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Abstract: The study aims to analyze the degree of similarity of some molecules belonging to two
subgroups of Aminoalkylindoles. After extracting the molecules’ characteristics using Cheminfor-
matics methods, and the computation of the Tanimoto coefficients, dendrograms and heatmaps were
built to reveal the degree of similarity of the analyzed drugs. Some atom-pair similarities between
the molecules in the same group were detected. The clusters determined by the k-means method
divided the Benzoylindoles into two subgroups but kept all the Phenylacetylindoles together in the
same set. The activity spectrum of the elements in each group was also analyzed, and similarities
have been emphasized. The clustering has been validated using the Kruskal–Wallis test on the series
of computed probabilities of the main effects.
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1. Introduction

The consumption of drugs or psychotropic substances continues to be one of the
leading causes of global health problems and mortality among young people and adults [1].
In Europe, the number of drug users has risen alarmingly over the last 10 years, especially
among young people in the 14–18 age group [2]. Drug use and addiction produce adverse
effects such as emotional (depression, anxiety, or suicide), behavioral (especially aggression),
health (e.g., hepatitis B and C), educational/learning (profoundly affecting the long- and
short-term memory), brain damage (by brain contraction inducing decreased thinking or
impaired thinking perception and intuition, with severe impairment of the central nervous
system), and by causing road accidents [3].

Drugs are marketed as “party pills”, “legal highs”, “herbal highs”, “bath salts”, “labo-
ratory reagents”, “designer drugs”, “research chemicals”, or new psychoactive substances
(NPS). They represent a real challenge for public health because of their variety and multi-
plication speed [4,5].

The United Nations Office on Drugs and Crime (UNODC) [6] uses the term “new
psychoactive substances” (NPSs) for “substances of abuse, in pure form or in the form of
preparations, which are not controlled by the Single Convention on Narcotic Drugs or by
the United Nations Convention”. NPSs refer to recent drugs and other substances on the
market since the 1960s which are challenging to manage. In conformity with the World
Drug Report (2019), prepared by UNODC, approximately 271,000,000 people aged 15–64
have used drugs at least once, representing 5.5% of the world’s population. In other words,
1 in 18 people uses drugs, and from 2009–2017 there was an alarming increase in drug use
(about 30% worldwide) [6].

Psychoactive substances are part of different classes of chemical compounds whose
classification, according to their composition, is the most rigorous criterion, from a scientific
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point of view. Drugs are classified based on the following criteria: depending on their
source, legal or medical status, chemical structure, and psychoactive effect [7]. Given that
the psychoactive compounds added to the NPS list are constantly changing due to the con-
trol measures included in the differentiated legislation worldwide [8], the possible combi-
nations are huge, imposing a simplified classification obtained using Cheminformatics [9].

In Romania, the following substances with psychoactive potential have been identified
and are under national control: synthetic cannabinoids (SCs), amphetamines, barbiturates,
cocaine analogs, benzodiazepines, synthetic cathinone, phenethylamines, piperazines,
and tryptamines. SCs (also known as cannabimimetic or synthetic cannabinoid receptor
agonists) are substances similar to ∆9 -tetrahydrocannabinol (∆9-THC) that have the active
ingredient specific to cannabis, whose intoxication is slow, affecting perception, reflexes,
and body coordination [10].

SCs and designer drugs were created to analyze different receptors and neurotrans-
mitters to find other alternatives to traditional medicine [7]. SCs are sold to be smoked
in e-cigarettes in a liquid form, known as “herbal liquid” [1] or “spice-like” herbal mix-
tures [11]. Some SC derivatives (e.g., JWH series) are well-known and commercialized in
many European countries [12].

For many years, scientists have aimed to quickly identify and establish the correlations
between drug composition and consumption results and the possible ways to cure addiction
and overdose [13–15].

SCs are complex structural compounds with a high binding affinity and efficacity at
the CB1 and CB2 receptors [16,17]. In general, a drug must be metabolized in a specific
way to result in an appropriate chemical structure that matches these receptors [18].

SCs can be grouped into the following categories: (a) Classical cannabinoids (with a
structural relationship with ∆9-THC); (b) Non-classical cannabinoids; (c) Hybrid-forms
(different combinations of classical and non-classical cannabinoids); (d) Aminoalkylindoles
(AIs) or cannabinoid receptor agonists (with five structural chemical groups: Benzoylin-
doles, Phenylacetylindoles, Naphthylmethylindoles, Naphthoylindoles, and cannabinergic
compounds); (e) Eicosanoids (endocannabinoids) [13].

AIs represent the largest group of SCs that can create derivative compounds by adding
different substituents, such as alkyl, alkoxy, halogen, etc., to the aromatic ring systems,
among other relatively simple alterations. The structure of the Aminoalkylindoles group
with the first four subgroups is presented in Figure 1.
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In drug discovery, virtual screening (VS) became a powerful computational approach
used for screening libraries containing different molecules for finding those with desired
characteristics that will be subject to laboratory tests. VS is intended for boosting the
discovery of the candidates and reduce the number of those that should be experimentally
tested. VS has the main advantage of diminishing resources, cost, labor, and time.

The quantitative structure–activity relationship (QSAR) is one of the most powerful
approaches to VS due to its excellent hit rate and fast throughput. After collecting the
relevant data, QSAR computes the chemical descriptors on different levels of the molecular
structure representation to determine the similarities/dissimilarities of the investigated
structures. This is precisely what we intend to do in our work [19]. Here, we are using
QSAR to emphasize the similarities/dissimilarities of the studied elements.

QSAR relies on the hypothesis that the chemical structure is responsible for the activity,
so similar molecules are expected to have similar properties [20]. Still, activity cliffs (ACs)
can be noticed. ACs represent groups of molecules that have similar structures and are
active against the same target but exhibit high differences in potency. Since ACs capture
chemical modifications that strongly influence biological activity, they are of particular
interest in QSAR analysis [21].

Fingerprints are representations of specific molecular structures and may represent a
structural key within a molecule; for example, computed properties of a molecule (LogP,
Polar Surface area, Hydrogen Bond donor). Being more abstract than a structural key,
fingerprints are more general because they do not represent pre-defined patterns [22]. They
encode various descriptors of the molecular structure [23].

