
Citation: Wu, C.-C.; Gupta, J.N.D.;

Lin, W.-C.; Cheng, S.-R.; Chiu, Y.-L.;

Chen, J.-H.; Lee, L.-Y. Robust

Scheduling of Two-Agent Customer

Orders with Scenario-Dependent

Component Processing Times and

Release Dates. Mathematics 2022, 10,

1545. https://doi.org/10.3390/

math10091545

Academic Editor: Ripon

Kumar Chakrabortty

Received: 30 March 2022

Accepted: 2 May 2022

Published: 4 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Robust Scheduling of Two-Agent Customer Orders with
Scenario-Dependent Component Processing Times and
Release Dates
Chin-Chia Wu 1 , Jatinder N. D. Gupta 2 , Win-Chin Lin 1, Shuenn-Ren Cheng 3, Yen-Lin Chiu 1,
Juin-Han Chen 4 and Long-Yuan Lee 5,*

1 Department of Statistics, Feng Chia University, Taichung 40724, Taiwan; cchwu@fcu.edu.tw (C.-C.W.);
m0905335@o365.fcu.edu.tw (W.-C.L.); linwc@fcu.edu.tw (Y.-L.C.)

2 College of Business, University of Alabama in Huntsville, Huntsville, AL 35899, USA; guptaj@uah.edu
3 Department of Esports Technology Management, Cheng Shiu University, Kaohsiung 83347, Taiwan;

k0252@gcloud.csu.edu.tw
4 Department of Industrial Engineering & Management, Cheng Shiu University, Kaohsiung 83347, Taiwan;

k0411@gcloud.csu.edu.tw
5 Department of Leisure and Sport Management, Cheng Shiu University, Kaohsiung 83347, Taiwan
* Correspondence: k0595@gcloud.csu.edu.tw

Abstract: Although some uncertainty factors can occur in many practical environments, customer
order scheduling problems involving two agents in such uncertain environments have not received
attention in the current literature. Motivated by this observation, we address a two-agent customer
order scheduling problem where various customer orders have scenario-dependent component
processing times and release dates in order to find an appropriate schedule to minimize the maximum
of the total completion time of the customer orders that belong to one agent and are subject to a
constraint with the other agent. In order to solve this problem, a lower bound and six dominant
properties are derived and used to propose a branch-and-bound algorithm to find an exact optimal
solution. Afterward, three local search heuristics and two variants of a simulated annealing hyper-
heuristic are proposed and empirically evaluated in order to find approximate solutions. Finally, we
conclude the paper with a summary of our findings and some directions for future research.

Keywords: customer order scheduling; two agents; scenario-dependent component processing times;
release dates; simulated annealing; hyper-heuristic

MSC: 90B35; 68M20

1. Introduction

Recent calls to enhance the practical relevance of scheduling research has resulted in
the consideration of the following three problem types: Customer Order Scheduling Problems
(COSPs), first introduced in the studies by Ahmadi and Bagchi [1,2] and Gupta et al. [3];
multi-agent scheduling problems (MASPs), first defined by Gupta et al. [3], Baker and
Smith [4], Wu et al. [5], and Agnetis et al. [6]; and scheduling problems with scenario-
dependent processing times (SDPTSPs), first formalized by Daniels and Kouvelis [7,8]. More
recently, Framinan et al. [9] provided a comprehensive and unified picture of COSPs.
Agnetis et al. [10] provided a comprehensive survey of the multi-agent scheduling problems
(MASPs); meanwhile, Perez-Gonzalez and Framinan [11] reviewed a survey paper on multi-
criteria order scheduling problems. More recently, Braga-Santos et al. [12] proposed an
efficient size-reduction algorithm to solve a COSP in order to minimize the total tardiness.
Taking the total completion time as the measurement criterion, de Athayde Prata et al. [13]
applied an innovative discrete differential evolution algorithm with differential mutations
to solve a COSP with sequence-dependent setups. Pinto Antonioli et al. [14] addressed

Mathematics 2022, 10, 1545. https://doi.org/10.3390/math10091545 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10091545
https://doi.org/10.3390/math10091545
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1598-5127
https://orcid.org/0000-0001-8600-8588
https://orcid.org/0000-0001-8164-8690
https://orcid.org/0000-0002-7434-9331
https://doi.org/10.3390/math10091545
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10091545?type=check_update&version=2

Mathematics 2022, 10, 1545 2 of 17

a mixed-integer linear programming as well as two adaptation heuristics and two meta-
heuristics to minimize the total tardiness COSP with a sequence-dependent setup time.

However, scheduling problems with scenario-dependent processing times (SDPTSPs) have
not received much attention in the literature. SDPTSPs deal with a situation where the
uncertain job processing times depend on the specific scenario that may arise in practice,
thus giving rise to discrete job processing times called scenario-dependent processing times.
In such situations, because of the uncertainty associated with the realization of any specific
scenario, optimizing the given objective function among all possible scenarios is desired
(Kouvelis and Yu [15]). Applications of SDPTSPs in several manufacturing environments,
flexible manufacturing situations, and other practical circumstances are discussed by
Daniels and Kouvelis [8]). For more examples, we refer readers to a few existing research
efforts by Yang and Yu [16], Monch et al. [17], Aloulou and Della Croce [18], Aissi et al. [19],
Kasperski and Zielinski [20], Wang et al. [21], Liu et al. [22], Wang et al. [23,24], Wu et al. [25],
Xing et al. [26], Ren et al. [27], and Wu et al. [28], among others.

A review of the existing scheduling literature reveals that the research on COSPs
involving multiple facilities and MASPs considered the job processing times or release
dates as fixed integers. This is at odds with real-life environments. In fact, there are
many significant uncertainty factors in practical production environments. For example,
employees might become unable to work, machines might break, the working environments
might change, and some external complex factors might provoke job cancellations or a
changed tool quality. In such situations, the worst-case criterion for a system might be more
important than the average-case criterion (Kouvelis and Yu [15]). Thus, inspired by these
observations and in order to extend the application of scheduling research to the solving
of practical problems, we address a two-agent COSP with this paper, for the first time in
the scheduling literature. More specifically, we address scenario-dependent component
processing times and release dates that minimize the maximum of the total completion
time of the customer orders that belong to one agent and which are subject to the following
constraint—that the maximum total completion time of the customer orders of the other
agent should be no greater than an upper bound for all scenarios and all possible schedules.
Table 1 summarizes the most recent contributions published concerning the COSP.

Table 1. Summary of most recent contributions published concerning the COSP.

Problem Setting Algorithm Objective Form References

COSP
without setup times A size-reduction algorithm ∑n

i=1 Ti(σ) Braga-Santos et al. [12]

COSP
with sequence-dependent setups A differential evolution ∑n

i=1 Ci(σ) de Athayde Prata et al. [13]

COSP
with sequence-dependent setups Hybrid matheuristics ∑n

i=1 Ti(σ) Pinto Antonioli et al. [14]

COSP without setup times Iterated greedy; BB maxs
{

∑n
i=1 Ts

i (σ)
}

Wu et al. [28]

COSP
without setup timeswith two agents

Simulated Annealing
Hyper-heuristic; BB

maxs∈{1,2}

{
∑ C(s)x

i (σ)
}

s.t.

maxs∈{1,2}

{
∑ C(s)y

i (σ)
}
≤ U

This paper (2022)

In view of the fact that the proposed problem is an NP-hard one, we propose a branch-
and-bound method to find an exact solution. For more details on branch-and-bound,
the reader could refer to Zegordi et al. [29] and Wu et al. [25]. On the other hand, we
also propose some simulated annealing algorithms (SA) and two variants of simulated
annealing hyper heuristics to find near-optimal solutions. For details on SA or SAHH,
readers can refer to Kirkpatrick et al. [30], Bıçakcı et al. [31], Azimi [32], Anagnostopoulos
and Koulinas [33], Bai et al. [34], and Liang et al. [35].

