, as shown in Figure 11.
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Analyses in terms of statistical indices of the minimum (Mini) value of cost function,
the mean and standard deviation (STDD) were conducted and the results are reported in
Table 4. The Mini values indicated that the FOPSO was accurate and convergent for all λ
and δ with decrease in the precision of the estimates as the noise δ increased. The small
STDD values in the case of λ = 0.1 were 6.23 × 10−22, 5.79 × 10−9 and 6.36 × 10−7 for
δ = 200 dB, 70 dB and 50 dB, respectively, confirming the more reliable and consistently
accurate behavior of the FOPSO for λ = 0.1. While the respective STDD values in the case
of λ = 0.5 and λ = 1.0 were 7.07 × 10−4, 1.20 × 10−3 and 1.92 × 10−3, and 3.03 × 10−3,
3.23 × 10−3 and 2.45 × 10−3, respectively.

Table 4. Values of statistical indices through Monte Carlo simulations.

δ = 200 dB δ = 70 dB δ = 50 dB
λ Mini Mean STDD Mini Mean STDD Mini Mean STDD

0.1 6.03 × 10−21 7.24 × 10−21 6.23 × 10−22 5.45 × 10−8 6.75 × 10−8 5.79 × 10−9 4.64 × 10−6 6.69 × 10−6 6.36 × 10−7

0.2 5.39 × 10−21 1.00 × 10−4 7.07 × 10−4 5.46 × 10−8 4.24 × 10−4 1.85 × 10−3 5.80 × 10−6 1.04 × 10−4 6.86 × 10−4

0.3 6.23 × 10−21 3.00 × 10−4 1.20 × 10−3 5.38 × 10−8 2.99 × 10−4 1.20 × 10−3 5.31 × 10−6 6.62 × 10−6 5.76 × 10−7

0.4 5.66 × 10−21 6.00 × 10−4 1.64 × 10−3 5.17 × 10−8 5.98 × 10−4 1.64 × 10−3 5.51 × 10−6 8.11 × 10−4 2.17 × 10−3

0.5 6.48 × 10−21 1.00 × 10−4 7.07 × 10−4 4.89 × 10−8 3.24 × 10−4 1.20 × 10−3 5.52 × 10−6 5.43 × 10−4 1.92 × 10−3

0.6 6.47 × 10−21 9.00 × 10−4 1.94 × 10−3 5.96 × 10−8 1.12 × 10−3 2.42 × 10−3 5.71 × 10−6 1.23 × 10−3 2.71 × 10−3

0.7 7.08 × 10−21 1.02 × 10−3 2.36 × 10−3 5.84 × 10−8 7.23 × 10−4 1.75 × 10−3 5.82 × 10−6 1.05 × 10−3 2.30 × 10−3

0.8 8.51 × 10−21 1.42 × 10−3 2.58 × 10−3 5.89 × 10−8 1.72 × 10−3 3.14 × 10−3 5.18 × 10−6 1.52 × 10−3 2.55 × 10−3

0.9 1.52 × 10−20 2.13 × 10−3 3.19 × 10−3 5.69 × 10−8 2.37 × 10−3 3.65 × 10−3 5.45 × 10−6 1.93 × 10−3 2.91 × 10−3

1.0 9.89 × 10−20 2.47 × 10−3 3.03 × 10−3 5.63 × 10−8 2.07 × 10−3 3.23 × 10−3 5.62 × 10−6 1.37 × 10−3 2.45 × 10−3

5. Conclusions

The findings/conclusions of the study are presented below.
A fractional order particle swarm optimization, FOPSO, was presented for solving

nonlinear problems of harmonics estimation required for monitoring power quality in
electrical systems to avoid any adverse effect of harmonic pollution. The FOPSO integrates
the inherited legacy of fractional calculus with standard PSO to enhance its optimization
capabilities with more controlling parameters. The FOPSO effectively estimated the ampli-
tude and phase parameters of the harmonic signal compared with the standard counterpart
for different scenarios of additive white Gaussian noise.

The FOPSO provided faster convergence speeds for a lower value of fractional order,
i.e., 0.1 λ; and the convergence speed decreased gradually with increase in the fractional
order, i.e., 0.1 λ to 1.0 λ. The FOPSO was robust against different levels of additive white
Gaussian noise with relatively low estimation accuracy for high noise levels. The estimation
errors for 200 db, 70 db and 50 db were approximately 10−21, 10−8 and 10−6, respectively.
The statistical indices obtained through Monte Carlo simulations confirmed that the FOPSO
was accurate and robust for all λ values in terms of best fitness, while, in terms of mean
fitness values, the FOPSO with 0.1 λ was the best among all other fractional order variations.

In future, the proposed scheme can be exploited to solve different control and esti-
mation problems [51–54]. Moreover, investigations can be carried out in implementing
proposed schemes to solve the challenges involved in current power systems, such as,
estimating the components that are not integer multiples of the fundamental harmonic,
fault detection in power systems and machines, and estimating the exact frequency of the
fundamental in real time.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10091570/s1: The parameter estimates results for remaining
fractional orders, λ = 0.2, 0.3, 0.4, 0.6, 0.7, 0.8 and 0.9, are provided in Supplementary Tables S1–S7.
The learning plots of amplitude and phase parameters estimates, along with the constructed harmonic
signal from the estimated parameters, are presented in Supplementary Figures S1–S4 for λ = 0.1, 0.4,
0.7 and 1.0, respectively, in the case of δ = 2000 dB, while the respective plots for 50 dB are provided
in Supplementary Figures S5–S8, respectively.
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