Different artificial intelligence approaches have been used in various domains for data
analysis in the last period. Cheminformatics is a tool used to examine statistical data related
to chemical structures. It has an essential role in accumulating, grouping, and analyzing
chemical data. It is successfully used for determining new entities that are the base of other
structures utilized to construct active molecules [24].

Utilizing an in silico method, one can predict pharmacokinetic parameters [25]. It
has been shown [26,27] that each computational procedure employed in drug discovery
has advantages and disadvantages. The rcdk, ChemmineR, and rpubchem packages of
R or RDKIT in Python (www.rdkit.org, accessed on 15 May 2021) are powerful tools
in Cheminformatics [28–34], helping scientists to group the information efficiently. The
Chemistry Development Kit (CDK) (https://cdk.github.io/, accessed on 15 May 2021) has
also been employed for the prediction of organic reactions, bioactivities of compounds, or
finding the maximally bridging rings in chemical structures [35–38].

This research has been realized using the R software and its specific packages for char-
acterizing 14 cannabinoids belonging to the Benzoylindoles and Phenylacetylindoles [39]
and detecting similarities between them. Performing the hierarchical clustering and k-
means algorithm resulted in grouping drugs by taking into account the computed de-
scriptors. The activity spectrum of the elements in each group has also been analyzed,
and similarities emphasized. The results come to validate the grouping of the molecules
in clusters.

2. Materials and Methods

Data on which the study relies have been retrieved as .sdf files from PubChem [40].
They are molecules from the Aminoalkylindoles class, as well as the Benzoylindole and
Phenylacetylindole subgroups.

Figure 2 contains the study flowchart. After importing the molecules (step 1), their
structures are drawn (step 2). The molecular formula (MF) and weights (MW), number and
types of atoms, and functional groups are determined (step 3). The descriptors computed
at the fourth stage, using the ChemmineOB package, are the Hydrogen Bond Acceptors
(HBA1, HBA2) and Donors (HBD), log P, the molar refractivity, and topological polar
surface area (TPSA) [39]. The reader may refer to [41–47] for details on these descriptors.
The descriptors are utilized to group the molecules into clusters.

www.rdkit.org
https://cdk.github.io/
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At the fifth stage, the atom-pairs (AP) are determined with the help of ChemmineR. AP
is formed by a pair of atoms and the shortest bond path length from one to the other [48,49].

Computation of the compounds’ similarity provides the sizes of the query and target
molecules, the Tanimoto [49,50] and overlap coefficients, indicating the degree of overlap-
ping of the pair of molecules (step 6).

The first form of the Tanimoto coefficient is:

SA,B =
∑m

i=1 nA,inB,i

∑n
i=1 n2

A,i + ∑n
i=1 n2

B,i −∑m
i=1 nA,inB,i

(1)

and the second one is:

SA,B =
∑m

i=1 min(nA,i, nB,i)

∑n
i=1 nA,i + ∑n

i=1 nB,i −∑m
i=1 min(nA,i, nB,i)

, (2)

nA,i (nB,i) being the number of the ith fragment in A (B).
If one is interested only in the absence/existence of unique fragments, both approaches

lead to the binary form [48,49].

SA,B = c/(a + b + c), (3)

where a (b) is the number of fragments contained only by A (B), and c is the number of
fragments common to A and B.
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Formula (3) is used in our study, together with the corresponding distance:

DA,B = [a + b]1/2, (4)

Generally, given two structures, A and B, the overlap coefficient is computed by:

cop =
|A ∩ B|

min{|A|, |B|} (5)

where |A| and |B| are, respectively, the numbers of elements of A and B, and A ∩ B is the
intersection of A and B.

To compute the Tanimoto index, the following fingerprints have been utilized: hierar-
chical elements count rings in a canonic Extended Smallest Set of Smallest Rings (ESSSR)
ring set, simple pairs of APs, simple atom nearest neighbors, detailed atom neighborhoods,
and simple SMART pattern.

The seventh stage aimed to group the molecules using binning [50,51], the Jarvis–
Patrick procedure [52], and hierarchical clustering. The Ward 2 algorithm [53,54] has been
chosen for hierarchical clustering because it minimizes the variance inside the clusters. The
k-means algorithm has also been run for clustering the molecules.

The last step was to predict the biological activities spectrum, reflecting the substance’s
interaction effects with physical entities [55]. For this aim, the algorithm proposed by
Lagunin et al. [55], implemented in PASS [56], has been used. It computes the probability
of each activity based on the structure descriptors. It returns a table that contains the
biological activities and the corresponding probabilities (the likelihood of activity to exist
(Paj) or not (Pij)).

# When Pa is greater than 0.7, the probability that the substance has the specified activity
in experimental conditions and is analogous to a pharmaceutical substance already
studied is high.

# When Pa is between 0.5 and 0.7, the substance may present the specified activity
in experimental conditions. However, the substance is different from the substance
already studied.

# When Pa is less than 0.5, the probability that the substance has the specified activity
is low. In the case when this activity is experimentally observed, it might be a new
chemical entity [56].

The most important activities (those with probabilities greater than 0.5) exhibited by
each molecule in the groups have been selected, and a table containing these probabilities
and those of the corresponding activities for all the molecules in a group has been built.
If a molecule does not have a certain activity, the assigned probability is zero. Using
these newly built series, the Kruskal–Wallis test [57] has been performed to test the null
hypothesis (H0) that the series come from the same distribution, at a significance level of
0.05. The same test has been performed for the series issued from both groups together.
These tests will confirm or reject the clustering from step 7. If the null hypothesis was
rejected, the test was performed for sub-groups to determine where the difference is.

3. Results and Discussion

The structures of the molecules from the Benzoylindole and Phenylacetylindole groups
(Group 1 and 2, respectively) are represented in Figure 3. They are accompanied by the
CID (compound ID) in PubChem. The CID, MF, and MW, the atoms’ species and functional
groups (present in at least one molecule), and their numbers, retrieved using ChemmineR,
are presented in Tables 1 and 2.
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Table 1. The CID, molecular formula, and MW of the studied drugs.