The several contributions of this article include: (1) The presentation of a new COSP
with two agents as well as scenario-dependent component processing times and release
dates. (2) The proposal of a branch-and-bound algorithm along with six properties and

Mathematics 2022, 10, 1545 3 of 17

a lower bound to find the optimal solution. (3) The proposal of three heuristics and two
variants of simulated annealing hyper heuristics in order to find near-optimal solutions.
(4) The execution of simulation tests to evaluate the performances of all proposed methods.

The rest of this study is organized as follows. Section 2 describes the notations, defines
the problem, proposes lower bound and six dominance properties, and outlines a branch-
and-bound algorithm to optimally solve the problem. Section 3 discusses three local search
heuristics and two variants of simulated annealing hyper heuristics to obtain optimal or
near-optimal solutions. In Section 4, we empirically investigate the performance of the
proposed heuristics in generating optimal or near-optimal solutions for the considered
problem. Finally, we conclude the paper in Section 5.

2. Problem Definition and Properties

Throughout this paper, we use the following notations.
Notations
N = {1, 2, . . . , n}: represents a set of n jobs (orders);
Φ = {x, y}: denotes the set of two agents, x and y;
Ox

i (O
y
i): denotes a customer order i from agent x (y), i ∈ N;

ΩN =
{

OΦ
1 , OΦ

2 , · · · , OΦ
n
}

: presents a set of n customer orders, where OΦ
i (or in brief, order

i) presents a customer order i from agent x or agent y;
Ox =

⋃
i∈N Ox

i , Oy =
⋃

i∈N Oy
i ;

M = {1, 2, . . . , m}: represents a set of indexes of m parallel machines,M1, M2, .., Mm;
s: scenario of customer order parameters, s = 1, 2;
σ, σ′: denote two full schedules of n customer orders;
δ, δ′: denote two partial schedules of n customer orders;
t(s)x
iυ (or t(s)yiυ): is the component processing time of a customer order OΦ

i of agent x (or agent
y) on a machine Mv, υ ∈ M, s = 1, 2;
r(s)x

i

(
or r(s)yi

)
: denotes the ready (or release) time of a customer order i of agent x (or agent

y), i ∈ N;
[]: presents the position of a customer order in a schedule;

C(s)x
[k] (σ) (or C(s)y

[k] (σ)): denotes the completion time of a customer order, say i, of agent x (or
agent y) scheduled in the k-th position in σ, i ∈ N, where
C(s)x
[k] (σ) = maxυ∈M

{
max

{
C(s)x
[k−1](σ), r(s)x

i

}
+ t(s)x

iυ

}
or

C(s)y
[k] (σ) = maxυ∈M

{
max

{
C(s)y
[k−1](σ), r(s)yi

}
+ t(s)yiυ

}
, s = 1, 2.

2.1. Problem Definition

Let DPm denote the m dedicated machines used to produce m components of each
job, and sdpt represent the scenario-dependent processing times of the components. Fol-
lowing the standard three-field classification of Perez-Gonzalez and Framinan [11] and
Framinan et al. [9], to define the DPm → 0|ri, 2-agent, sdpt|(maxs∈{1,2}

{
∑ C(s)x

i (σ)
}

/maxs∈{1,2}

{
∑ C(s)y

i (σ)
}
≤ U) problem considered in this paper, consider a set of n

customer orders belonging to n different customers, in which a customer order has m
components to be processed on m parallel machines, and where a given component of
each customer order is processed on the pre-specified dedicated machine. These orders
are from two agents, agent x and agent y. Due to the fact that some factors of significant
uncertainties are present, it is assumed that a customer order has scenario-dependent
component processing times t(s)x

iv (t(s)yiv) on machine Mv, v ∈ M, and a scenario-dependent

ready time r(s)x
i (or r(s)yi), s = 1, 2. Furthermore, the orders of agent y have a common upper

limit U on their completion time.
With the above description and notations, the problem considered in this paper, the

DPm→ 0|ri, 2-agent, sdpt| (maxs∈{1,2}

{
∑ C(s)x

i (σ)
}

/maxs∈{1,2}

{
∑ C(s)y

i (σ)
}
≤ U) prob-

lem, is one of finding an appropriate schedule, among all possible schedules, to minimize

Mathematics 2022, 10, 1545 4 of 17

the maximum of the total completion time of all customer orders that belong to agent x
and are subject to the following constraint—that the maximum of the total completion time
of the customer orders belonging to agent y should be no greater than an upper bound
(U) for scenario s = 1, 2. In other words, we wish to determine a robust optimal schedule
to minimize maxs∈{1,2}

{
∑ C(s)x

i (σ)
}

, and which is subject to maxs∈{1,2}

{
∑ C(s)y

i (σ)
}
≤ U.

Given that Wu et al. [5] and Lenstra et al. [36] respectively showed that the problems
1
∣∣rj
∣∣∑ Cx

j : ∑ Cy
j and 1

∣∣rj
∣∣∑ Cj ≤ U are NP-hard, it follows that the problem considered in

this paper is also an NP-hard problem. This can be summarized as follows.

Theorem 1. The DPm→ 0|ri, 2-agent, sdpt|(maxs∈{1,2}

{
∑ C(s)x

i (σ)
}

/maxs∈{1,2}

{
∑ C(s)y

i (σ)
}
≤ U)

problem is NP-hard.

Below is an illustrative example with a feasible solution to the problem under study.
Consider a two-agent order schedule σ, with two orders and two scenarios to be processed
on two machines; then, let (t(1)x

11 , t(1)x
12 , r(1)x

1) = (5, 6, 0) (t(2)x
11 , t2(1)x

12 , r(2)x
1) = (7, 3,1) for

order x, while (t(1)y11 , t(1)y12 , r(1)y1) = (2, 1, 2) (t(2)y11 , t(2)y12 , r(2)y1) = (3, 2, 2) for order y. Let
σ = (Ox

1 , Oy
2), and let U = 12.

The completion times for each order scheduled in σ for scenario 1 are calculated
as follows:

C(1)x
[1] (σ) = max

{
r(1)x

1 + t(1)x
11 , r(1)x

1 + t(1)x
12

}
= max{0 + 5, 0 + 6} = 6

C(1)y
[2] (σ) = max{max{5, 2}+ 2, max{6, 2}+ 1} = max{7, 7} = 7

The completion times for each order scheduled in σ for scenario 2 are calculated
as follows:

C(2)x
[1] (σ) = max

{
r(2)x

1 + t(2)x
11 , r(2)x

1 + t(2)x
12

}
= max{1 + 7, 1 + 3} = 8

C(2)y
[2] (σ) = max{max{8, 2}+ 3, max{4, 2}+ 2} = max{11, 6} = 11

Since maxs∈{1,2}

{
∑ C(s)y

i (σ)
}
= max

{
C(1)y
[2] (σ), C(2)y

[2] (σ)
}
= max{7, 11} ≤ 12 = U,

the objective function is given by the following equation:

maxs∈{1,2}

{
∑ C(s)x

i (σ)
}
= max

{
C(1)x
[1] (σ), C(2)x

[1] (σ)
}
= max{6, 8} = 8

2.2. Proposed Lower Bound

To solve this intractable problem, we will derive several properties and a lower bound
to be used in a branch-and-bound algorithm (Ogan and Azizoglu [37]) to accelerate the
process finding an exact solution. Assume that δ is a specified partial schedule with q
customer orders, while δ′ denotes the undetermined set containing (n − q) customer orders.
For the simplification of the notation, we set (n − q) = nx + ny, where nx(ny) denotes the

number of unscheduled customer orders for agent x (agent y). Furthermore, we set θ
(s)
v

to be the completion time of the last customer order on Mv, v ∈ M, for s = 1, 2, in δ,
and θ(s) = maxυ∈M

{
θ
(s)
v

}
, i.e., C(s)

[q] (δ) = θ(s). To obtain the proposed lower bound, we
only choose nx x-agent orders to schedule on the (q + 1)-th, (q + 2)-th, . . . , and (q + nx)-th
positions appended immediately after the q-th position. From the previous definitions,
therefore, it follows that:

C(s)x
[q+1](σ) = maxυ∈M

{
max

{
C(s)
[q] , r(s)x

[q+1]

}
+ t(s)x

[q+1]v

}
> θ(s) + ∑υ∈M t(s)x

[q+1]v/m

Mathematics 2022, 10, 1545 5 of 17

C(s)x
[q+2](σ) = maxυ∈M

{
max

{
C(s)
[q+1], r(s)x

[q+2]

}
+ t(s)x

[q+2]v

}
> θ(s) +

{
∑υ∈M t(s)x

[q+1]v + ∑υ∈M t(s)x
[q+1]v

}
/m.

