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Abstract

:

The study aims to analyze the degree of similarity of some molecules belonging to two subgroups of Aminoalkylindoles. After extracting the molecules’ characteristics using Cheminformatics methods, and the computation of the Tanimoto coefficients, dendrograms and heatmaps were built to reveal the degree of similarity of the analyzed drugs. Some atom-pair similarities between the molecules in the same group were detected. The clusters determined by the k-means method divided the Benzoylindoles into two subgroups but kept all the Phenylacetylindoles together in the same set. The activity spectrum of the elements in each group was also analyzed, and similarities have been emphasized. The clustering has been validated using the Kruskal–Wallis test on the series of computed probabilities of the main effects.
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1. Introduction


The consumption of drugs or psychotropic substances continues to be one of the leading causes of global health problems and mortality among young people and adults [1]. In Europe, the number of drug users has risen alarmingly over the last 10 years, especially among young people in the 14–18 age group [2]. Drug use and addiction produce adverse effects such as emotional (depression, anxiety, or suicide), behavioral (especially aggression), health (e.g., hepatitis B and C), educational/learning (profoundly affecting the long- and short-term memory), brain damage (by brain contraction inducing decreased thinking or impaired thinking perception and intuition, with severe impairment of the central nervous system), and by causing road accidents [3].



Drugs are marketed as “party pills”, “legal highs”, “herbal highs”, “bath salts”, “laboratory reagents”, “designer drugs”, “research chemicals”, or new psychoactive substances (NPS). They represent a real challenge for public health because of their variety and multiplication speed [4,5].



The United Nations Office on Drugs and Crime (UNODC) [6] uses the term “new psychoactive substances” (NPSs) for “substances of abuse, in pure form or in the form of preparations, which are not controlled by the Single Convention on Narcotic Drugs or by the United Nations Convention”. NPSs refer to recent drugs and other substances on the market since the 1960s which are challenging to manage. In conformity with the World Drug Report (2019), prepared by UNODC, approximately 271,000,000 people aged 15–64 have used drugs at least once, representing 5.5% of the world’s population. In other words, 1 in 18 people uses drugs, and from 2009–2017 there was an alarming increase in drug use (about 30% worldwide) [6].



Psychoactive substances are part of different classes of chemical compounds whose classification, according to their composition, is the most rigorous criterion, from a scientific point of view. Drugs are classified based on the following criteria: depending on their source, legal or medical status, chemical structure, and psychoactive effect [7]. Given that the psychoactive compounds added to the NPS list are constantly changing due to the control measures included in the differentiated legislation worldwide [8], the possible combinations are huge, imposing a simplified classification obtained using Cheminformatics [9].



In Romania, the following substances with psychoactive potential have been identified and are under national control: synthetic cannabinoids (SCs), amphetamines, barbiturates, cocaine analogs, benzodiazepines, synthetic cathinone, phenethylamines, piperazines, and tryptamines. SCs (also known as cannabimimetic or synthetic cannabinoid receptor agonists) are substances similar to Δ9 -tetrahydrocannabinol (Δ9-THC) that have the active ingredient specific to cannabis, whose intoxication is slow, affecting perception, reflexes, and body coordination [10].



SCs and designer drugs were created to analyze different receptors and neurotransmitters to find other alternatives to traditional medicine [7]. SCs are sold to be smoked in e-cigarettes in a liquid form, known as “herbal liquid” [1] or “spice-like” herbal mixtures [11]. Some SC derivatives (e.g., JWH series) are well-known and commercialized in many European countries [12].



For many years, scientists have aimed to quickly identify and establish the correlations between drug composition and consumption results and the possible ways to cure addiction and overdose [13,14,15].



SCs are complex structural compounds with a high binding affinity and efficacity at the CB1 and CB2 receptors [16,17]. In general, a drug must be metabolized in a specific way to result in an appropriate chemical structure that matches these receptors [18].



SCs can be grouped into the following categories: (a) Classical cannabinoids (with a structural relationship with Δ9-THC); (b) Non-classical cannabinoids; (c) Hybrid-forms (different combinations of classical and non-classical cannabinoids); (d) Aminoalkylindoles (AIs) or cannabinoid receptor agonists (with five structural chemical groups: Benzoylindoles, Phenylacetylindoles, Naphthylmethylindoles, Naphthoylindoles, and cannabinergic compounds); (e) Eicosanoids (endocannabinoids) [13].



AIs represent the largest group of SCs that can create derivative compounds by adding different substituents, such as alkyl, alkoxy, halogen, etc., to the aromatic ring systems, among other relatively simple alterations. The structure of the Aminoalkylindoles group with the first four subgroups is presented in Figure 1.



In drug discovery, virtual screening (VS) became a powerful computational approach used for screening libraries containing different molecules for finding those with desired characteristics that will be subject to laboratory tests. VS is intended for boosting the discovery of the candidates and reduce the number of those that should be experimentally tested. VS has the main advantage of diminishing resources, cost, labor, and time.



The quantitative structure–activity relationship (QSAR) is one of the most powerful approaches to VS due to its excellent hit rate and fast throughput. After collecting the relevant data, QSAR computes the chemical descriptors on different levels of the molecular structure representation to determine the similarities/dissimilarities of the investigated structures. This is precisely what we intend to do in our work [19]. Here, we are using QSAR to emphasize the similarities/dissimilarities of the studied elements.



QSAR relies on the hypothesis that the chemical structure is responsible for the activity, so similar molecules are expected to have similar properties [20]. Still, activity cliffs (ACs) can be noticed. ACs represent groups of molecules that have similar structures and are active against the same target but exhibit high differences in potency. Since ACs capture chemical modifications that strongly influence biological activity, they are of particular interest in QSAR analysis [21].



Fingerprints are representations of specific molecular structures and may represent a structural key within a molecule; for example, computed properties of a molecule (LogP, Polar Surface area, Hydrogen Bond donor). Being more abstract than a structural key, fingerprints are more general because they do not represent pre-defined patterns [22]. They encode various descriptors of the molecular structure [23].



Different artificial intelligence approaches have been used in various domains for data analysis in the last period. Cheminformatics is a tool used to examine statistical data related to chemical structures. It has an essential role in accumulating, grouping, and analyzing chemical data. It is successfully used for determining new entities that are the base of other structures utilized to construct active molecules [24].



Utilizing an in silico method, one can predict pharmacokinetic parameters [25]. It has been shown [26,27] that each computational procedure employed in drug discovery has advantages and disadvantages. The rcdk, ChemmineR, and rpubchem packages of R or RDKIT in Python (www.rdkit.org, accessed on 15 May 2021) are powerful tools in Cheminformatics [28,29,30,31,32,33,34], helping scientists to group the information efficiently. The Chemistry Development Kit (CDK) (https://cdk.github.io/, accessed on 15 May 2021) has also been employed for the prediction of organic reactions, bioactivities of compounds, or finding the maximally bridging rings in chemical structures [35,36,37,38].



This research has been realized using the R software and its specific packages for characterizing 14 cannabinoids belonging to the Benzoylindoles and Phenylacetylindoles [39] and detecting similarities between them. Performing the hierarchical clustering and k-means algorithm resulted in grouping drugs by taking into account the computed descriptors. The activity spectrum of the elements in each group has also been analyzed, and similarities emphasized. The results come to validate the grouping of the molecules in clusters.