Benzoylindoles Phenylacetylindoles

CID Formula MW CID Formula MW

9889172 C20H19FINO 435.2738 44397641 C22H25NO2 335.4394
117587582 C20H19ClINO 451.7284 44397500 C21H22ClNO 339.8585
10226340 C22H23IN2O 458.3353 44397540 C22H25NO2 335.4394
56841530 C21H23NO2 321.4128 53494930 C24H28N2O2 376.4913
57507911 C21H23NO2 321.4128 11616723 C22H25NO 319.4400
57507905 C20H21NO2 307.3862 11493740 C22H25NO2 335.4394

56463 C23H26N2O3 378.4641 53394099 C25H29NO2 375.5033

Table 2. The atoms’ species and functional groups and their numbers.

Benzoylindoles Phenylacetylindoles

CID C H N O F Cl I R
3N

R
C

O
R

R
O

R

R
in

gs

A
ro

m
at

ic

CID C H N O F Cl I R
3N

R
C

O
R

R
O

R

R
in

gs

A
ro

m
at

ic

9889172 20 19 1 1 1 0 1 1 1 0 3 3 44397641 22 25 1 2 0 2 0 1 1 1 3 3
117587582 20 19 1 1 0 1 1 1 1 0 3 3 44397500 21 22 1 1 0 1 1 1 1 0 3 3
10226340 22 23 2 1 0 0 1 2 1 0 4 3 44397540 22 25 1 2 0 2 0 1 1 1 3 3
56841530 21 23 1 2 0 0 0 1 1 1 3 3 53494930 24 28 2 2 0 2 0 2 1 1 4 3
57507911 21 23 1 2 0 0 0 1 1 1 3 3 11616723 22 25 1 1 0 1 0 1 1 0 3 3
57507905 20 21 1 2 0 0 0 1 1 1 3 3 11493740 22 25 1 2 0 2 0 1 1 1 3 3

56463 23 26 2 3 0 0 0 2 1 2 4 3 53394099 25 29 1 2 0 2 0 1 1 1 4 3
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The molar weights in Group 1 are between 307.3862 (for C20H21NO2) and 458.3353
(for C22H23IN2O). Only one molecule contains F and Cl, and three, I. The molar weights
in Group 2 are between 335.4394 (for C20H21NO2) and 376.4913 (for C24H28N2O2). No
molecule contains F, and one, I. All contain Cl.

The molar weights in Group 2 are between 307.3862 (C22H25NO2) and 458.3353
(C22H23IN2O). Rings, most of them aromatic, are present in all structures of the studied molecules.

The computed descriptors are given in Table 3. The values of HBA1 are lower for the
first group than for the second, and HBD is absent for both groups. logP is generally lower
for Benzoylindoles (the highest value is 5.8860) than for Phenylacetylindoles (the highest
value is 6.0457). The molecule ID 53394099 has the highest hydrophilicity. TPSA varies in
more significant limits for Group 1 (22.00 to 43.70) than for Group 2 (22.00 to 34.47). The
higher the TPSA is, the lower the drug transport is.

Table 3. Molecules’ descriptors.

Group CID HBA1 HBA2 HBD logP MR TPSA

Benzoylindoles

9889172 20 2 0 5.6167 105.0705 22.00
117587582 20 2 0 5.8860 109.8155 22.00
10226340 25 3 0 4.8991 119.3305 25.24
56841530 25 3 0 5.0711 98.7945 31.23
57507911 25 3 0 5.0711 98.7945 31.23
57507905 23 3 0 4.6810 93.9875 31.23

56463 30 4 0 3.4594 114.3495 43.70

Phenylacetylindoles

44397641 27 3 0 5.2655 103.6015 31.23
44397500 23 2 0 5.9103 102.1195 22.00
44397540 27 3 0 5.2655 103.6015 31.23
53494930 31 4 0 4.4975 117.9125 34.47
11616723 26 2 0 5.5653 102.0755 22.00
11493740 27 3 0 5.2655 103.6015 31.23
53394099 31 3 0 6.0457 115.9085 31.23

Table 4 displays the values of the Tanimoto coefficients, indicating the similarities
of the atoms belonging to pairs of structures. The highest values were computed for the
couples (9889172, 117587582) and (57507911, 57507905) (with the coefficients 0.8497 and
0.8462, respectively) in Group 1, and (44397540, 11616723) and (44397500, 11616723) in
Group 2 (with the coefficients 0.8526 and 0.8467, respectively).

Table 4. Tanimoto coefficients for the atoms’ similarities.

Benzoilyndoles

CID 9889172 117587582 10226340 57507911 56841530 57507905 56463

9889172 1.0000
117587582 0.8462 1.0000
10226340 0.6788 0.6788 1.0000
57507911 0.6140 0.5376 0.5139 1.0000
56841530 0.5376 0.6140 0.5774 0.7250 1.0000
57507905 0.4901 0.4901 0.4859 0.8497 0.6635 1.0000

56463 0.4469 0.4469 0.5054 0.5425 0.5069 0.4953 1.0000

Phenylacetylindoles

CID 44397641 44397500 44397540 53494930 11616723 11493740 53394099

44397641 1.0000
44397500 0.6609 1.0000
44397540 0.7249 0.7840 1.0000
53494930 0.5777 0.5731 0.6873 1.0000
11616723 0.7000 0.8467 0.8526 0.6158 1.0000
11493740 0.7654 0.6802 0.7654 0.5888 0.7357 1.0000
53394099 0.5455 0.5545 0.6545 0.6882 0.5769 0.5490 1.0000
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Table 5 shows the similarities of pairs of atoms belonging to pair of molecules from
Benzoylindoles and Phenylacetylindoles. The highest value of the Tanimoto coefficient
corresponds to (9989172, 44397500). It is bigger than that corresponding to the couple
(57507905, 56463), whose molecules both belong to the first group.

Table 5. Similarities of pairs of atoms belonging to pair of molecules from Benzoylindoles
and Phenylacetylindoles.