Similarly, we have the following:

C(s)x
[q+nx]

(σ) = maxυ∈M

{
max

{
C(s)
[q+nx−1], r(s)x

[q+nx]

}
+ t(s)x

[q+nx]v

}
> θ(s) +∑nx

j=1 ∑υ∈M t(s)x
[q+j]v/m.

Therefore, the total completion times for nx x-agent orders can be summarized
as follows:

∑nx
j=1 C(s)x

[q+j](σ) > nxθ(s) + ∑nx
j=1(nx − j + 1)∑υ∈M t(s)x

[q+j]v/m, for s = 1, 2.

For the schedule σ, we have the equation below:

∑n
j=1 C(s)x

[j] (σ) > ∑q
j=1 C(s)x

[j] (σ) + nxθ(s) + ∑nx
j=1(nx − j + 1)∑υ∈M t(s)x

[q+j]v/m, for s = 1, 2.

Therefore, we have the following equation:

maxs=1,2

{
∑q

j=1 C(s)x
[j] (σ) + ∑nx

j=1 C(s)x
[q+j](σ)

}
> ∑2

s=1 ∑q
j=1 C(s)x

[j] (σ) + nxθ
(s) + ∑nx

j=1(nx − j + 1)∑υ∈M t(s)x
[q+j]v/2m.

Using the fact that the maximum value is larger than the mean value and a lemma,
as defined by Hardy et al. [38], the proposed lower bound (lbdd) can be summarized
as follows.

Proposition 1. lbdd = ∑2
s=1 ∑

q
j=1 C(s)x

[j] (σ) + nxθ
(s)
min + ∑nx

j=1(nx − j + 1)t(s)x
(q+j)∗/2m,

where t(s)x
q+j∗ = ∑υ∈M t(s)x

[q+j]v, and t(s)x
(q+1)∗ ≤ . . . ≤ t(s)x

(q+nx)∗ is the non-decreasing order of{
t(s)x
q+1∗ , . . . , t(s)x

q+nx∗

}
.

2.3. Dominance Properties

Consider two order sequences , σ = (δ, OΦ
i , OΦ

j , δ′) and σ′ = (δ, OΦ
j , OΦ

i , δ′), in which
δ, δ′ are two subsequences. To prove that “σ is no worse than sequence σ′”, we need to
confirm that for s = 1, 2, C(s)x

i (σ) +C(s)x
j (σ) < C(s)x

j (σ′) +C(s)x
i (σ′) and C(s)x

j (σ) ≤ C(s)x
i (σ′).

Furthermore, recall that θ(s)v is the completion time of the last job in the δ subsequence of
schedule σ or σ′ on machine Mv, v ∈ M, s = 1, 2. With these defined conditions, we describe
the following six properties to curtail the search for an optimal solution. The details of
proofs of Property 1 are provided, while other properties are omitted because they are
similar to those of Property 1.

Property 1. For any two customer orders OΦ
i and OΦ

j from agent x to be scheduled adjacent to

each other, if ∀ s = 1, 2, maxυ∈M

{
t(s)x
iv

}
≤ maxυ∈M

{
t(s)x

jv

}
, r(s)x

j > r(s)x
i ≥ maxυ∈M

{
θ
(s)
v

}
,

and r(s)x
j ≤ r(s)x

i + maxυ∈M

{
t(s)x
iv

}
, then sequence σ is not worse than sequence σ′.

Proof. Suppose that there are q customer orders scheduled in the subsequence δ of σ(or σ′),
and that the complete time of the last job is C(s)

[q] . According to the definition:

C(s)x
i (σ) = maxυ∈M

{
max

{
C(s)x
[q] , r(s)x

i

}
+ t(s)x

iυ

}
, (1)

C(s)x
j (σ) = maxυ∈M

{
max

{
C(s)x

i (σ), r(s)x
j

}
+ t(s)x

jυ

}
, (2)

Mathematics 2022, 10, 1545 6 of 17

C(s)x
j
(
σ′
)
= maxυ∈M

{
max

{
C(s)x
[q] , r(s)x

j

}
+ t(s)x

jυ

}
, (3)

C(s)x
i
(
σ′
)
= maxυ∈M

{
max

{
C(s)x

j
(
σ′
)
, r(s)x

i

}
+ t(s)x

iυ

}
. (4)

Applying the given condition r(s)x
j > r(s)x

i ≥ maxυ∈M

{
θ
(s)
v

}
to (1) and (3), we have

the following:

C(s)x
i (σ) = r(s)x

i + maxυ∈M

{
t(s)x
iv

}
, C(s)x

j
(
σ′
)
= r(s)x

j + maxυ∈M

{
t(s)x

jv

}
, for s = 1, 2.

Further applying the given condition r(s)x
j ≤ r(s)x

i + maxυ∈M

{
t(s)x
iv

}
to C(s)x

i (σ):

C(s)x
j (σ) = r(s)x

i + maxυ∈M

{
t(s)x
iv

}
+ maxυ∈M

{
t(s)x

jv

}
, (5)

and further applying r(s)x
j > r(s)x

i to C(s)x
j (σ′), we have the following equation:

C(s)x
i
(
σ′
)
= r(s)x

j + maxυ∈M

{
t(s)x

jv

}
+ maxυ∈M

{
t(s)x
iv

}
. (6)

Hence, from Equations (5) and (6), we have the following:

C(s)x
i
(
σ′
)
− C(s)x

j (σ) = r(s)x
j − r(s)x

i > 0.

Combine Equations (1), (2), and (5) with inequality (6), we have the following:
[C(s)x

j (σ′) + C(s)x
i (σ′)]− [C(s)x

i (σ) + C(s)x
j (σ)] = 2(r(s)x

j − r(s)x
i) +

(
maxυ∈M

{
t(s)x

jv

}
−

maxυ∈M

{
t(s)x
iv

})
> 0, indicating that sequence σ is not worse than sequence σ′. �

Property 2. For any two customer orders OΦ
i and OΦ

j from agent x to be scheduled adjacent to each

other, if ∀ s = 1, 2, r(s)x
i ≥ maxυ∈M{θs

v}, and r(s)x
j > r(s)x

i + maxυ∈M

{
t(s)x
iv

}
, then sequence σ is

not worse than sequence σ′.

Property 3. For any two customer orders OΦ
i and OΦ

j from agent x to be scheduled adjacent

to each other, if ∀ s = 1,2, max
{

r(s)x
i , r(s)x

j

}
≤ minυ∈M{θs

v}, and maxυ∈M

{
θs

v + t(s)x
iv

}
<

maxυ∈M

{
θs

v + t(s)x
jv

}
, then sequence σ is not worse than sequence σ′.

Property 4. For any two customer orders OΦ
i and OΦ

j from an agent, x to be scheduled adjacent

to each other, if ∀ s = 1, 2, max
{

r(s)x
i , r(s)x

j

}
≤ minυ∈M{θs

v}, and maxυ∈M

{
θs

v + t(s)x
iv

}
<

maxυ∈M

{
θs

v + t(s)x
jv

}
, then sequence σ is not worse than sequence σ′.