2. Materials and Methods


Data on which the study relies have been retrieved as .sdf files from PubChem [40]. They are molecules from the Aminoalkylindoles class, as well as the Benzoylindole and Phenylacetylindole subgroups.



Figure 2 contains the study flowchart. After importing the molecules (step 1), their structures are drawn (step 2). The molecular formula (MF) and weights (MW), number and types of atoms, and functional groups are determined (step 3). The descriptors computed at the fourth stage, using the ChemmineOB package, are the Hydrogen Bond Acceptors (HBA1, HBA2) and Donors (HBD), log P, the molar refractivity, and topological polar surface area (TPSA) [39]. The reader may refer to [41,42,43,44,45,46,47] for details on these descriptors. The descriptors are utilized to group the molecules into clusters.



At the fifth stage, the atom-pairs (AP) are determined with the help of ChemmineR. AP is formed by a pair of atoms and the shortest bond path length from one to the other [48,49].



Computation of the compounds’ similarity provides the sizes of the query and target molecules, the Tanimoto [49,50] and overlap coefficients, indicating the degree of overlapping of the pair of molecules (step 6).



The first form of the Tanimoto coefficient is:


   S  A , B   =     ∑   i = 1  m   n  A , i    n  B , i       ∑   i = 1  n   n  A , i  2  +   ∑   i = 1  n   n  B , i  2  −   ∑   i = 1  m   n  A , i    n  B , i      



(1)




and the second one is:


   S  A , B   =     ∑   i = 1  m  min (  n  A , i   ,  n  B , i   )     ∑   i = 1  n   n  A , i   +   ∑   i = 1  n   n  B , i   −   ∑   i = 1  m  min (  n  A , i   ,  n  B , i   )     ,  



(2)




   n  A , i     (   n  B , i   )   being the number of the ith fragment in A (B).



If one is interested only in the absence/existence of unique fragments, both approaches lead to the binary form [48,49].


SA,B = c/(a + b + c),



(3)




where a (b) is the number of fragments contained only by A (B), and c is the number of fragments common to A and B.



Formula (3) is used in our study, together with the corresponding distance:


   D  A , B   =    [  a + b  ]    1 / 2   ,  



(4)







Generally, given two structures, A and B, the overlap coefficient is computed by:


       c  o p   =    |  A  ∩  B  |    min  {   | A |  ,  | B |   }     



(5)




where    | A |    and    | B |    are, respectively, the numbers of elements of A and B, and   A  ∩  B   is the intersection of A and B.



To compute the Tanimoto index, the following fingerprints have been utilized: hierarchical elements count rings in a canonic Extended Smallest Set of Smallest Rings (ESSSR) ring set, simple pairs of APs, simple atom nearest neighbors, detailed atom neighborhoods, and simple SMART pattern.



The seventh stage aimed to group the molecules using binning [50,51], the Jarvis–Patrick procedure [52], and hierarchical clustering. The Ward 2 algorithm [53,54] has been chosen for hierarchical clustering because it minimizes the variance inside the clusters. The k-means algorithm has also been run for clustering the molecules.



The last step was to predict the biological activities spectrum, reflecting the substance’s interaction effects with physical entities [55]. For this aim, the algorithm proposed by Lagunin et al. [55], implemented in PASS [56], has been used. It computes the probability of each activity based on the structure descriptors. It returns a table that contains the biological activities and the corresponding probabilities (the likelihood of activity to exist (  P  a j   ) or not (  P  i j   )).



	○

	
When Pa is greater than 0.7, the probability that the substance has the specified activity in experimental conditions and is analogous to a pharmaceutical substance already studied is high.




	○

	
When Pa is between 0.5 and 0.7, the substance may present the specified activity in experimental conditions. However, the substance is different from the substance already studied.




	○

	
When Pa is less than 0.5, the probability that the substance has the specified activity is low. In the case when this activity is experimentally observed, it might be a new chemical entity [56].







The most important activities (those with probabilities greater than 0.5) exhibited by each molecule in the groups have been selected, and a table containing these probabilities and those of the corresponding activities for all the molecules in a group has been built. If a molecule does not have a certain activity, the assigned probability is zero. Using these newly built series, the Kruskal–Wallis test [57] has been performed to test the null hypothesis (H0) that the series come from the same distribution, at a significance level of 0.05. The same test has been performed for the series issued from both groups together. These tests will confirm or reject the clustering from step 7. If the null hypothesis was rejected, the test was performed for sub-groups to determine where the difference is.




3. Results and Discussion


The structures of the molecules from the Benzoylindole and Phenylacetylindole groups (Group 1 and 2, respectively) are represented in Figure 3. They are accompanied by the CID (compound ID) in PubChem. The CID, MF, and MW, the atoms’ species and functional groups (present in at least one molecule), and their numbers, retrieved using ChemmineR, are presented in Table 1 and Table 2.



The molar weights in Group 1 are between 307.3862 (for C20H21NO2) and 458.3353 (for C22H23IN2O). Only one molecule contains F and Cl, and three, I. The molar weights in Group 2 are between 335.4394 (for C20H21NO2) and 376.4913 (for C24H28N2O2). No molecule contains F, and one, I. All contain Cl.



The molar weights in Group 2 are between 307.3862 (C22H25NO2) and 458.3353 (C22H23IN2O). Rings, most of them aromatic, are present in all structures of the studied molecules.



The computed descriptors are given in Table 3. The values of HBA1 are lower for the first group than for the second, and HBD is absent for both groups. logP is generally lower for Benzoylindoles (the highest value is 5.8860) than for Phenylacetylindoles (the highest value is 6.0457). The molecule ID 53394099 has the highest hydrophilicity. TPSA varies in more significant limits for Group 1 (22.00 to 43.70) than for Group 2 (22.00 to 34.47). The higher the TPSA is, the lower the drug transport is.



Table 4 displays the values of the Tanimoto coefficients, indicating the similarities of the atoms belonging to pairs of structures. The highest values were computed for the couples (9889172, 117587582) and (57507911, 57507905) (with the coefficients 0.8497 and 0.8462, respectively) in Group 1, and (44397540, 11616723) and (44397500, 11616723) in Group 2 (with the coefficients 0.8526 and 0.8467, respectively).



Table 5 shows the similarities of pairs of atoms belonging to pair of molecules from Benzoylindoles and Phenylacetylindoles. The highest value of the Tanimoto coefficient corresponds to (9989172, 44397500). It is bigger than that corresponding to the couple (57507905, 56463), whose molecules both belong to the first group.



The similarities of the molecules’ couples, one belonging to Benzoylindoles and the other to Phenylacetylindoles, indicated by the Tanimoto coefficient, are shown in Table 6. The rank of the similarity is given in brackets. Minus (−) signifies that the similarity rank is higher than eight. The molecule with the ID 53394099, absent from the table, has a similarity rank higher than eight, along with all the molecules in the first group.



After the similarity analysis, the molecules were grouped in clusters using different algorithms. For Group 1, the binning provided various numbers of clusters (1, 2, 7), depending on the cutoff. The Jarvis–Patrick algorithm provided two (or one) clusters when it took into account four (5 and 6) neighbors. The elbow method (Figure 4) selected the number of clusters (three) in the k-means algorithm.