CID 9889172 117587582 10226340 57507911 56841530 57507905 56463

44397641 0.4883 0.4883 0.4706 0.6364 0.6649 0.6029 0.4803
44397500 0.5248 0.5462 0.4913 0.5817 0.5249 0.4901 0.3915
44397540 0.4922 0.4922 0.4810 0.6842 0.6134 0.5937 0.4456
53494930 0.4566 0.4566 0.6087 0.5646 0.5139 0.4847 0.4595
11616723 0.5248 0.5248 0.5062 0.6677 0.5726 0.5333 0.42173
11493740 0.4884 0.4884 0.4741 0.6600 0.7194 0.6361 0.4934
53394099 0.4598 0.4598 0.4894 0.5000 0.4696 0.4244 0.4766

The similarities of the molecules’ couples, one belonging to Benzoylindoles and the
other to Phenylacetylindoles, indicated by the Tanimoto coefficient, are shown in Table 6.
The rank of the similarity is given in brackets. Minus (−) signifies that the similarity rank is
higher than eight. The molecule with the ID 53394099, absent from the table, has a similarity
rank higher than eight, along with all the molecules in the first group.

Table 6. The similarity of molecules’ couples, one of them belonging to Benzoylindoles and the other
to Phenylacetylindoles (Tanimoto coefficient). The number in the brackets represents the similarity
rank. Minus (−) signifies that the rank of similarity is higher than eight.

CID 9889172 117587582 10226340 7507911 56841530 57507905 56463

44397641 − − − − 0.6657 (5) 0.6040 (5) 0.4815 (7)
44397500 0.5262 (6) − − 0.6374 (7) − − −
44397540 − − − 0.6851 (3) 0.6145 (6) 0.5948 (6) −
53494930 − − 0.6096 (4) − − − −
11616723 0.5262 (7) 0.5262 (7) 0.5075 (7) − − 0.5347 (7) −
11493740 − − − 0.6609 (6) 0.7202 (4) 0.6371 (4) 0.4945 (6)

After the similarity analysis, the molecules were grouped in clusters using different
algorithms. For Group 1, the binning provided various numbers of clusters (1, 2, 7),
depending on the cutoff. The Jarvis–Patrick algorithm provided two (or one) clusters when
it took into account four (5 and 6) neighbors. The elbow method (Figure 4) selected the
number of clusters (three) in the k-means algorithm.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 20 
 

 

dendrograms indicate the similarity strength. The higher the branch between the two 
compounds is, the lower the similarity.  

 
Figure 4. The elbow method for determining the optimal number of clusters for Group 1 in the 
k-means algorithm. 

 
Figure 5. (a) The heatmap for Benzoylindoles; (b) The dendrogram for Benzoylindoles; (c) The 

heatmap for Phenylacetylindoles; (d) The dendrogram for Phenylacetylindoles. 

Figure 5a shows that the most similar molecules in Group 1 are those in the couples 
(9889172, 117587582) and (56841530, 579507911), for which the Tanimoto coefficient is 
equal to 0.900 and the overlap coefficient is 0.9583. The second highest similarity is be-

Figure 4. The elbow method for determining the optimal number of clusters for Group 1 in the
k-means algorithm.



Mathematics 2022, 10, 1543 9 of 19

Running the mentioned algorithm, we found two clusters with three elements and
one with one—ID 56463. Similar results were found for the second group.

Figure 5 contains the results of the hierarchical clustering for both groups. In the
heatmaps, the darker the color the higher the similarity of the compounds is. The squares in
dark blue are associated with the similarity 1—meaning a compound with itself. The dendro-
grams indicate the similarity strength. The higher the branch between the two compounds is,
the lower the similarity.
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Figure 5a shows that the most similar molecules in Group 1 are those in the couples
(9889172, 117587582) and (56841530, 579507911), for which the Tanimoto coefficient is equal
to 0.900 and the overlap coefficient is 0.9583. The second highest similarity is between
(10226340, 117587582) and (10226340, 9889172). Both have the overlap coefficient of 0.9583
and the Tanimoto one is equal to 0.8519.

Figure 5c shows that the highest similarity is that of the pairs (11616723, 44397500),
(44397500, 44397641), and (11616723, 44397641). The corresponding Tanimoto and the
overlap coefficients of the last two pairs are both 0.8846. The overlap coefficient (Tanimoto)
of the first couple is 0.9011 (0.9152).
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Figure 5b,d show that the distances between the elements in the Phenylacetylindoles
group are smaller than those between the molecules in the Benzoylindoles group, in
concordance with the results on the molecules’ similarity. It is also emphasized on the scale
from Figure 6, where the branches of the molecules in Group 1 are in black.
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Figure 6. The heatmap and dendrogram for all molecules. The black branches correspond to the
molecules in the first group.

An analogous approach was followed for the 14 molecules, without considering
the groups’ appurtenance. The heatmap and the dendrogram are shown in Figure 6. It
results that molecule 56463 presents the highest dissimilarities to the others. The most
similar Benzoylindoles are those with CIDs 9889172, 117587582 and those with CIDs
56481530, 957507905. Among the Phenylacetylindoles, the highest similarities are those of
the molecules with the second, third, and fourth CIDs in Table 6.

Figure 7 displays the clusters determined by the k-means algorithm, with k = 3.
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first two PCs.
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Phenylacetylindoles belong to the first cluster, confirming the previous findings. Ben-
zoylindoles with CIDs 9889172, 117587582, and 10226340 belong to one cluster, whereas
the other Benzoylindoles belong to another. Remark the concordance of this classification
with Figure 5b. At first sight, there is a disagreement between the molecules’ classification
by IUPAC in only two classes: Benzoylindoles and Phenylacetylindoles. This is not the
case, because the dendrogram (Figure 6) provides a classification based on the distances
between the molecules, putting together the dendrograms in Figures 5d and 6 and taking
into account the branches’ lengths, indicated under the dendrograms.

Moreover, the clustering provided in Figure 7 confirms the homogeneity of the ele-
ments in Group 2. The existence of two different clusters for the elements in Group 1 results
from applying the k-mean algorithm, with k = 3.

Table 7 presents the positive and negative effects of the molecules in Group 1 with
probabilities of apparition greater than or equal to 0.5.

Table 7. Positive and negative effects of the Benzoylindoles that appear with probabilities greater
than 0.5.