Property 5. If ∃ Oy
i ∈ δ′ and ∀ s = 1, 2, ∑k∈δ C(s)y

[k] > U, then σ = (δ, δ′) can be eliminated
from the search for an optimal (robust) schedule. (Note that δ denotes the scheduled part, while δ′

denotes the unscheduled part.)

Property 6. If ∃ Oy
i ∈ δ′ and ∀ s = 1, 2, ∑k∈δ C(s)y

[k] + maxυ∈M

{
max

{
θ
(s)
v , r(s)yi

}
+ t(s)yiv

}
>

U, then σ = (δ, δ′) can be eliminated from the search for an optimal (robust) schedule.

Mathematics 2022, 10, 1545 7 of 17

2.4. Proposed Branch-and-Bound Algorithm

The lower bound described above, the six dominance properties, and the best near-
optimal solution obtained from the proposed heuristics in the next section are used to
describe the proposed branch-and-bound algorithm (B&B) by using the depth-first method
for the small-sized job case in this problem. The details of the B&B algorithm are provided
as follows.

Algorithm 1 A branch-and-bound method

00: Input a set M = {1, 2, . . . , m} of m parallel machines and a set N = {1, 2, . . . , n} of n orders with

scenario-dependent component processing times t(s)x
iv (t(s)yiv) and ready times r(s)x

i (or r(s)yi), i = 1,2,

. . . ,n}; criterion function: Minimize maxs∈{1,2}

{
∑ C(s)x

i (σ)
}

, subject to maxs∈{1,2}

{
∑ C(s)y

i (σ)
}
≤ U.

01: Input the best heuristic solution with an upper bound.
02: Start to branch from the root node by appending each order to create a new node.
03: For each active node, (i) find the lower bound based on proposition 1 in πc; then, (ii) evaluate if the

lower bounds ≥ the incumbent upper bound and cut those nodes and all nodes below them in the
branching tree.

04: Delete the unwanted nodes from the branching tree by property 1 to property 6.
05: To determine if the node is complete or not, we do the following:

(i) find its criterion function equal to maxs∈{1,2}

{
∑ C(s)x

i (σ)
}

;

(ii) evaluate if this criterion function is smaller than the upper bound, then update it with the new
one and keep the corresponding schedule;

(iii) For the remaining nodes, branch from the node with the minimum lower bound to create a set of
new active nodes.

06: Repeat step 02 through step 05 until all nodes have been visited, and set the final complete schedule as σ.
07: Output the final complete schedule σ as an optimal solution.

3. Simulated Annealing Hyper-Heuristic

In this section, we propose three heuristics and two variants of a simulated annealing
hyper-heuristic with different cooling temperatures for finding optimal or near-optimal
solutions to the problem. To investigate the effect of the customer orders’ component
scenario-dependent processing times, we consider three types of combinations of the
processing times tΦs

iυ for each customer order, s = 1, 2; i.e.:

(i) 0.5maxυ∈M

{
r(1)Φi + t(1)Φiυ

}
+ 0.5maxυ∈M

{
r(2)Φi + t(2)Φiυ

}
;

(ii) 0.5minυ∈M

{
r(1)Φi + t(1)Φiυ

}
+ 0.5minυ∈M

{
r(2)Φi + t(2)Φiυ

}
;

and

(iii) 0.5
(

r(1)Φi + ∑υ∈M t(1)Φiv

)
+ 0.5(r(2)Φi + ∑υ∈M t(2)Φiv).

Based on these three formulas, we schedule customer orders using the smallest pro-
cessing time (SPT) first rule to obtain three initial schedules, SMM, Smm, and Smean. To
ensure good quality for the approximate solutions, we consider the two following policies:
(1) We improve each of the SMM, Smm, and Smean by using a pairwise interchange method
and record these three heuristics as Mpi, mpi, and meanpi, respectively. (2) We use these
three improved heuristics as three initial seeds in a simulated annealing super-heuristic algo-
rithm. They are termed as SAHM, SAHm, and SAHmean. We propose a simulated annealing
hyper-heuristic algorithm (SAH), in which the low-level heuristics may be based on the
proposed eight candidate mutation operators. They are termed as HL1, HL2, ..., and HL8.

The frequency (coded as fi) of the improvement of a low-level heuristic HLi is recorded
when the accumulated performance of HLi is obtained in each cycle. The selection probabil-
ity P(HLi) for HLi is defined as fi/ ∑8

i=1 fi. These low-level heuristics are selected randomly
based on the values of the selection probabilities (P(HL1), P(HL2), . . . , P(HL8)). For the
first cycle (or Icmax=1), the selection probabilities of these low-level heuristics are set to be
equal, i.e., fi = 1, i = 1, . . . , 8. For Icmax > 1, the probabilities are determined according
to the corresponding low-level heuristic additive performance. To ensure the diversity of

Mathematics 2022, 10, 1545 8 of 17

all low-level heuristics in the list, we set the minimum value fi = max{ fi, 1}. With these
definitions, the details of the eight proposed low-level heuristics are described below:

HL1: Two-order swap heuristic.
HL2: One step to the right heuristic.
HL3: Two steps to the right heuristic.
HL4: Two randomly selected orders, Oi, Oj, where 1 ≤ I < j < n, and swap both orders with

their immediately succeeding orders.
HL5: Two randomly selected orders, Oi, Oj, where 1 < i < j ≤ n, and swap both orders with

their closest preceding orders.
HL6: Two randomly selected orders, Oi, Oj, where 1 ≤ i < i + 1 < j ≤ n, swap the order in

front Oj with its immediately succeeding order, and swap another Oi with its closest
preceding order.

HL7: Two randomly selected orders Oi, Oj, where 1 < i < j < n, swap the order in front
Oj with its closest preceding order, and swap another Oi with its immediately suc-
ceeding order.

HL8: The current order of jobs is reversed.

For any two schedules σ and σt, we set RTC(σ) = max
s=1,2

∑i∈Ox C(s)x
[i] (σ) and

RTC(σt) = max
s=1,2

∑i∈Ox C(s)x
[i] (σt) as the values of their objective function. Let Icmax denote

the maximum number of cycles for SAHs, and (Ti, Tf, Cf, Nr) denote the initial temperature,
the final temperature, the cooling factor, and the maximum number of iterations per cycle.
Then, we describe below the steps of the SAHs algorithms.

Algorithm 2 The steps of the SAHs procedure

01: Input Icmax, Nr, Ti, Tf, and Cf
02: Input each initial sequence σ and its objective function RTC(σ)
03: Set T = Ti; fk = 1, k = 1, . . . , 8; i_no = 0
04: Do while {i_no ≤ Icmax and T > Tf}
05: num = 0
05: Do while {num ≤ Nr}
06: Randomly select an HLk by the roulette wheel according to their probabilities
07: Utilize it to form a new sequence σt and to find the RTC(σt) of σt
08: If Lt = f(st), RTC(σt) < RTC(σ), replace σ with σt; otherwise, replace σ with σt using the probability

exp(−(RTC(σt)− RTC(σ))/RTC(σ)T)
09: num = num + 1 and fk = fk + 1
10: End do
11: Update fk/ ∑8

k=1 fk for each HLk; T = T ×Cf; i_no = i_no +1
12: End do
13: Output final sequence σ and its objective function RTC(σ).

In addition to the three heuristics, Mpi, mpi, and meanpi, developed to solve the
studied problem, we employ two variants of the SAH algorithms labeled as (SAHM,
SAHm, SAHmean) and (SAHMb, SAHmb, SAHmeanb), respectively. Both variants use
the three initial schedules SMM, Smm, Smean, respectively, similar to the seeds in the above
SAH algorithm procedure. However, SAHMb, SAHmb, and SAHmeanb use the modified
temperature formula from Bai et al. [34] as T = T/(1 + βT), where β =

(
Ti − Tf

)
∗

Nr/(Icmax *Nr*Ti ∗ Tf), to fit the studied problem.