Running the mentioned algorithm, we found two clusters with three elements and one with one—ID 56463. Similar results were found for the second group.



Figure 5 contains the results of the hierarchical clustering for both groups. In the heatmaps, the darker the color the higher the similarity of the compounds is. The squares in dark blue are associated with the similarity 1—meaning a compound with itself. The dendrograms indicate the similarity strength. The higher the branch between the two compounds is, the lower the similarity.



Figure 5a shows that the most similar molecules in Group 1 are those in the couples (9889172, 117587582) and (56841530, 579507911), for which the Tanimoto coefficient is equal to 0.900 and the overlap coefficient is 0.9583. The second highest similarity is between (10226340, 117587582) and (10226340, 9889172). Both have the overlap coefficient of 0.9583 and the Tanimoto one is equal to 0.8519.



Figure 5c shows that the highest similarity is that of the pairs (11616723, 44397500), (44397500, 44397641), and (11616723, 44397641). The corresponding Tanimoto and the overlap coefficients of the last two pairs are both 0.8846. The overlap coefficient (Tanimoto) of the first couple is 0.9011 (0.9152).



Figure 5b,d show that the distances between the elements in the Phenylacetylindoles group are smaller than those between the molecules in the Benzoylindoles group, in concordance with the results on the molecules’ similarity. It is also emphasized on the scale from Figure 6, where the branches of the molecules in Group 1 are in black.



An analogous approach was followed for the 14 molecules, without considering the groups’ appurtenance. The heatmap and the dendrogram are shown in Figure 6. It results that molecule 56463 presents the highest dissimilarities to the others. The most similar Benzoylindoles are those with CIDs 9889172, 117587582 and those with CIDs 56481530, 957507905. Among the Phenylacetylindoles, the highest similarities are those of the molecules with the second, third, and fourth CIDs in Table 6.



Figure 7 displays the clusters determined by the k-means algorithm, with k = 3.



Phenylacetylindoles belong to the first cluster, confirming the previous findings. Benzoylindoles with CIDs 9889172, 117587582, and 10226340 belong to one cluster, whereas the other Benzoylindoles belong to another. Remark the concordance of this classification with Figure 5b. At first sight, there is a disagreement between the molecules’ classification by IUPAC in only two classes: Benzoylindoles and Phenylacetylindoles. This is not the case, because the dendrogram (Figure 6) provides a classification based on the distances between the molecules, putting together the dendrograms in Figure 5d and Figure 6 and taking into account the branches’ lengths, indicated under the dendrograms.



Moreover, the clustering provided in Figure 7 confirms the homogeneity of the elements in Group 2. The existence of two different clusters for the elements in Group 1 results from applying the k-mean algorithm, with k = 3.



Table 7 presents the positive and negative effects of the molecules in Group 1 with probabilities of apparition greater than or equal to 0.5.



The effects that appear with probabilities between 0.3 and 0.5 are presented in Table S1 (Supplementary material) for the molecules in Group 1. The molecule 10226340 is likely to act as a Nicotinic alpha4beta4 receptor agonist and Analgesic (Pa = 0.775, and Pa = 0.731, respectively), the molecules 57507911, 56841530, and 57507905 are likely to act as an Antineurotic and Gluconate 2-dehydrogenase (acceptor) inhibitor, and the molecule 56463 is expected to act as an Antineurotic. The molecules 9889172 (and 10226340) have a Pa > 0.5 (0.301) associated with the Antineurogenic pain and Nicotinic alpha4beta2 receptor antagonist effects. Pa is greater than 0.5 for the Lymphocytopoiesis inhibitor effect for the molecule 117587582, and 0.5 > Pa > 0.3 for the same effect for 9889172 and 10226340. The molecule 10226340 has an analgesic effect whose Pa = 0.731, whereas the same effect has an associated probability of 0.448 (0.336) for the molecule 9889172 (117587582).



Effects such as Analgesic, Antineoplastic alkaloid, Glycosylphosphatidylinositol phospholipase D inhibitor, Peptide agonist, Thromboxane B2 antagonist, and NADPH- cytochrome-c2 reductase inhibitor have probabilities between 0.3 and 0.5 for the molecules 9889172 and 117587582. Given that the molecules 9889172, 117587582, and 10226340 are in the same cluster, the presence of these activities confirmed in experiments for one of the molecules may indicate the same effect for the other molecules.



The adverse effects of 9889172 are not known well. Based on the actual knowledge, only 10 such effects have been identified, such as Photoallergy dermatitis, Allergic contact dermatitis (with 0.7 > Pa > 0.5), Cyanosis, Nail discoloration, and Torsades de pointes (0.5 > Pa > 0.3). These effects are noted with probabilities between 0.3 and 0.5 for at least one molecule in the same cluster. Effects related to the postural position damage and respiratory issues have probabilities less than 0.5 for the molecules 117587582 and 10226340. The confirmation by experiments of such effects for one of the molecules in the first cluster will represent a warning for using the other two molecules in Cluster 1.



The analysis of the effects of the molecules in the second cluster emphasizes a high concordance between their effects. All the positive effects are common. Some of them, which do not appear in Table 8, appear in Table S1 from the Supplementary Materials, with probabilities close to 0.5; for example, Saccharopepsin inhibitor, Chymosin inhibitor, and Acrocylindropepsin inhibitor, with Pa = 0.491, Amine dehydrogenase inhibitor with Pa = 0.49 for molecule 56841530, or Gastrin inhibitor (Pa = 0.484) for 57507905.



The adverse effects listed for the molecule 56841530 (with Pa  ≥  0.5) are common with those listed for 57507911 and 57507905. Fibrosis interstitial, Delirium, Dystonia, Dysphoria, Hematuria, Hypothermic, Cyanosis, and Conjunctivitis are common in 57507911 and 57507905, with Pa > 0.5, and appear for 56841530 (Table S1, Supplementary material) with probabilities between 0.424 and 0.468.



The molecule 56463 has Antineurotic (Pa > 0.7), Gluconate 2-dehydrogenase (acceptor) inhibitor, Calcium channel (voltage-sensitive) activator, Aspulvinone dimethylallyl transferase inhibitor, and Gastrin inhibitor (Pa > 0.54) positive effects, and Twitching, Hepatitis, Dystonia, and Nephritis adverse effects (Pa > 0.512). These effects are common to the other molecules in Group 2, with probabilities over 0.5. Still, there are common effects with the other molecules in Group 2, with smaller probabilities, which explain the presence of 56463 in a separate cluster in Figure 7.



An analogous procedure has been applied to the Phenylacetylindoles. Table 8 contains the positive and negative effects of the molecules in this group, with probabilities of apparition greater than or equal to 0.5. All molecules but 53494930 have antineurotic effects, all but 11616723 are Gluconate 2-dehydrogenase (acceptor) inhibitors, most of them act as Taurine dehydrogenase inhibitors and Thromboxane B2 antagonists and antiallergics, with probabilities greater than 0.5. Some molecules have the same properties with probabilities between 0.3 and 0.5. For example, the molecules are Chlordecone reductase inhibitors, but the probability for 53494930 is 0.434 (Table S2 in Supplementary material).