Positive Effects Negative Effects

CID Pa Effect Pa Effect

9889172 0.538 Antineurogenic pain 0.587 Photoallergy dermatitis
0.503 Nicotinic alpha4beta2 receptor antagonist 0.534 Allergic contact dermatitis

117587582 0.598 Lymphocytopoiesis inhibitor 0.664 Cyanosis
0.515 Oxidoreductase inhibitor 0.604 Tremor

0.604 Sleep disturbance
0.556 Edema
0.551 Drowsiness
0.548 Weight loss
0.533 Fibrosis, interstitial
0.509 Conjunctivitis
0.504 Sensory disturbance
0.503 Dizziness

10226340 0.775 Nicotinic alpha4beta4 receptor agonist 0.596 Twitching
0.731 Analgesic 0.535 Cyanosis
0.672 Antineurogenic pain 0.500 Sneezing
0.636 Analgesic, non-opioid
0.589 Nicotinic alpha6beta3beta4alpha5 receptor antagonist
0.544 Nicotinic alpha2beta2 receptor antagonist
0.538 Histamine antagonist
0.522 Antihistaminic

57507911 0.790 Antineurotic 0.754 Allergic contact dermatitis
0.744 Gluconate 2-dehydrogenase (acceptor) inhibitor 0.743 Shivering
0.695 5 Hydroxytryptamine release stimulant 0.693 Twitching
0.645 Aspulvinone dimethylallyltransferase inhibitor 0.639 Photoallergy dermatitis
0.636 Taurine dehydrogenase inhibitor 0.625 Myoclonus
0.627 Fibrinolytic 0.594 Torsades de pointes
0.618 Thromboxane B2 antagonist 0.582 Fibrosis, interstitial
0.614 Chlordecone reductase inhibitor 0.572 Delirium
0.606 Antieczematic 0.568 Gastrointestinal hemorrhage
0.563 Acrocylindropepsin inhibitor 0.561 Xerostomia
0.563 Calcium channel (voltage-sensitive) activator 0.522 Conjunctivitis
0.563 Chymosin inhibitor 0.516 Hypothermic
0.563 Saccharopepsin inhibitor 0.515 Dystonia
0.558 Amine dehydrogenase inhibitor 0.515 Cyanosis
0.551 Preneoplastic conditions treatment 0.512 Pseudoporphyria
0.540 Platelet aggregation inhibitor 0.506 Hematuria
0.537 Aldehyde oxidase inhibitor 0.504 Fibrillation, atrial
0.510 Gastrin inhibitor 0.503 Dysphoria
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Table 7. Cont.

Positive Effects Negative Effects

CID Pa Effect Pa Effect

56841530 0.735 Antineurotic 0.743 Shivering
0.744 Gluconate 2-dehydrogenase (acceptor) inhibitor 0.693 Twitching
0.620 5 Hydroxytryptamine release stimulant 0.640 Allergic contact dermatitis
0.606 Antieczematic 0.565 Gastrointestinal hemorrhage
0.606 Fibrinolytic 0.562 Photoallergy dermatitis
0.586 Thromboxane B2 antagonist 0.549 Torsades de pointes
0.582 Taurine dehydrogenase inhibitor 0.533 Myoclonus
0.577 Aspulvinone dimethylallyltransferase inhibitor 0.500 Xerostomia
0.551 Preneoplastic conditions treatment
0.542 Chlordecone reductase inhibitor
0.538 Platelet aggregation inhibitor
0.526 Calcium channel (voltage-sensitive) activator
0.516 Gastrin inhibitor
0.506 Membrane permeability inhibitor

57507905 0.802 Antineurotic 0.744 Allergic contact dermatitis
0.757 Gluconate 2-dehydrogenase (acceptor) inhibitor 0.733 Twitching
0.684 Aspulvinone dimethylallyltransferase inhibitor 0.723 Shivering
0.678 5 Hydroxytryptamine release stimulant 0.667 Photoallergy dermatitis
0.661 Chlordecone reductase inhibitor 0.636 Myoclonus
0.620 Amine dehydrogenase inhibitor 0.619 Fibrosis. interstitial
0.615 Fibrinolytic 0.614 Gastrointestinal hemorrhage
0.607 Taurine dehydrogenase inhibitor 0.594 Torsades de pointes
0.600 Thromboxane B2 antagonist 0.588 Delirium
0.596 Aldehyde oxidase inhibitor 0.577 Xerostomia
0.568 Antieczematic 0.546 Pseudoporphyria
0.545 Calcium channel (voltage-sensitive) activator 0.528 Dystonia
0.538 Platelet aggregation inhibitor 0.52 Dysphoria
0.534 Preneoplastic conditions treatment 0.519 Hypotonia
0.530 Acrocylindropepsin inhibitor 0.518 Nephritis
0.530 Chymosin inhibitor 0.517 Postural hypotension
0.530 Saccharopepsin inhibitor 0.515 Choreoathetosis
0.502 Acetylcholine neuromuscular blocking agent 0.510 Urinary retention

0.509 Hematuria
0.508 Hypothermic
0.502 Cyanosis
0.501 Conjunctivitis
0.499 Hepatitis

56463 0.862 Antineurotic 0.673 Twitching
0.685 Phobic disorders treatment 0.562 Galactorrhea
0.676 Chlordecone reductase inhibitor 0.554 Hepatitis
0.665 Gluconate 2-dehydrogenase (acceptor) inhibitor 0.524 Toxic. respiration
0.574 Insulysin inhibitor 0.523 Dystonia
0.563 Calcium channel (voltage-sensitive) activator 0.512 Nephritis
0.556 Aspulvinone dimethylallyltransferase inhibitor
0.546 Gastrin inhibitor

The effects that appear with probabilities between 0.3 and 0.5 are presented in Table S1
(Supplementary material) for the molecules in Group 1. The molecule 10226340 is likely to
act as a Nicotinic alpha4beta4 receptor agonist and Analgesic (Pa = 0.775, and Pa = 0.731,
respectively), the molecules 57507911, 56841530, and 57507905 are likely to act as an
Antineurotic and Gluconate 2-dehydrogenase (acceptor) inhibitor, and the molecule 56463
is expected to act as an Antineurotic. The molecules 9889172 (and 10226340) have a Pa >
0.5 (0.301) associated with the Antineurogenic pain and Nicotinic alpha4beta2 receptor
antagonist effects. Pa is greater than 0.5 for the Lymphocytopoiesis inhibitor effect for the
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molecule 117587582, and 0.5 > Pa > 0.3 for the same effect for 9889172 and 10226340. The
molecule 10226340 has an analgesic effect whose Pa = 0.731, whereas the same effect has an
associated probability of 0.448 (0.336) for the molecule 9889172 (117587582).