4. Computational Results

This section presents the results of extensive simulation experiments, performed to
determine the effectiveness of the branch-and-bound algorithm, three local heuristics (Mpi,
mpi, meanpi), and six SAHs algorithms (SAHM, SAHm, SAHmean, SAHMb, SAHmb,
SAHmeanb) in solving the considered problem. The instances generated are described
as follows. The processing times of customer orders were generated from the uniform
distribution U(1, 100) for scenario 1 and from U(1, 200) for scenario 2. Following the design
of Reeves [39], the order release (ready) times were generated from the uniform distribution

Mathematics 2022, 10, 1545 9 of 17

U(0, 100nλ) for scenario 1 and from the uniform distribution U(0, 200nλ) for scenario 2,
where n is the number of orders and λ is a control variable. Three different types of problem
instances were created according to the values of λ at 0.25, 0.5, and 0.75. To generate a
feasible problem instance, we first generated ny orders of agent y to put before nx orders,
computed the total completion times for scenario 1 and scenario 2, and then set the value
of the upper bound at U = 2.5×max

s=1,2

{
∑i∈Oy C(s)y

[i]

}
, where 2.5 was a tested number that

ensured a feasible instance.

4.1. Tuning the Parameters in SAH Algorithms

To obtain appropriate values of related parameters in the SAH algorithms, the number
of customer orders was set at n = 10 and the number of machines was set at m = 3, where(
nx, ny

)
= (5, 5). The component processing time (t(1)Φiυ) of an order was generated

from a uniform distribution U(1, 50), while the processing time t(2)Φiυ was generated from

another uniform distribution U(1, 100). Meanwhile, the ready time (r(1)Φi) of order I for
scenario one (s = 1) was generated from a uniform distribution U(1, 50·λ·n), while the
ready time (r(2)Φi) of order I for scenario two (s = 2) was generated from another uniform
distribution U(1, 100·λ·n), where λ was taken as 0.25. The value of the upper bound
was set at 2.5×max

s=1,2

{
∑i∈Oy C(s)y

[i]

}
, where 2.5 was a tested number that ensured a feasible

instance. One hundred problem instances were tested for each combination of parameters.
The final temperature was set at Tf = 10−8 to tune all the values of the parameters in the
SAH algorithms.

The average error percentage (AEP) was used as the index of performance;
i.e., AEP = [(HA − O*)/O*] × 100[%], where HA is the total completion time of the or-
ders belonging to agent x obtained by using three heuristics (Mpi, mpi, meanpi) or six
SAHs (SAHM, SAHm, SAHmean, SAHMb, SAHmb, SAHmeanb), and O* is the total com-
pletion time of the orders belonging to agent x obtained by using the branch-and-bound
algorithm. For simplicity, all the determined parameters of SAHM will be used in the
other SAHs.

The proposed SAHs have four parameters, namely initial temperature (Ti), cooling
factor (Cf), the runs of low-level loops for local improvement (Nr), and the runs of top-
level loops (Icmax). With Cf = 0.95, Nr = 1000, and Icmax = 15, a simulation was conducted
under a variation in Ti, from 10−5 to 106, with multiples of 10 times each. As shown in
Figure 1a, the AEP reached the lowest point when Ti was equal to 0.1; hence, the optimal
setting for Ti was 0.1.

With Ti = 0.1, Nr = 1000, and Icmax = 15, a simulation was conducted under a variation
in Cf, from 0.90 to 0.99, with increments of 0.1 each. As shown in Figure 1b, the AEP
approximated zero (below 0.01%) when Cf was equal to 0.91, indicating an effective
reduction of AEP; hence, the optimal setting for Cf was 0.91.

With Ti = 0.1, Cf = 0.91, and Icmax = 15, a simulation was conducted under a variation
in Nr, from 200 to 1000, with increments of 50 each. As shown in Figure 1c, the AEP reached
its minimum when Nr was equal to 850, also indicating an effective reduction of AEP with
an increase in Nr; hence, the optimal setting for Nr was 850.

Finally, with Ti = 0.1, Cf = 0.91, and Nr = 850, a simulation was conducted under a
variation in Icmax, from 10 to 30, with increments of two each. As shown in Figure 1d, the
AEP was the lowest when Icmax was equal to 18, 22, 24, 26, 28, and 30; hence, the optimal
setting for Icmax was 22.

After previous tested results, we adopted the parameters Ti = 0.1, Cf = 0.91, Nr = 850,
and Icmax = 22 used in SAH algorithms for the following tested problems.

Mathematics 2022, 10, 1545 10 of 17

Figure 1. Behavior of related parameter tuning in SAHs algorithms (n = 10), (a) initial temperature;
(b) cooling factor; (c) times of local improvement; (d) No. of cycles.

4.2. Small-n Experimental Results Analysis

For a small number of orders, the number of jobs is set at n = 8 and 10, and the machine
number is set at m = 2, 3, and 4. To evaluate their impacts on the algorithms, the numbers
of x-agent order and y-agent order (nx, ny) are set at (2, 6), (4, 4), and (6, 2) for n = 8, and at
(3, 7), (5, 5), and (7, 3) for n = 10. A set of 100 instances were randomly generated for each
combination of n, m, nx, and λ. Consequently, a total of 5400 problem instances were tested.
The algorithms were set to skip to the next set of data if the number of nodes exceeded 108.

The impacts of the number of orders (n), machine number (m), the number of x-agent
orders (nx), and the control parameter of the range of release dates (λ) on the performance
of the branch-and-bound algorithms, three heuristics, and the six SAH algorithms are
shown in Table 2.

Table 2. A summary of the performance of the branch-and-bound algorithm.

n m Node CPU_Time

8 2 3540 0.0299
3 4649 0.0442
4 4707 0.0489

10 2 141,867 0.7474
3 140,400 0.8877
4 187,833 1.3859

nx

8 2 3913 0.0409
4 2891 0.0331
6 6092 0.0491

10 3 127,915 0.8616
5 117,367 0.7827
7 224,819 1.3766

λ

8 0.25 4047 0.0406
0.50 4001 0.0388
0.75 4848 0.0438

10 0.25 112,313 0.7410
0.50 144,859 0.9204
0.75 212,928 1.3595

Mathematics 2022, 10, 1545 11 of 17

To measure the performance of the branch-and-bound algorithm, we recorded the
average number of nodes and the average execution times (in seconds) for n = 8 and 10.
Table 2 presents its capability, and the mean nodes and CPU times increase as n dramatically
increases from 8 to 10 (columns 3 and 4 of Table 1). As demonstrated in Table 2, the mean
nodes and CPU times increase as m increases regardless of the number of jobs n. When the
number of x-agent orders (nx in Table 2) becomes equivalent to half of the number of total
orders (n), the mean nodes and CPU times are lower than other values of nx independent
of the number of jobs n. As the range of release dates becomes larger (λ increases from
0.25 to 0.75), the search space for the studied problem becomes wider; thus, the nodes and
CPU times increase, especially for n = 10.

For the three heuristics, Mpi, mpi, and meanpi, and the six SAH algorithms, we record
the AEP of the objective function; the AEP = [(HA − O*)/O*] × 100[%], where HA and
O* are the values of the objective function obtained by running heuristics/SAHs and the
branch-and-bound algorithm, respectively. The results are summarized in Table 3.

Table 3. Performance of heuristics and SAH algorithms for a small n.