The main negative effects with probabilities above 0.5 for almost all Phenylacetylindoles are shivering, twitching, sweating, and hypothermic. Still, the following probabilities have been computed: 0.478—44397500, 0.417—44397540, 0.439—53494950, 0.499—53394099. For CID 11616723, the probability to act as hypothermic is 0.423. For 53394099, the following probabilities have been computed: 0.387—shivering, 0.447—twitching, 0.286—hypothermic. The effects that appear with probabilities between 0.3 and 0.5 are presented in Table S2 (Supplementary Materials).



To validate the clustering from Figure 7, the Kruskal–Wallis test has been performed to the series of probabilities corresponding to the most significant effects of the elements in both groups (presented in Table 9 and Table 10).



The main effects were considered those whose probabilities are higher than 0.5 for at least one molecule. If another molecule has the same effect, the associated probability is filled in Table 9 or Table 10, depending on the group to which it belongs. If the molecule does not have a certain effect, the probability filled in the tale is zero.



The p-value for the test performed with all 14 series (putting together the effects from Table 9 and Table 10) is 0.000, so the null hypothesis can be rejected, meaning that there are significant differences in the series distributions.



To distinguish the series resulting from the same distribution, the same test has been performed for the first three molecules in Group 1 (belonging to the second cluster), the last four molecules in Group 1 (belonging to the third cluster), and Group 2 (the third cluster), respectively. The corresponding p-values are 0.4362, 0.1128, and 0.1004, respectively. Since all are higher than 0.05, it results that the series in each of the three clusters are not significantly different from the viewpoint of their positive effects.



Similar tests, performed for the negative effects, lead to the same results. So, the clustering is validated.




4. Conclusions


In this research, the authors utilized the Cheminformatics methods for the analysis of the Benzoylindole and Phenylacetylindole groups of drugs that complete the knowledge [39] about them. Similarity indices and clustering techniques have emphasized the structural similarities and differences between these groups. The highest similarities exist between the molecules in the second group. These are emphasized by the second group’s dendrograms (the length of the highest branches being 0.3, the other being lower than 0.22). By comparison, the branches’ sizes in the dendrogram of Group 1 are generally larger than for Group 2.



The comparisons of the biological activities spectra show that the most similar activities of the molecules in the first group are those of 57507911, 56841530, and 57507905, confirming the grouping provided by the dendrogram (Figure 5b). Analogous conclusions can be drawn from the dendrogram for Group 2 (Figure 5d).



Performing the k-means algorithm for k = 3 results in three clusters, one containing all the molecules in Group 2, while the other two being formed by three and four molecules in Group 1. Performing the same analysis for k = 2 results in two clusters (superposed to Groups 1 and 2). Still, the best clustering is obtained for k = 3 because between the sum of squares/total sum of squares of the distances is 52.0%, compared to only 31.6%, for k = 2.



To validate the clustering results, the probabilities of the main effects of the activity spectra have been utilized to build series to which the Kruskal–Wallis test has been applied. The test results are in concordance with the grouping issued by the k-means algorithm.



Given that the activity spectra have been determined with certain probabilities, future experimental studies should confirm the findings related to particular actions of the molecules of interest and the clustering validation. While this kind of experiment involves human subjects, it is challenging and time-consuming to conduct it without considering the necessary infrastructure, protocols that must be defined and followed, and the approvals that must be obtained. Therefore, our study may be considered as the first step in larger research on these two groups of drugs.
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Figure 1. Classification of Aminoalkylindoles—four subgroups. 
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Figure 2. The flowchart of the study. 
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Figure 3. The structures of the studied molecules from (a) Group 1 and (b) Group 2. 
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Figure 4. The elbow method for determining the optimal number of clusters for Group 1 in the k-means algorithm. 






Figure 4. The elbow method for determining the optimal number of clusters for Group 1 in the k-means algorithm.



[image: Mathematics 10 01543 g004]







[image: Mathematics 10 01543 g005 550] 





Figure 5. (a) The heatmap for Benzoylindoles; (b) The dendrogram for Benzoylindoles; (c) The heatmap for Phenylacetylindoles; (d) The dendrogram for Phenylacetylindoles. 
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Figure 6. The heatmap and dendrogram for all molecules. The black branches correspond to the molecules in the first group. 
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Figure 7. The results of grouping the molecules by k-means algorithm. The Ox and Oy axes are the first two PCs. 
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Table 1. The CID, molecular formula, and MW of the studied drugs.
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Benzoylindoles

	
Phenylacetylindoles




	
CID

	
Formula

	
MW

	
CID

	
Formula

	
MW






	
9889172

	
C20H19FINO

	
435.2738

	
44397641

	
C22H25NO2

	
335.4394




	
117587582

	
C20H19ClINO

	
451.7284

	
44397500

	
C21H22ClNO

	
339.8585




	
10226340

	
C22H23IN2O

	
458.3353

	
44397540

	
C22H25NO2

	
335.4394




	
56841530

	
C21H23NO2

	
321.4128

	
53494930

	
C24H28N2O2

	
376.4913




	
57507911

	
C21H23NO2

	
321.4128

	
11616723

	
C22H25NO

	
319.4400




	
57507905

	
C20H21NO2

	
307.3862

	
11493740

	
C22H25NO2

	
335.4394




	
56463

	
C23H26N2O3

	
378.4641

	
53394099

	
C25H29NO2

	
375.5033











[image: Table] 





Table 2. The atoms’ species and functional groups and their numbers.
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Benzoylindoles

	
Phenylacetylindoles




	
CID

	
C

	
H

	
N

	
O

	
F

	
Cl

	
I

	
R3N

	
RCOR

	
ROR

	
Rings

	
Aromatic

	
CID

	
C

	
H

	
N

	
O

	
F

	
Cl

	
I

	
R3N

	
RCOR

	
ROR

	
Rings

	
Aromatic






	
9889172

	
20

	
19

	
1

	
1

	
1

	
0

	
1

	
1

	
1

	
0

	
3

	
3

	
44397641

	
22

	
25

	
1

	
2

	
0

	
2

	
0

	
1

	
1

	
1

	
3

	
3




	
117587582

	
20

	
19

	
1

	
1

	
0

	
1

	
1

	
1

	
1

	
0

	
3

	
3

	
44397500

	
21

	
22

	
1

	
1

	
0

	
1

	
1

	
1

	
1

	
0

	
3

	
3




	
10226340

	
22

	
23

	
2

	
1

	
0

	
0

	
1

	
2

	
1

	
0

	
4

	
3

	
44397540

	
22

	
25

	
1

	
2

	
0

	
2

	
0

	
1

	
1

	
1

	
3

	
3




	
56841530

	
21

	
23

	
1

	
2

	
0

	
0

	
0

	
1

	
1

	
1

	
3

	
3

	
53494930

	
24

	
28

	
2

	
2

	
0

	
2

	
0

	
2

	
1

	
1

	
4

	
3




	
57507911

	
21

	
23

	
1

	
2

	
0

	
0

	
0

	
1

	
1

	
1

	
3

	
3

	
11616723

	
22

	
25

	
1

	
1

	
0

	
1

	
0

	
1

	
1

	
0

	
3

	
3




	
57507905

	
20

	
21

	
1

	
2

	
0

	
0

	
0

	
1

	
1

	
1

	
3

	
3

	
11493740

	
22

	
25

	
1

	
2

	
0

	
2

	
0

	
1

	
1

	
1

	
3

	
3




	
56463

	
23

	
26

	
2

	
3

	
0

	
0

	
0

	
2

	
1

	
2

	
4

	
3

	
53394099

	
25

	
29

	
1

	
2

	
0

	
2

	
0

	
1

	
1

	
1

	
4

	
3
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Table 3. Molecules’ descriptors.