Effects such as Analgesic, Antineoplastic alkaloid, Glycosylphosphatidylinositol phospho-
lipase D inhibitor, Peptide agonist, Thromboxane B2 antagonist, and NADPH- cytochrome-c2
reductase inhibitor have probabilities between 0.3 and 0.5 for the molecules 9889172 and
117587582. Given that the molecules 9889172, 117587582, and 10226340 are in the same
cluster, the presence of these activities confirmed in experiments for one of the molecules
may indicate the same effect for the other molecules.

The adverse effects of 9889172 are not known well. Based on the actual knowledge,
only 10 such effects have been identified, such as Photoallergy dermatitis, Allergic contact
dermatitis (with 0.7 > Pa > 0.5), Cyanosis, Nail discoloration, and Torsades de pointes
(0.5 > Pa > 0.3). These effects are noted with probabilities between 0.3 and 0.5 for at least
one molecule in the same cluster. Effects related to the postural position damage and
respiratory issues have probabilities less than 0.5 for the molecules 117587582 and 10226340.
The confirmation by experiments of such effects for one of the molecules in the first cluster
will represent a warning for using the other two molecules in Cluster 1.

The analysis of the effects of the molecules in the second cluster emphasizes a high
concordance between their effects. All the positive effects are common. Some of them,
which do not appear in Table 8, appear in Table S1 from the Supplementary Materials,
with probabilities close to 0.5; for example, Saccharopepsin inhibitor, Chymosin inhibitor,
and Acrocylindropepsin inhibitor, with Pa = 0.491, Amine dehydrogenase inhibitor with
Pa = 0.49 for molecule 56841530, or Gastrin inhibitor (Pa = 0.484) for 57507905.

Table 8. Positive and negative effects of Phenylacetylindoles with probabilities greater than 0.5.

Positive Effects Negative Effects

CID Pa Effect Pa Effect

44397641 0.792 Antineurotic 0.820 Shivering
0.762 5 Hydroxytryptamine release stimulant 0.636 Twitching
0.717 Gluconate 2-dehydrogenase (acceptor) inhibitor 0.551 Sweating
0.680 Taurine dehydrogenase inhibitor 0.537 Hypothermic
0.655 Chlordecone reductase inhibitor 0.536 Pseudoporphyria
0.629 Antieczematic 0.526 Excitability
0.610 Thromboxane B2 antagonist 0.511 Torsades de pointes
0.568 Antiallergic
0.565 Preneoplastic conditions treatment
0.560 Aspulvinone dimethylallyltransferase inhibitor
0.529 General pump inhibitor
0.517 Mediator release inhibitor

44397500 0.720 Antineurotic 0.812 Twitching
0.605 Taurine dehydrogenase inhibitor 0.733 Shivering
0.601 Chlordecone reductase inhibitor 0.676 Akathisia
0.601 CYP2J substrate 0.666 Excitability
0.589 CYP2J2 substrate 0.665 Dysarthria
0.589 Gluconate 2-dehydrogenase (acceptor) inhibitor 0.626 Weight gain

0.579 Glycosylphosphatidylinositol phospholipase D
inhibitor

0.612
0.591

Myoclonus
Hypomania

0.561 Antiallergic 0.591 Multiple organ failure
0.535 Phobic disorders treatment 0.582 Fibrillation, atrial
0.516 Thromboxane B2 antagonist 0.580 Choreoathetosis

0.563 Dystonia
0.560 Delirium
0.557 Hypothermic
0.533 Reproductive dysfunction
0.517 Weakness
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Table 8. Cont.

Positive Effects Negative Effects

CID Pa Effect Pa Effect

44397540 0.766 Antineurotic 0.780 Shivering
0.682 Gluconate 2-dehydrogenase (acceptor) inhibitor 0.636 Twitching
0.600 Antieczematic 0.516 Hypothermic
0.589 Chlordecone reductase inhibitor
0.581 Antiallergic
0.574 5 Hydroxytryptamine release stimulant
0.561 Thromboxane B2 antagonist
0.551 Taurine dehydrogenase inhibitor
0.521 Preneoplastic conditions treatment
0.509 Mediator release inhibitor

53494930 0.797 Nicotinic alpha4beta4 receptor agonist 0.524 Extrapyramidal effect
0.713 Nicotinic alpha6beta3beta4alpha5 receptor antagonist
0.698 Nicotinic alpha2beta2 receptor antagonist
0.587 Gluconate 2-dehydrogenase (acceptor) inhibitor
0.539 General pump inhibitor
0.510 CYP2H substrate

11616723 0.657 Antineurotic 0.802 Twitching
0.611 Antieczematic 0.755 Shivering
0.583 CYP2J substrate 0.609 Sweating
0.580 Mediator release inhibitor 0.596 Acidosis
0.578 Taurine dehydrogenase inhibitor 0.551 Weakness
0.559 Endopeptidase So inhibitor 0.532 Excitability
0.557 Kidney function stimulant 0.515 Sneezing
0.554 Antiallergic 0.505 Muscle weakness
0.537 Thromboxane B2 antagonist 0.504 Euphoria
0.506 Carboxypeptidase Taq inhibitor
0.499 Gastrin inhibitor
0.497 CYP2C19 inhibitor

11493740 0.776 Antineurotic 0.793 Shivering
0.702 Gluconate 2-dehydrogenase (acceptor) inhibitor 0.569 Twitching
0.699 5 Hydroxytryptamine release stimulant 0.560 Hypothermic
0.643 Antieczematic 0.554 Sweating
0.632 Taurine dehydrogenase inhibitor 0.519 Excitability
0.608 Chlordecone reductase inhibitor 0.511 Torsades de pointes
0.589 Preneoplastic conditions treatment 0.502 Pseudoporphyria
0.587 Thromboxane B2 antagonist 0.499 Euphoria
0.571 Antiallergic
0.532 Mediator release inhibitor
0.531 General pump inhibitor
0.516 Aspulvinone dimethylallyltransferase inhibitor

53394099 0.753 Antineurotic 0.506 Hypercholesterolemic
0.661 Gluconate 2-dehydrogenase (acceptor) inhibitor 0.499 Sweating
0.562 Antidyskinetic
0.559 Nicotinic alpha6beta3beta4alpha5 receptor antagonist
0.545 Antiallergic
0.545 Antiasthmatic
0.507 Acetylcholine neuromuscular blocking agent
0.500 Nicotinic alpha2beta2 receptor antagonist
0.493 5 Hydroxytryptamine antagonist

The adverse effects listed for the molecule 56841530 (with Pa ≥ 0.5) are common with
those listed for 57507911 and 57507905. Fibrosis interstitial, Delirium, Dystonia, Dysphoria,
Hematuria, Hypothermic, Cyanosis, and Conjunctivitis are common in 57507911 and
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57507905, with Pa > 0.5, and appear for 56841530 (Table S1, Supplementary material) with
probabilities between 0.424 and 0.468.