AEP(%)

n m Mpi mpi meanpi SAHM SAHm SAHmean SAHMb SAHmb SAHmeanb

8 2 10.33 10.96 11.41 0.0000 0.0064 0.0000 0.0297 0.0315 0.0238
3 10.89 11.64 11.76 0.0001 0.0009 0.0004 0.0332 0.0435 0.0312
4 11.21 11.71 11.89 0.0000 0.0001 0.0000 0.0311 0.0261 0.0298

10 2 15.84 16.29 16.59 0.0029 0.0046 0.0026 0.0482 0.0603 0.0538
3 16.35 16.38 16.74 0.0007 0.0055 0.0062 0.0435 0.0320 0.0498
4 16.83 17.37 17.31 0.0048 0.0014 0.0048 0.0783 0.0515 0.0545

nx

8 2 8.23 8.77 8.88 0.0001 0.0001 0.0004 0.0698 0.0717 0.0694
4 14.03 15.21 15.56 0.0000 0.0073 0.0000 0.0242 0.0294 0.0154
6 10.17 10.33 10.62 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 3 12.94 13.54 13.48 0.0077 0.0115 0.0136 0.1567 0.1314 0.1442
5 18.17 18.93 19.09 0.0007 0.0000 0.0000 0.0133 0.0124 0.0139
7 17.92 17.57 18.07 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

λ

8 0.25 17.62 18.76 19.25 0.0001 0.0073 0.0004 0.0698 0.0700 0.0641
0.50 9.78 10.27 10.51 0.0000 0.0001 0.0000 0.0175 0.0306 0.0172
0.75 5.04 5.28 5.30 0.0000 0.0000 0.0000 0.0068 0.0006 0.0035

10 0.25 26.45 27.02 27.60 0.0069 0.0097 0.0108 0.1340 0.0967 0.1247
0.50 14.07 14.49 14.37 0.0002 0.0018 0.0014 0.0244 0.0349 0.0219
0.75 8.50 8.53 8.68 0.0012 0.0000 0.0014 0.0116 0.0123 0.0115

mean 13.58 14.06 14.28 0.0014 0.0032 0.0023 0.0440 0.0408 0.0405

Concerning the impact of the machine number (m) on the three heuristics and six SAH
algorithms, the results in Table 3 show that there is not much difference in the performance
of the AEP for heuristics or SAHs. As for the impacts of the number of x-orders (nx) on the
three heuristics and six SAH algorithms, it was observed that the three heuristics performed
the worst when nx = ny, and the AEPs decreased (except for the SAHm at n = 8) as nx
increased for the six SAHs algorithms. It can also be observed in Table 2 that the AEP
declines as the value of λ increases from 0.25 to 0.75 for almost all nine heuristics/algorithms
(except for the SAHM at n = 10). This means that the wider the release dates of job orders,
the better the solution quality resulting from these nine heuristics/algorithms. When the
three heuristics and six SAH algorithms are divided into three groups, the best group is
(SAHM, SAHm, SAHmean) with the lowest AEPs at (0.0014, 0.0032, 0.0023), the second is

Mathematics 2022, 10, 1545 12 of 17

(SAHMb, SAHmb, SAHmeanb) with AEPs at (0.0440, 0.0408, 0.0405), and the worst is (Mpi,
mpi, meanpi) with the AEPs at (13.58, 14.06, 14.28). Figures 2 and 3 depict this peculiarity.

Figure 2. Boxplot for n = 8 and n = 10.

Figure 3. Boxplot for small n.

To further analyze the statistically significant differences of the solution quality among
the three heuristics and six SAH algorithms, we made use of the SAS software in conducting
an ANOVA (analysis of variance) on the AEPs for the variables, algorithms, n, m, nx, and
λ. However, we found that the normality assumption of the linear model did not hold.

Mathematics 2022, 10, 1545 13 of 17

Therefore, the nonparametric Friedman test was utilized to differentiate the performance of
the nine heuristics/SAH algorithms. Based on the sum of ranks of the AEP calculated for
each of the 54 (n·m·nx·λ = 2·3·3·3) blocks of the 100 test problem instances, the Friedman
test showed that the p-value was less than 0.0001 (with a chi-square value of 374.4 and
eight degrees of freedom). These test results verify that the AEP samples do not follow
the same distribution at the level of significance α = 0.05. To further compare the pairwise
differences among the three heuristics and six SAH algorithms, we applied the WNMT test
(Wilcoxon–Nemenyi–McDonald–Thompson procedure; Holland et al. [40]).

Table 4 (column 3) shows the sums of the rank of the AEPs across the 54 blocks for
the nine heuristics/SHA algorithms. The WNMT test shows that (SAHM, SAHm, SAH-
mean, SAHMb, SAHmb, SAHmeanb) is a better performing group, with lower rank sums at
(148.5, 152.5, 154.5, 228.5, 232.5, 217.5), and the group (Mpi, mpi, meanpi) is a worse perform-
ing group, with rank sums at (410.0, 432.0, 454.0). The test confirms that the performances
of the two groups among the heuristics and SAH algorithms are statistically different at
α = 0.05. SAHM is the best overall performer for the problem instances containing a small
number of customer orders.

Table 4. The rank-sum of heuristics and SAHs algorithms.

Heuristic/Algorithm No. of Obs.
Rank Sum (Ri, i = 1, 2, . . . , 9)

Small n Large n

Mpi 54 410.0 453.0
mpi 54 432.0 461.0

meanpi 54 454.0 382.0
SAHM 54 148.5 157.0
SAHm 54 152.5 138.0

SAHmean 54 154.5 140.0
SAHMb 54 228.5 249.0
SAHmb 54 232.5 223.0

SAHmeanb 54 217.5 227.0
Note that the critical value of the WNMT test is approximated at 88.4. (Holland et al. [40]); i.e., two algorithms are
significantly different if |Ri − Rj| > 88.4.

Concerning the usage of the eight low-level heuristics and the variation of probabilities
of calling them for the SAHM, as displayed in Figure 4, HL7 was called the most often,
followed by HL6. However, HL8 was rarely called.

Figure 4. Variation of probabilities for low-level heuristics.

Mathematics 2022, 10, 1545 14 of 17

4.3. Large-n Experimental Results Analysis

In the set of experiments with a large number of orders, we set n = 80 and 100, and the
machine number at m = 10, 20, and 30. We set (nx, ny) at (20, 60), (40, 40), and (60, 20) for
n = 80, and (30, 70), (50, 50), and (70, 30) for n = 100 to evaluate their impacts on the
performance of the heuristics and the SAH algorithms. A set of 100 instances were randomly
generated for each case. Consequently, 5400 problem instances were tested. We recorded
the mean relative percentage deviance (RPD) for each of the three heuristics and six SAH
algorithms. The RPD was calculated as RPD = 100[(Hk − A∗)/A∗][%], where Hk was
obtained from each heuristic/algorithm, and A∗ was the smallest value among the Hks from
the three heuristics and six SAH algorithms. Table 5 summarizes the impacts of nx, m, and λ.

Table 5. Summary of performance of heuristics and SAH algorithms for large n.

RPD (%)

n m Mpi mpi meanpi SAHM SAHm SAHmean SAHMb SAHmb SAHmeanb

80 10 51.8 51.8 51.6 0.4 0.7 0.4 0.6 0.6 0.6
20 52.5 52.5 52.1 0.4 0.4 0.4 0.6 0.6 0.6
30 52.4 52.4 52.2 0.4 0.4 0.4 0.7 0.6 0.6

100 10 54.0 54.0 53.9 0.7 0.7 0.7 0.8 0.8 0.8
20 54.5 54.5 54.2 0.6 0.6 0.7 0.8 0.8 0.8
30 54.5 54.5 54.3 0.6 0.6 0.6 0.8 0.8 0.8

nx

80 20 37.5 37.5 37.3 0.6 0.8 0.6 0.6 0.5 0.5
40 54.2 54.2 53.9 0.5 0.5 0.5 0.8 0.8 0.8
60 65.0 65.0 64.7 0.1 0.1 0.1 0.5 0.5 0.5

100 30 41.9 42.0 41.8 0.8 0.9 0.8 0.6 0.6 0.6
50 55.4 55.4 55.1 0.7 0.7 0.8 0.9 0.9 0.9
70 65.7 65.7 65.4 0.4 0.4 0.4 0.9 0.9 0.9

λ

80 0.25 82.1 82.0 81.9 0.6 0.5 0.5 0.9 0.8 0.8
0.50 42.5 42.5 42.0 0.4 0.7 0.5 0.6 0.6 0.6
0.75 32.2 32.2 32.0 0.2 0.2 0.2 0.4 0.4 0.4

100 0.25 85.5 85.6 85.3 0.9 1.0 1.0 1.2 1.2 1.2
0.50 43.8 43.8 43.5 0.7 0.7 0.7 0.7 0.7 0.7
0.75 33.7 33.7 33.5 0.3 0.3 0.3 0.5 0.5 0.5

Total mean 53.3 53.3 53.1 0.6 0.6 0.6 0.7 0.7 0.7

Regarding the impact of machine number (m), the number of x-orders, and λ on
the three heuristics and six SAH algorithms, the trends of the RPD for the nine heuris-
tics/algorithms are quite similar to those of the small-sized number of orders, except that
the RPDs for the six SAH algorithms are now very close, and the difference in RPD between
any of the two SAHs is no greater than 0.1 (Table 5).