Table 3. Molecules’ descriptors.





	
Group

	
CID

	
HBA1

	
HBA2

	
HBD

	
logP

	
MR

	
TPSA






	
Benzoylindoles

	
9889172

	
20

	
2

	
0

	
5.6167

	
105.0705

	
22.00




	
117587582

	
20

	
2

	
0

	
5.8860

	
109.8155

	
22.00




	
10226340

	
25

	
3

	
0

	
4.8991

	
119.3305

	
25.24




	
56841530

	
25

	
3

	
0

	
5.0711

	
98.7945

	
31.23




	
57507911

	
25

	
3

	
0

	
5.0711

	
98.7945

	
31.23




	
57507905

	
23

	
3

	
0

	
4.6810

	
93.9875

	
31.23




	
56463

	
30

	
4

	
0

	
3.4594

	
114.3495

	
43.70




	
Phenylacetylindoles

	
44397641

	
27

	
3

	
0

	
5.2655

	
103.6015

	
31.23




	
44397500

	
23

	
2

	
0

	
5.9103

	
102.1195

	
22.00




	
44397540

	
27

	
3

	
0

	
5.2655

	
103.6015

	
31.23




	
53494930

	
31

	
4

	
0

	
4.4975

	
117.9125

	
34.47




	
11616723

	
26

	
2

	
0

	
5.5653

	
102.0755

	
22.00




	
11493740

	
27

	
3

	
0

	
5.2655

	
103.6015

	
31.23




	
53394099

	
31

	
3

	
0

	
6.0457

	
115.9085

	
31.23
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Table 4. Tanimoto coefficients for the atoms’ similarities.
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Benzoilyndoles

	
CID

	
9889172

	
117587582

	
10226340

	
57507911

	
56841530

	
57507905

	
56463




	
9889172

	
1.0000

	

	

	

	

	

	




	
117587582

	
0.8462

	
1.0000

	

	

	

	

	




	
10226340

	
0.6788

	
0.6788

	
1.0000

	

	

	

	




	
57507911

	
0.6140

	
0.5376

	
0.5139

	
1.0000

	

	

	




	
56841530

	
0.5376

	
0.6140

	
0.5774

	
0.7250

	
1.0000

	

	




	
57507905

	
0.4901

	
0.4901

	
0.4859

	
0.8497

	
0.6635

	
1.0000

	




	
56463

	
0.4469

	
0.4469

	
0.5054

	
0.5425

	
0.5069

	
0.4953

	
1.0000




	
Phenylacetylindoles

	
CID

	
44397641

	
44397500

	
44397540

	
53494930

	
11616723

	
11493740

	
53394099




	
44397641

	
1.0000

	

	

	

	

	

	




	
44397500

	
0.6609

	
1.0000

	

	

	

	

	




	
44397540

	
0.7249

	
0.7840

	
1.0000

	

	

	

	




	
53494930

	
0.5777

	
0.5731

	
0.6873

	
1.0000

	

	

	




	
11616723

	
0.7000

	
0.8467

	
0.8526

	
0.6158

	
1.0000

	

	




	
11493740

	
0.7654

	
0.6802

	
0.7654

	
0.5888

	
0.7357

	
1.0000

	




	
53394099

	
0.5455

	
0.5545

	
0.6545

	
0.6882

	
0.5769

	
0.5490

	
1.0000
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Table 5. Similarities of pairs of atoms belonging to pair of molecules from Benzoylindoles and Phenylacetylindoles.
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	CID
	9889172
	117587582
	10226340
	57507911
	56841530
	57507905
	56463





	44397641
	0.4883
	0.4883
	0.4706
	0.6364
	0.6649
	0.6029
	0.4803



	44397500
	0.5248
	0.5462
	0.4913
	0.5817
	0.5249
	0.4901
	0.3915



	44397540
	0.4922
	0.4922
	0.4810
	0.6842
	0.6134
	0.5937
	0.4456



	53494930
	0.4566
	0.4566
	0.6087
	0.5646
	0.5139
	0.4847
	0.4595



	11616723
	0.5248
	0.5248
	0.5062
	0.6677
	0.5726
	0.5333
	0.42173



	11493740
	0.4884
	0.4884
	0.4741
	0.6600
	0.7194
	0.6361
	0.4934



	53394099
	0.4598
	0.4598
	0.4894
	0.5000
	0.4696
	0.4244
	0.4766
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Table 6. The similarity of molecules’ couples, one of them belonging to Benzoylindoles and the other to Phenylacetylindoles (Tanimoto coefficient). The number in the brackets represents the similarity rank. Minus (−) signifies that the rank of similarity is higher than eight.






Table 6. The similarity of molecules’ couples, one of them belonging to Benzoylindoles and the other to Phenylacetylindoles (Tanimoto coefficient). The number in the brackets represents the similarity rank. Minus (−) signifies that the rank of similarity is higher than eight.





	CID
	9889172
	117587582
	10226340
	7507911
	56841530
	57507905
	56463





	44397641
	−
	−
	−
	−
	0.6657 (5)
	0.6040 (5)
	0.4815 (7)



	44397500
	0.5262 (6)
	−
	−
	0.6374 (7)
	−
	−
	−



	44397540
	−
	−
	−
	0.6851 (3)
	0.6145 (6)
	0.5948 (6)
	−



	53494930
	−
	−
	0.6096 (4)
	−
	−
	−
	−



	11616723
	0.5262 (7)
	0.5262 (7)
	0.5075 (7)
	−
	−
	0.5347 (7)
	−



	11493740
	−
	−
	−
	0.6609 (6)
	0.7202 (4)
	0.6371 (4)
	0.4945 (6)
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Table 7. Positive and negative effects of the Benzoylindoles that appear with probabilities greater than 0.5.
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Positive Effects

	
Negative Effects




	
CID

	
Pa

	
Effect

	
Pa

	
Effect






	
9889172

	
0.538

	
Antineurogenic pain

	
0.587

	
Photoallergy dermatitis




	

	
0.503

	
Nicotinic alpha4beta2 receptor antagonist

	
0.534

	
Allergic contact dermatitis




	
117587582

	
0.598

	
Lymphocytopoiesis inhibitor

	
0.664

	
Cyanosis




	

	
0.515

	
Oxidoreductase inhibitor

	
0.604

	
Tremor




	

	

	

	
0.604

	
Sleep disturbance




	

	

	

	
0.556

	
Edema




	

	

	

	
0.551

	
Drowsiness




	

	

	

	
0.548

	
Weight loss




	

	

	

	
0.533

	
Fibrosis, interstitial




	

	

	

	
0.509

	
Conjunctivitis




	

	

	

	
0.504

	
Sensory disturbance




	