The molecule 56463 has Antineurotic (Pa > 0.7), Gluconate 2-dehydrogenase (acceptor)
inhibitor, Calcium channel (voltage-sensitive) activator, Aspulvinone dimethylallyl trans-
ferase inhibitor, and Gastrin inhibitor (Pa > 0.54) positive effects, and Twitching, Hepatitis,
Dystonia, and Nephritis adverse effects (Pa > 0.512). These effects are common to the other
molecules in Group 2, with probabilities over 0.5. Still, there are common effects with
the other molecules in Group 2, with smaller probabilities, which explain the presence of
56463 in a separate cluster in Figure 7.

An analogous procedure has been applied to the Phenylacetylindoles. Table 8 contains
the positive and negative effects of the molecules in this group, with probabilities of
apparition greater than or equal to 0.5. All molecules but 53494930 have antineurotic effects,
all but 11616723 are Gluconate 2-dehydrogenase (acceptor) inhibitors, most of them act as
Taurine dehydrogenase inhibitors and Thromboxane B2 antagonists and antiallergics, with
probabilities greater than 0.5. Some molecules have the same properties with probabilities
between 0.3 and 0.5. For example, the molecules are Chlordecone reductase inhibitors, but
the probability for 53494930 is 0.434 (Table S2 in Supplementary material).

The main negative effects with probabilities above 0.5 for almost all Phenylacetylin-
doles are shivering, twitching, sweating, and hypothermic. Still, the following probabilities
have been computed: 0.478—44397500, 0.417—44397540, 0.439—53494950, 0.499—53394099.
For CID 11616723, the probability to act as hypothermic is 0.423. For 53394099, the following
probabilities have been computed: 0.387—shivering, 0.447—twitching, 0.286—hypothermic.
The effects that appear with probabilities between 0.3 and 0.5 are presented in Table S2
(Supplementary Materials).

To validate the clustering from Figure 7, the Kruskal–Wallis test has been performed
to the series of probabilities corresponding to the most significant effects of the elements in
both groups (presented in Tables 9 and 10).

Table 9. The series of probabilities used to perform the Kruskal–Wallis test on Group 1. The bold
numbers are probabilities less than 0.5.

ID 9889172 117587582 10226340 57507911 56841530 57507905 56463

5 Hydroxytryptamine release stimulant 0.000 0.000 0.000 0.695 0.620 0.678 0.483
Acetylcholine neuromuscular blocking agent 0.000 0.000 0.000 0.468 0.415 0.502 0.469
Acrocylindropepsin inhibitor 0.000 0.000 0.000 0.563 0.491 0.503 0.280
Aldehyde oxidase inhibitor 0.000 0.000 0.000 0.537 0.330 0.596 0.256
Amine dehydrogenase inhibitor 0.000 0.000 0.000 0.558 0.490 0.620 0.305
Analgesic 0.448 0.366 0.731 0.000 0.000 0.000 0.260
Analgesic, non-opioid 0.473 0.214 0.636 0.000 0.000 0.000 0.000
Antieczematic 0.000 0.000 0.000 0.563 0.606 0.568 0.000
Antihistaminic 0.000 0.118 0.522 0.161 0.118 0.161 0.000
Antineurogenic pain 0.538 0.270 0.672 0.367 0.314 0.383 0.315
Antineurotic 0.000 0.000 0.000 0.790 0.802 0.802 0.862
Aspulvinone dimethylallyltransferase inhibitor 0.000 0.000 0.000 0.645 0.577 0.684 0.556
Calcium channel (voltage-sensitive) activator 0.000 0.000 0.000 0.563 0.526 0.545 0.563
Chlordecone reductase inhibitor 0.000 0.000 0.000 0.563 0.542 0.661 0.676
Chymosin inhibitor 0.000 0.000 0.000 0.618 0.491 0.530 0.280
Fibrinolytic 0.000 0.000 0.000 0.614 0.606 0.615 0.314
Gastrin inhibitor 0.000 0.000 0.000 0.510 0.516 0.484 0.546
Gluconate 2-dehydrogenase (acceptor) inhibitor 0.000 0.000 0.000 0.744 0.744 0.757 0.665
Histamine antagonist 0.097 0.101 0.538 0.136 0.000 0.135 0.000
Insulysin inhibitor 0.000 0.000 0.000 0.387 0.274 0.409 0.574
Lymphocytopoiesis inhibitor 0.319 0.598 0.303 0.000 0.000 0.000 0.000
Membrane permeability inhibitor 0.000 0.000 0.000 0.429 0.505 0.398 0.000
Nicotinic alpha2beta2 receptor antagonist 0.000 0.000 0.544 0.000 0.000 0.000 0.000
Nicotinic alpha4beta2 receptor antagonist 0.503 0.000 0.301 0.000 0.000 0.000 0.000
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Table 9. Cont.

ID 9889172 117587582 10226340 57507911 56841530 57507905 56463

Nicotinic alpha4beta4 receptor agonist 0.000 0.000 0.755 0.000 0.000 0.000 0.000
Nicotinic alpha6beta3beta4alpha5
receptor antagonist 0.000 0.000 0.589 0.000 0.000 0.315 0.000

Oxidoreductase inhibitor 0.000 0.515 0.000 0.454 0.376 0.418 0.000
Platelet aggregation inhibitor 0.201 0.245 0.240 0.540 0.538 0.538 0.362
Phobic disorders treatment 0.000 0.000 0.000 0.000 0.374 0.342 0.685
Preneoplastic conditions treatment 0.000 0.000 0.000 0.551 0.551 0.534 0.246
Saccharopepsin inhibitor 0.000 0.000 0.000 0.614 0.491 0.530 0.280
Taurine dehydrogenase inhibitor 0.000 0.000 0.000 0.618 0.582 0.607 0.310
Thromboxane B2 antagonist 0.318 0.321 0.000 0.606 0.586 0.600 0.457

Table 10. The series of probabilities used to perform the Kruskal–Wallis test on Group 2. The bold
numbers are probabilities less than 0.5.