Moreover, from Table 5 and Figure 5, it can easily be seen that the better group
is (SAHM, SAHm, SAHmean, SAHMb, SAHmb, SAHmeanb), with lower the RPDs at
(0.6, 0.6, 0.6, 0.7, 0.7, 0.7), and that the worse group is (Mpi, mpi, meanpi), with RPDs at
(53.3, 53.3, 53.1).

To explore the statistical significance of the differences, a Friedman test was used to
differentiate the performance of the nine heuristics and SAH algorithms. Based on the sum
of ranks of the RPD calculated for each of the 54 blocks of 100 test problem instances, the
Freidman test showed that the p-value was less than 0.0001 (with a chi-square value at
331.1 and eight degrees of freedom). These test results verify that the RPD samples do not
follow the same distribution.

For the nine heuristics/algorithms, Table 4 (column 4) shows the sums of the rank
of the RPD across the 54 blocks. The WNMT test shows that (SAHM, SAHm, SAHmean,

Mathematics 2022, 10, 1545 15 of 17

SAHmb) is the best group with lower rank sums at (157.0, 138.0, 140.0, 223.0), and the
group (Mpi, mpi, meanpi) is the worst group with rank sums at (453.0, 461.0, 382.0). This
test confirms that the two groups of performances are statistically different at α = 0.05. The
SAHm is the best overall performer for a large-sized number of orders.

Overall, the performance of the proposed simulated annealing hyper-heuristic al-
gorithms (SAHM, SAHm, and SAmean) appear to be experimentally validated for the
considered problem.

Figure 5. Boxplots of algorithms for n = 80 and n = 100.

5. Conclusions

A two-agent customer order scheduling with scenario-dependent component pro-
cessing times and ready (release) times is considered in this study. The contributions
are as follows: We proposed a lower bound and established six dominance properties in
order to infuse them into a branch-and-bound algorithm to optimally solve this intractable
problem. To obtain approximate solutions, we then developed three heuristics, Mpi, mpi,
and meanpi, and six simulated annealing hyper-heuristic algorithms, SAHM, SAHm,
SAHmean, SAHMb, SAHmb, and SAHmeanb. The computer simulation’s experimental
results showed that SAHM, SAHm, and SAHmean performed better than the other SHA
algorithms and the three heuristics. Overall, although the performance of SAHmb for
large-sized problem instances is not statistically and significantly different from that of the
SAHM, SAHm, and SAHmean, the results suggest that SAHM, SAHm, and SAHmean can
be used to solve the problem because they are very efficient and can quickly find solutions
that are very close to the optimal solutions.

For a future study, we may consider performing a sensitivity analysis of the proposed
algorithms. Table 2 shows that B&B can only solve up to n = 10 problem instances due to
the weak ability of its properties or a lower bound. Therefore, another future study might
create more powerful properties to increase the efficacy of the B&B.

Author Contributions: Conceptualization, C.-C.W., J.N.D.G., W.-C.L. and S.-R.C.; methodology,
C.-C.W., J.N.D.G., W.-C.L., J.-H.C. and L.-Y.L.; software, W.-C.L., Y.-L.C. and J.-H.C.; validation,
S.-R.C., J.-H.C. and L.-Y.L.; formal analysis, C.-C.W., W.-C.L. and Y.-L.C.; investigation, C.-C.W.,
J.N.D.G., W.-C.L. and J.-H.C.; resources, C.-C.W. and S.-R.C.; data curation, C.-C.W., W.-C.L., Y.-L.C.

Mathematics 2022, 10, 1545 16 of 17

and J.-H.C.; writing—original draft preparation, C.-C.W., J.N.D.G. and W.-C.L.; writing—C.-C.W.,
J.N.D.G., W.-C.L. and L.-Y.L.; visualization, C.-C.W., W.-C.L. and Y.-L.C.; supervision, C.-C.W.,
J.N.D.G., W.-C.L. and S.-R.C.; project administration, C.-C.W., J.-H.C. and L.-Y.L.; funding acquisi-
tion, C.-C.W., S.-R.C. and L.-Y.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This research article was supported in part by the Ministry of Science and Technology of
Taiwan, MOST 110-2221-E-035- 082- MY2.

Data Availability Statement: The corresponding author will provide the relative data sets upon request.

Acknowledgments: The authors would like to thank the editor and the three referees for their
positive comments and useful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ahmadi, R.; Bagchi, U. Scheduling of Multi-Job Customer Orders in Multi-Machine Environments; ORSA/TIMS: Philadelphia, PA,

USA, 1990.
2. Ahmadi, R.; Bagchi, U. Coordinated Scheduling of Customer Orders; Working Paper; John E. Anderson Graduate School of

Management, University of California: Los Angeles, CA, USA, 1993.
3. Gupta JN, D.; Ho, J.C.; van der Veen, J.A. Single machine hierarchical scheduling with customer orders and multiple job classes.

Ann. Oper. Res. 1997, 70, 127–143. [CrossRef]
4. Baker, K.R.; Smith, J.C. A multiple-criterion model for machine scheduling. J. Sched. 2003, 6, 7–16. [CrossRef]
5. Wu, C.-C.; Wu, W.-H.; Chen, J.-C.; Yin, Y.; Wu, W.-H. A study of the single-machine two-agent scheduling problem with release

times. Appl. Soft Comput. 2013, 13, 998–1006. [CrossRef]
6. Agnetis, A.; Mirchandani, P.B.; Pacciarelli, D.; Pacifici, A. Scheduling problems with two competing agents. Oper. Res. 2004, 52,

229–242. [CrossRef]
7. Daniels, R.L.; Kouvelis, P. Robust Scheduling to Hedge against Processing Time Uncertainty in Single-Stage Production; Working Paper;

Fuqua School of Business, Duke University: Durham, NC, USA, 1992.
8. Daniels, R.L.; Kouvelis, P. Robust scheduling to hedge against processing time uncertainty in single-stage production. Manag. Sci.

1995, 41, 363–376. [CrossRef]
9. Framinan, J.M.; Perez-Gonzalez, P.; Fernandez-Viagas, V. Deterministic assembly scheduling problems: A review and classification

of concurrent-type scheduling models and solution procedures. Eur. J. Oper. Res. 2019, 273, 401–417. [CrossRef]
10. Agnetis, A.; Billaut, J.-C.; Gawiejnowicz, S.; Pacciarelli, D.; Soukhal, A. Multiagent Scheduling: Models and Algorithms; Springer:

Berlin/Heidelberg, Germany, 2014; Volume 10, pp. 978–983.
11. Perez-Gonzalez, P.; Framinan, J.M. A common framework and taxonomy for multicriteria scheduling problems with interfering

and competing jobs: Multi-agent scheduling problems. Eur. J. Oper. Res. 2014, 235, 1–16. [CrossRef]
12. Braga-Santos, S.; Barroso, G.; Prata, B. A size-reduction algorithm for the order scheduling problem with total tardiness

minimization. J. Proj. Manag. 2022, 7, 167–176. [CrossRef]
13. de Athayde Prata, B.; Rodrigues, C.D.; Framinan, J.M. A differential evolution algorithm for the customer order scheduling

problem with sequence-dependent setup times. Expert Syst. Appl. 2022, 189, 116097. [CrossRef]
14. Pinto Antonioli, M.; Diego Rodrigues, C.; de Athayde Prata, B. Minimizing total tardiness for the order scheduling problem with

sequence-dependent setup times using hybrid matheuristics. Int. J. Ind. Eng. Comput. 2022, 13, 223–236. [CrossRef]
15. Kouvelis, P.; Yu, G. Robust Discrete Optimization and Its Applications; Springer Science and Business Media: Berlin/Heidelberg,

Germany, 1997.
16. Yang, J.; Yu, G. On the robust single machine scheduling problem. J. Comb. Optim. 2002, 6, 17–33. [CrossRef]
17. Monch, L.; Balasubramanian, H.; Fowler, J.W.; Pfund, M.E. Heuristic scheduling of jobs on parallel batch machines with

incompatible job families and unequal release dates. Comput. Oper. Res. 2005, 32, 2731–2750. [CrossRef]
18. Aloulou, M.A.; Della Croce, F. Complexity of single machine scheduling problems under scenario-based uncertainty. Oper. Res.