	

	

	
0.503

	
Dizziness




	
10226340

	
0.775

	
Nicotinic alpha4beta4 receptor agonist

	
0.596

	
Twitching




	

	
0.731

	
Analgesic

	
0.535

	
Cyanosis




	

	
0.672

	
Antineurogenic pain

	
0.500

	
Sneezing




	

	
0.636

	
Analgesic, non-opioid

	

	




	

	
0.589

	
Nicotinic alpha6beta3beta4alpha5 receptor antagonist

	

	




	

	
0.544

	
Nicotinic alpha2beta2 receptor antagonist

	

	




	

	
0.538

	
Histamine antagonist

	

	




	

	
0.522

	
Antihistaminic

	

	




	
57507911

	
0.790

	
Antineurotic

	
0.754

	
Allergic contact dermatitis




	

	
0.744

	
Gluconate 2-dehydrogenase (acceptor) inhibitor

	
0.743

	
Shivering




	

	
0.695

	
5 Hydroxytryptamine release stimulant

	
0.693

	
Twitching




	

	
0.645

	
Aspulvinone dimethylallyltransferase inhibitor

	
0.639

	
Photoallergy dermatitis




	

	
0.636

	
Taurine dehydrogenase inhibitor

	
0.625

	
Myoclonus




	

	
0.627

	
Fibrinolytic

	
0.594

	
Torsades de pointes




	

	
0.618

	
Thromboxane B2 antagonist

	
0.582

	
Fibrosis, interstitial




	

	
0.614

	
Chlordecone reductase inhibitor

	
0.572

	
Delirium




	

	
0.606

	
Antieczematic

	
0.568

	
Gastrointestinal hemorrhage




	

	
0.563

	
Acrocylindropepsin inhibitor

	
0.561

	
Xerostomia




	

	
0.563

	
Calcium channel (voltage-sensitive) activator

	
0.522

	
Conjunctivitis




	

	
0.563

	
Chymosin inhibitor

	
0.516

	
Hypothermic




	

	
0.563

	
Saccharopepsin inhibitor

	
0.515

	
Dystonia




	

	
0.558

	
Amine dehydrogenase inhibitor

	
0.515

	
Cyanosis




	

	
0.551

	
Preneoplastic conditions treatment

	
0.512

	
Pseudoporphyria




	

	
0.540

	
Platelet aggregation inhibitor

	
0.506

	
Hematuria




	

	
0.537

	
Aldehyde oxidase inhibitor

	
0.504

	
Fibrillation, atrial




	

	
0.510

	
Gastrin inhibitor

	
0.503

	
Dysphoria




	
56841530

	
0.735

	
Antineurotic

	
0.743

	
Shivering




	

	
0.744

	
Gluconate 2-dehydrogenase (acceptor) inhibitor

	
0.693

	
Twitching




	

	
0.620

	
5 Hydroxytryptamine release stimulant

	
0.640

	
Allergic contact dermatitis




	

	
0.606

	
Antieczematic

	
0.565

	
Gastrointestinal hemorrhage




	

	
0.606

	
Fibrinolytic

	
0.562

	
Photoallergy dermatitis




	

	
0.586

	
Thromboxane B2 antagonist

	
0.549

	
Torsades de pointes




	

	
0.582

	
Taurine dehydrogenase inhibitor

	
0.533

	
Myoclonus




	

	
0.577

	
Aspulvinone dimethylallyltransferase inhibitor

	
0.500

	
Xerostomia




	

	
0.551

	
Preneoplastic conditions treatment

	

	




	

	
0.542

	
Chlordecone reductase inhibitor

	

	




	

	
0.538

	
Platelet aggregation inhibitor

	

	




	

	
0.526

	
Calcium channel (voltage-sensitive) activator

	

	




	

	
0.516

	
Gastrin inhibitor

	

	




	

	
0.506

	
Membrane permeability inhibitor

	

	




	
57507905

	
0.802

	
Antineurotic

	
0.744

	
Allergic contact dermatitis




	

	
0.757

	
Gluconate 2-dehydrogenase (acceptor) inhibitor

	
0.733

	
Twitching




	

	
0.684

	
Aspulvinone dimethylallyltransferase inhibitor

	
0.723

	
Shivering




	

	
0.678

	
5 Hydroxytryptamine release stimulant

	
0.667

	
Photoallergy dermatitis




	

	
0.661

	
Chlordecone reductase inhibitor

	
0.636

	
Myoclonus




	

	
0.620

	
Amine dehydrogenase inhibitor

	
0.619

	
Fibrosis. interstitial




	

	
0.615

	
Fibrinolytic

	
0.614

	
Gastrointestinal hemorrhage




	

	
0.607

	
Taurine dehydrogenase inhibitor

	
0.594

	
Torsades de pointes




	

	
0.600

	
Thromboxane B2 antagonist

	
0.588

	
Delirium




	

	
0.596

	
Aldehyde oxidase inhibitor

	
0.577

	
Xerostomia




	

	
0.568

	
Antieczematic

	
0.546

	
Pseudoporphyria




	

	
0.545

	
Calcium channel (voltage-sensitive) activator

	
0.528

	
Dystonia




	

	
0.538

	
Platelet aggregation inhibitor

	
0.52

	
Dysphoria




	

	
0.534

	
Preneoplastic conditions treatment

	
0.519

	
Hypotonia




	

	
0.530

	
Acrocylindropepsin inhibitor

	
0.518

	
Nephritis




	

	
0.530

	
Chymosin inhibitor

	
0.517

	
Postural hypotension




	

	
0.530

	
Saccharopepsin inhibitor

	
0.515

	
Choreoathetosis




	

	
0.502

	
Acetylcholine neuromuscular blocking agent

	
0.510

	
Urinary retention




	

	

	

	
0.509

	
Hematuria




	

	

	

	
0.508

	
Hypothermic




	

	

	

	
0.502

	
Cyanosis




	

	

	

	
0.501

	
Conjunctivitis




	

	

	

	
0.499

	
Hepatitis




	
56463

	
0.862

	
Antineurotic

	
0.673

	
Twitching




	

	
0.685

	
Phobic disorders treatment

	
0.562

	
Galactorrhea




	

	
0.676

	
Chlordecone reductase inhibitor

	
0.554

	
Hepatitis




	

	
0.665

	
Gluconate 2-dehydrogenase (acceptor) inhibitor

	
0.524

	
Toxic. respiration




	

	
0.574

	
Insulysin inhibitor

	
0.523

	
Dystonia




	

	
0.563

	
Calcium channel (voltage-sensitive) activator

	
0.512

	
Nephritis




	

	
0.556

	
Aspulvinone dimethylallyltransferase inhibitor

	

	




	

	
0.546

	
Gastrin inhibitor
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Table 8. Positive and negative effects of Phenylacetylindoles with probabilities greater than 0.5.






Table 8. Positive and negative effects of Phenylacetylindoles with probabilities greater than 0.5.