ID 44397641 44397500 44397540 53494930 11616723 11493740 53394099

5 Hydroxytryptamine release stimulant 0.762 0.468 0.574 0.497 0.383 0.699 0.493
Acetylcholine neuromuscular blocking agent 0.422 0.259 0.377 0.431 0.279 0.431 0.507
Antiallergic 0.568 0.561 0.581 0.425 0.554 0.571 0.545
Antiasthmatic 0.485 0.481 0.489 0.310 0.462 0.492 0.545
Antidyskinetic 0.416 0.397 0.405 0.000 0.395 0.413 0.562
Antieczematic 0.629 0.462 0.600 0.293 0.611 0.643 0.450
Antineurotic 0.792 0.720 0.766 0.428 0.657 0.776 0.753
Aspulvinone dimethylallyl- transferase inhibitor 0.560 0.000 0.489 0.000 0.319 0.516 0.348
Carboxypeptidase Taq inhibitor 0.369 0.449 0.369 0.000 0.506 0.333 0.000
Chlordecone reductase inhibitor 0.655 0.601 0.589 0.000 0.434 0.608 0.349
CYP2H substrate 0.000 0.000 0.394 0.510 0.000 0.446 0.461
CYP2J substrate 0.288 0.601 0.288 0.000 0.583 0.000 0.000
CYP2J2 substrate 0.340 0.589 0.340 0.000 0.497 0.308 0.000
Endopeptidase So inhibitor 0.355 0.429 0.308 0.000 0.559 0.318 0.000
General pump inhibitor 0.529 0.405 0.471 0.539 0.437 0.531 0.460
Gluconate 2-dehydrogenase (acceptor) inhibitor 0.717 0.589 0.682 0.587 0.434 0.702 0.661
Glycosylphosphatidylinositol phospholipase
D inhibitor 0.292 0.579 0.292 0.000 0.408 0.260 0.000

Kidney function stimulant 0.000 0.000 0.000 0.000 0.557 0.000 0.000
Mediator release inhibitor 0.517 0.402 0.509 0.189 0.580 0.532 0.397
Nicotinic alpha2beta2 receptor antagonist 0.303 0.350 0.303 0.698 0.376 0.272 0.500
Nicotinic alpha4beta4 receptor agonist 0.000 0.000 0.000 0.797 0.000 0.000 0.326
Nicotinic alpha6beta3beta4alpha5 receptor
antagonist 0.387 0.430 0.387 0.713 0.450 0.353 0.559

Phobic disorders treatment 0.000 0.535 0.000 0.000 0.000 0.000 0.000
Preneoplastic conditions treatment 0.565 0.420 0.521 0.000 0.365 0.589 0.298
Taurine dehydrogenase inhibitor 0.680 0.605 0.551 0.000 0.578 0.632 0.000
Thromboxane B2 antagonist 0.610 0.516 0.561 0.000 0.537 0.587 0.303

The main effects were considered those whose probabilities are higher than 0.5 for at
least one molecule. If another molecule has the same effect, the associated probability is
filled in Table 9 or Table 10, depending on the group to which it belongs. If the molecule
does not have a certain effect, the probability filled in the tale is zero.

The p-value for the test performed with all 14 series (putting together the effects from
Tables 9 and 10) is 0.000, so the null hypothesis can be rejected, meaning that there are
significant differences in the series distributions.

To distinguish the series resulting from the same distribution, the same test has been
performed for the first three molecules in Group 1 (belonging to the second cluster), the
last four molecules in Group 1 (belonging to the third cluster), and Group 2 (the third
cluster), respectively. The corresponding p-values are 0.4362, 0.1128, and 0.1004, respectively.
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Since all are higher than 0.05, it results that the series in each of the three clusters are not
significantly different from the viewpoint of their positive effects.

Similar tests, performed for the negative effects, lead to the same results. So, the
clustering is validated.

4. Conclusions

In this research, the authors utilized the Cheminformatics methods for the analysis
of the Benzoylindole and Phenylacetylindole groups of drugs that complete the knowl-
edge [39] about them. Similarity indices and clustering techniques have emphasized the
structural similarities and differences between these groups. The highest similarities exist
between the molecules in the second group. These are emphasized by the second group’s
dendrograms (the length of the highest branches being 0.3, the other being lower than 0.22).
By comparison, the branches’ sizes in the dendrogram of Group 1 are generally larger than
for Group 2.

The comparisons of the biological activities spectra show that the most similar activities
of the molecules in the first group are those of 57507911, 56841530, and 57507905, confirming
the grouping provided by the dendrogram (Figure 5b). Analogous conclusions can be
drawn from the dendrogram for Group 2 (Figure 5d).

Performing the k-means algorithm for k = 3 results in three clusters, one containing all
the molecules in Group 2, while the other two being formed by three and four molecules
in Group 1. Performing the same analysis for k = 2 results in two clusters (superposed to
Groups 1 and 2). Still, the best clustering is obtained for k = 3 because between the sum of
squares/total sum of squares of the distances is 52.0%, compared to only 31.6%, for k = 2.

To validate the clustering results, the probabilities of the main effects of the activity
spectra have been utilized to build series to which the Kruskal–Wallis test has been applied.
The test results are in concordance with the grouping issued by the k-means algorithm.

Given that the activity spectra have been determined with certain probabilities, fu-
ture experimental studies should confirm the findings related to particular actions of the
molecules of interest and the clustering validation. While this kind of experiment involves
human subjects, it is challenging and time-consuming to conduct it without considering the
necessary infrastructure, protocols that must be defined and followed, and the approvals
that must be obtained. Therefore, our study may be considered as the first step in larger
research on these two groups of drugs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10091543/s1, Table S1: Positive and negative effects of the
molecules in Group 1, and the probabilities of their activities; Table S2: Positive and negative effects
of the mol-ecules in Group 2, and the probabilities of their activities.
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