Lett. 2008, 36, 338–342. [CrossRef]
19. Aissi, H.; Aloulou, M.A.; Kovalyov, M.Y. Minimizing the number of late jobs on a single machine under due date uncertainty.

J. Sched. 2011, 14, 351–360. [CrossRef]
20. Kasperski, A.; Zielinski, P. Robust discrete optimization under discrete and interval uncertainty: A survey. In Robustness Analysis

in Decision Aiding, Optimization, and Analytics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 113–143.
21. Wang, D.J.; Liu, F.; Jin, Y. A multi-objective evolutionary algorithm guided by directed search for dynamic scheduling. Comput.

Oper. Res. 2017, 79, 279–290. [CrossRef]
22. Liu, F.; Wang, S.; Hong, Y.; Yue, X. On the Robust and Stable Flowshop Scheduling Under Stochastic and Dynamic Disruptions.

IEEE Trans. Eng. Manag. 2017, 64, 539–553. [CrossRef]
23. Wang, J.B.; Liu, F.; Wang, J.J. Research on m-machine flow shop scheduling with truncated learning effects. Int. Trans. Inf. Res.

2019, 26, 1135–1151. [CrossRef]

http://doi.org/10.1023/A:1018913902852
http://doi.org/10.1023/A:1022231419049
http://doi.org/10.1016/j.asoc.2012.10.003
http://doi.org/10.1287/opre.1030.0092
http://doi.org/10.1287/mnsc.41.2.363
http://doi.org/10.1016/j.ejor.2018.04.033
http://doi.org/10.1016/j.ejor.2013.09.017
http://doi.org/10.5267/j.jpm.2022.1.001
http://doi.org/10.1016/j.eswa.2021.116097
http://doi.org/10.5267/j.ijiec.2021.11.002
http://doi.org/10.1023/A:1013333232691
http://doi.org/10.1016/j.cor.2004.04.001
http://doi.org/10.1016/j.orl.2007.11.005
http://doi.org/10.1007/s10951-010-0183-z
http://doi.org/10.1016/j.cor.2016.04.024
http://doi.org/10.1109/TEM.2017.2712611
http://doi.org/10.1111/itor.12323

Mathematics 2022, 10, 1545 17 of 17

24. Wang, D.J.; Liu, F.; Jin, Y. A proactive scheduling approach to steel rolling process with stochastic machine breakdown.
Nat. Comput. 2019, 18, 679–694. [CrossRef]

25. Wu, C.-C.; Gupta, J.N.D.; Cheng, S.-R.; Lin, B.M.; Yip, S.-H.; Lin, W.-C. Robust scheduling for a two-stage assembly shop with
scenario-dependent processing times. Int. J. Prod. Res. 2021, 59, 5372–5387. [CrossRef]

26. Xing, L.; Liu, Y.; Li, H.; Wu, C.-C.; Lin, W.-C.; Chen, X. A Novel Tabu Search Algorithm for Multi-AGV Routing Problem.
Mathematics 2020, 8, 279. [CrossRef]

27. Ren, T.; Zhang, Y.; Cheng, S.-R.; Wu, C.-C.; Zhang, M.; Chang, B.-Y.; Wang, X.-Y.; Zhao, P. Effective Heuristic Algorithms Solving
the Jobshop Scheduling Problem with Release Dates. Mathematics 2020, 8, 1221. [CrossRef]

28. Wu, C.C.; Bai, D.; Zhang, X.; Cheng, S.R.; Lin, J.C.; Wu, Z.L.; Lin, W.C. A robust customer order scheduling problem along with
scenario-dependent component processing times and due dates. J. Manuf. Syst. 2021, 58, 291–305. [CrossRef]

29. Zegordi, S.H.; Yavari, M. A branch and bound algorithm for solving large-scale single-machine scheduling problems with
non-identical release dates. Eur. J. Ind. Eng. 2018, 12, 24–42. [CrossRef]

30. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
31. Bıçakcı, P.S.; Derya, T.; Kara, İ. Solution approaches for the parallel machine order acceptance and scheduling problem with

sequence-dependent setup times, release dates and deadlines. Eur. J. Ind. Eng. 2021, 15, 295–318. [CrossRef]
32. Azimi, Z.N. Comparison of metaheuristic algorithms for Examination Timetabling Problem. J. Appl. Math. Comput. 2004, 16, 337.

[CrossRef]
33. Anagnostopoulos, K.P.; Koulinas, G.K. A genetic hyper heuristic algorithm for the resource constrained project scheduling

problem. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 27 September 2010; pp. 1–6.
34. Bai, R.; Blazewicz, J.; Burke, E.K.; Kendall, G.; McCollum, B. A simulated annealing hyper-heuristic methodology for flexible

decision support. 4OR 2012, 10, 43–66. [CrossRef]
35. Liang, X.-X.; Zhang, B.; Wang, J.-B.; Yin, N.; Huang, X. Study on flow shop scheduling with sum-of-logarithm-processing-times-

based learning effects. J. Appl. Math. Comput. 2019, 61, 373–388. [CrossRef]
36. Lenstra, J.K.; Rinnooy Kan, A.R.; Brucker, P. Complexity of machine scheduling problems. Ann. Discret. Math. 1977, 1, 343–362.
37. Ogan, D.; Azizoglu, M. A branch and bound method for the line balancing problem in U-shaped assembly lines with equipment

requirements. J. Manuf. Syst. 2015, 36, 46–54. [CrossRef]
38. Hardy, G.; Littlewood, J.; Polya, G. Inequalities; Cambridge Mathematical Library Series; Cambridge University Press: Cambridge,

UK, 1967.
39. Reeves, C. Heuristics for scheduling a single machine subject to unequal job release times. Eur. J. Oper. Res. 1995, 80, 397–403.

[CrossRef]
40. Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 751.

http://doi.org/10.1007/s11047-016-9599-5
http://doi.org/10.1080/00207543.2020.1778208
http://doi.org/10.3390/math8020279
http://doi.org/10.3390/math8081221
http://doi.org/10.1016/j.jmsy.2020.12.013
http://doi.org/10.1504/EJIE.2018.089879
http://doi.org/10.1126/science.220.4598.671
http://doi.org/10.1504/EJIE.2021.115171
http://doi.org/10.1007/BF02936173
http://doi.org/10.1007/s10288-011-0182-8
http://doi.org/10.1007/s12190-019-01255-0
http://doi.org/10.1016/j.jmsy.2015.02.007
http://doi.org/10.1016/0377-2217(93)E0290-E

	Introduction
	Problem Definition and Properties
	Problem Definition
	Proposed Lower Bound
	Dominance Properties
	Proposed Branch-and-Bound Algorithm

	Simulated Annealing Hyper-Heuristic
	Computational Results
	Tuning the Parameters in SAH Algorithms
	Small-n Experimental Results Analysis
	Large-n Experimental Results Analysis

	Conclusions
	References