	

	
Positive Effects

	
Negative Effects




	
CID

	
Pa

	
Effect

	
Pa

	
Effect






	
44397641

	
0.792

	
Antineurotic

	
0.820

	
Shivering




	

	
0.762

	
5 Hydroxytryptamine release stimulant

	
0.636

	
Twitching




	

	
0.717

	
Gluconate 2-dehydrogenase (acceptor) inhibitor

	
0.551

	
Sweating




	

	
0.680

	
Taurine dehydrogenase inhibitor

	
0.537

	
Hypothermic




	

	
0.655

	
Chlordecone reductase inhibitor

	
0.536

	
Pseudoporphyria




	

	
0.629

	
Antieczematic

	
0.526

	
Excitability




	

	
0.610

	
Thromboxane B2 antagonist

	
0.511

	
Torsades de pointes




	

	
0.568

	
Antiallergic

	

	




	

	
0.565

	
Preneoplastic conditions treatment

	

	




	

	
0.560

	
Aspulvinone dimethylallyltransferase inhibitor

	

	




	

	
0.529

	
General pump inhibitor

	

	




	

	
0.517

	
Mediator release inhibitor

	

	




	
44397500

	
0.720

	
Antineurotic

	
0.812

	
Twitching




	

	
0.605

	
Taurine dehydrogenase inhibitor

	
0.733

	
Shivering




	

	
0.601

	
Chlordecone reductase inhibitor

	
0.676

	
Akathisia




	

	
0.601

	
CYP2J substrate

	
0.666

	
Excitability




	

	
0.589

	
CYP2J2 substrate

	
0.665

	
Dysarthria




	

	
0.589

	
Gluconate 2-dehydrogenase (acceptor) inhibitor

	
0.626

	
Weight gain




	

	
0.579

	
Glycosylphosphatidylinositol phospholipase D inhibitor

	
0.612

0.591

	
Myoclonus

Hypomania




	

	
0.561

	
Antiallergic

	
0.591

	
Multiple organ failure




	

	
0.535

	
Phobic disorders treatment

	
0.582

	
Fibrillation, atrial




	

	
0.516

	
Thromboxane B2 antagonist

	
0.580

	
Choreoathetosis




	

	

	

	
0.563

	
Dystonia




	

	

	

	
0.560

	
Delirium




	

	

	

	
0.557

	
Hypothermic




	

	

	

	
0.533

	
Reproductive dysfunction




	

	

	

	
0.517

	
Weakness




	
44397540

	
0.766

	
Antineurotic

	
0.780

	
Shivering




	

	
0.682

	
Gluconate 2-dehydrogenase (acceptor) inhibitor

	
0.636

	
Twitching




	
0.600

	
Antieczematic

	
0.516

	
Hypothermic




	
0.589

	
Chlordecone reductase inhibitor

	

	




	
0.581

	
Antiallergic

	

	




	
0.574

	
5 Hydroxytryptamine release stimulant

	

	




	

	
0.561

	
Thromboxane B2 antagonist

	

	




	

	
0.551

	
Taurine dehydrogenase inhibitor

	

	




	

	
0.521

	
Preneoplastic conditions treatment

	

	




	

	
0.509

	
Mediator release inhibitor

	

	




	
53494930

	
0.797

	
Nicotinic alpha4beta4 receptor agonist

	
0.524

	
Extrapyramidal effect




	

	
0.713

	
Nicotinic alpha6beta3beta4alpha5 receptor antagonist

	

	




	

	
0.698

	
Nicotinic alpha2beta2 receptor antagonist

	

	




	

	
0.587

	
Gluconate 2-dehydrogenase (acceptor) inhibitor

	

	




	

	
0.539

	
General pump inhibitor

	

	




	

	
0.510

	
CYP2H substrate

	

	




	
11616723

	
0.657

	
Antineurotic

	
0.802

	
Twitching




	

	
0.611

	
Antieczematic

	
0.755

	
Shivering




	

	
0.583

	
CYP2J substrate

	
0.609

	
Sweating




	

	
0.580

	
Mediator release inhibitor

	
0.596

	
Acidosis




	

	
0.578

	
Taurine dehydrogenase inhibitor

	
0.551

	
Weakness




	

	
0.559

	
Endopeptidase So inhibitor

	
0.532

	
Excitability




	

	
0.557

	
Kidney function stimulant

	
0.515

	
Sneezing




	

	
0.554

	
Antiallergic

	
0.505

	
Muscle weakness




	

	
0.537

	
Thromboxane B2 antagonist

	
0.504

	
Euphoria




	

	
0.506

	
Carboxypeptidase Taq inhibitor

	

	




	

	
0.499

	
Gastrin inhibitor

	

	




	

	
0.497

	
CYP2C19 inhibitor

	

	




	
11493740

	
0.776

	
Antineurotic

	
0.793

	
Shivering




	

	
0.702

	
Gluconate 2-dehydrogenase (acceptor) inhibitor

	
0.569

	
Twitching




	

	
0.699

	
5 Hydroxytryptamine release stimulant

	
0.560

	
Hypothermic




	

	
0.643

	
Antieczematic

	
0.554

	
Sweating




	

	
0.632

	
Taurine dehydrogenase inhibitor

	
0.519

	
Excitability




	

	
0.608

	
Chlordecone reductase inhibitor

	
0.511

	
Torsades de pointes




	

	
0.589

	
Preneoplastic conditions treatment

	
0.502

	
Pseudoporphyria




	

	
0.587

	
Thromboxane B2 antagonist

	
0.499

	
Euphoria




	

	
0.571

	
Antiallergic

	

	




	

	
0.532

	
Mediator release inhibitor

	

	




	

	
0.531

	
General pump inhibitor

	

	




	

	
0.516

	
Aspulvinone dimethylallyltransferase inhibitor

	

	




	
53394099

	
0.753

	
Antineurotic

	
0.506

	
Hypercholesterolemic




	

	
0.661

	
Gluconate 2-dehydrogenase (acceptor) inhibitor

	
0.499

	
Sweating




	

	
0.562

	
Antidyskinetic

	

	




	

	
0.559

	
Nicotinic alpha6beta3beta4alpha5 receptor antagonist

	

	




	

	
0.545

	
Antiallergic

	

	




	

	
0.545

	
Antiasthmatic

	

	




	

	
0.507

	
Acetylcholine neuromuscular blocking agent

	

	




	

	
0.500

	
Nicotinic alpha2beta2 receptor antagonist

	

	




	

	
0.493

	
5 Hydroxytryptamine antagonist
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Table 9. The series of probabilities used to perform the Kruskal–Wallis test on Group 1. The bold numbers are probabilities less than 0.5.






Table 9. The series of probabilities used to perform the Kruskal–Wallis test on Group 1. The bold numbers are probabilities less than 0.5.





	ID
	9889172
	117587582
	10226340
	57507911
	56841530
	57507905
	56463





	5 Hydroxytryptamine release stimulant
	0.000
	0.000
	0.000
	0.695
	0.620
	0.678
	0.483



	Acetylcholine neuromuscular blocking agent
	0.000
	0.000
	0.000
	0.468
	0.415
	0.502
	0.469



	Acrocylindropepsin inhibitor
	0.000
	0.000
	0.000
	0.563
	0.491
	0.503
	0.280



	Aldehyde oxidase inhibitor
	0.000
	0.000
	0.000
	0.537
	0.330
	0.596
	0.256



	Amine dehydrogenase inhibitor
	0.000
	0.000
	0.000
	0.558
	0.490
	0.620
	0.305



	Analgesic
	0.448
	0.366
	0.731
	0.000
	0.000
	0.000
	0.260



	Analgesic, non-opioid
	0.473
	0.214
	0.636
	0.000
	0.000
	0.000
	0.000



	Antieczematic
	0.000
	0.000
	0.000
	0.563
	0.606
	0.568
	0.000



	Antihistaminic
	0.000
	0.118
	0.522
	0.161
	0.118
	0.161
	0.000



	Antineurogenic pain
	0.538
	0.270
	0.672
	0.367
	0.314
	0.383
	0.315



	Antineurotic
	0.000
	0.000
	0.000
	0.790
	0.802
	0.802
	0.862



	Aspulvinone dimethylallyltransferase inhibitor
	0.000
	0.000
	0.000
	0.645
	0.577
	0.684
	0.556



	Calcium channel (voltage-sensitive) activator
	0.000
	0.000
	0.000
	0.563
	0.526
	0.545
	0.563



	Chlordecone reductase inhibitor
	0.000
	0.000
	0.000
	0.563
	0.542
	0.661
	0.676



	Chymosin inhibitor
	0.000
	0.000
	0.000
	0.618
	0.491
	0.530
	0.280



	Fibrinolytic
	0.000
	0.000
	0.000
	0.614
	0.606
	0.615
	0.314



	Gastrin inhibitor
	0.000
	0.000
	0.000
	0.510
	0.516
	0.484
	0.546



	Gluconate 2-dehydrogenase (acceptor) inhibitor
	0.000
	0.000
	0.000
	0.744
	0.744
	0.757
	0.665



	Histamine antagonist
	0.097
	0.101
	0.538
	0.136
	0.000
	0.135
	0.000



	Insulysin inhibitor
	0.000
	0.000
	0.000
	0.387
	0.274
	0.409
	0.574



	Lymphocytopoiesis inhibitor
	0.319
	0.598
	0.303
	0.000
	0.000
	0.000
	0.000



	Membrane permeability inhibitor
	0.000
	0.000
	0.000
	0.429
	0.505
	0.398
	0.000



	Nicotinic alpha2beta2 receptor antagonist
	0.000
	0.000
	0.544
	0.000
	0.000
	0.000
	0.000



	Nicotinic alpha4beta2 receptor antagonist
	0.503
	0.000
	0.301
	0.000
	0.000
	0.000
	0.000



	Nicotinic alpha4beta4 receptor agonist
	0.000
	0.000
	0.755
	0.000
	0.000
	0.000
	0.000



	Nicotinic alpha6beta3beta4alpha5 receptor antagonist
	0.000
	0.000
	0.589
	0.000
	0.000
	0.315
	0.000



	Oxidoreductase inhibitor
	0.000
	0.515
	0.000
	0.454
	0.376
	0.418
	0.000



	Platelet aggregation inhibitor
	0.201
	0.245
	0.240
	0.540
	0.538
	0.538
	0.362



	Phobic disorders treatment
	0.000
	0.000
	0.000
	0.000
	0.374
	0.342
	0.685



	Preneoplastic conditions treatment
	0.000
	0.000
	0.000
	0.551
	0.551
	0.534
	0.246



	Saccharopepsin inhibitor
	0.000
	0.000
	0.000
	0.614
	0.491
	0.530
	0.280



	Taurine dehydrogenase inhibitor
	0.000
	0.000
	0.000
	0.618
	0.582
	0.607
	0.310



	Thromboxane B2 antagonist
	0.318
	0.321
	0.000
	0.606
	0.586
	0.600
	0.457










[image: Table] 





Table 10. The series of probabilities used to perform the Kruskal–Wallis test on Group 2. The bold numbers are probabilities less than 0.5.






Table 10. The series of probabilities used to perform the Kruskal–Wallis test on Group 2. The bold numbers are probabilities less than 0.5.





	ID
	44397641
	44397500
	44397540
	53494930
	11616723
	11493740
	53394099





	5 Hydroxytryptamine release stimulant
	0.762
	0.468
	0.574
	0.497
	0.383
	0.699
	0.493



	Acetylcholine neuromuscular blocking agent
	0.422
	0.259
	0.377
	0.431
	0.279
	0.431
	0.507



	Antiallergic
	0.568
	0.561
	0.581
	0.425
	0.554
	0.571
	0.545



	Antiasthmatic
	0.485
	0.481
	0.489
	0.310
	0.462
	0.492
	0.545



	Antidyskinetic
	0.416
	0.397
	0.405
	0.000
	0.395
	0.413
	0.562



	Antieczematic
	0.629
	0.462
	0.600
	0.293
	0.611
	0.643
	0.450



	Antineurotic
	0.792
	0.720
	0.766
	0.428
	0.657
	0.776
	0.753



	Aspulvinone dimethylallyl- transferase inhibitor
	0.560
	0.000
	0.489
	0.000
	0.319
	0.516
	0.348



	Carboxypeptidase Taq inhibitor
	0.369
	0.449
	0.369
	0.000
	0.506
	0.333
	0.000



	Chlordecone reductase inhibitor
	0.655
	0.601
	0.589
	0.000
	0.434
	0.608
	0.349



	CYP2H substrate
	0.000
	0.000
	0.394
	0.510
	0.000
	0.446
	0.461



	CYP2J substrate
	0.288
	0.601
	0.288
	0.000
	0.583
	0.000
	0.000



	CYP2J2 substrate
	0.340
	0.589
	0.340
	0.000
	0.497
	0.308
	0.000



	Endopeptidase So inhibitor
	0.355
	0.429
	0.308
	0.000
	0.559
	0.318
	0.000



	General pump inhibitor
	0.529
	0.405
	0.471
	0.539
	0.437
	0.531
	0.460



	Gluconate 2-dehydrogenase (acceptor) inhibitor
	0.717
	0.589
	0.682
	0.587
	0.434
	0.702
	0.661



	Glycosylphosphatidylinositol phospholipase D inhibitor
	0.292
	0.579
	0.292
	0.000
	0.408
	0.260
	0.000



	Kidney function stimulant
	0.000
	0.000
	0.000
	0.000
	0.557
	0.000
	0.000



	Mediator release inhibitor
	0.517
	0.402
	0.509
	0.189
	0.580
	0.532
	0.397



	Nicotinic alpha2beta2 receptor antagonist
	0.303
	0.350
	0.303
	0.698
	0.376
	0.272
	0.500



	Nicotinic alpha4beta4 receptor agonist
	0.000
	0.000
	0.000
	0.797
	0.000
	0.000
	0.326



	Nicotinic alpha6beta3beta4alpha5 receptor antagonist
	0.387
	0.430
	0.387
	0.713
	0.450
	0.353
	0.559



	Phobic disorders treatment
	0.000
	0.535
	0.000
	0.000
	0.000
	0.000
	0.000



	Preneoplastic conditions treatment
	0.565
	0.420
	0.521
	0.000
	0.365
	0.589
	0.298



	Taurine dehydrogenase inhibitor
	0.680
	0.605
	0.551
	0.000
	0.578
	0.632
	0.000



	Thromboxane B2 antagonist
	0.610
	0.516
	0.561
	0.000
	0.537
	0.587
	0.303
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