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Abstract: Plastic bottle recycling has a crucial role in environmental degradation and protection.
Position and background should be the same to classify plastic bottles on a conveyor belt. The
manual detection of plastic bottles is time consuming and leads to human error. Hence, the automatic
classification of plastic bottles using deep learning techniques can assist with the more accurate
results and reduce cost. To achieve a considerably good result using the DL model, we need a large
volume of data to train. We propose a GAN-based model to generate synthetic images similar to the
original. To improve the image synthesis quality with less training time and decrease the chances
of mode collapse, we propose a modified lightweight-GAN model, which consists of a generator
and a discriminator with an auto-encoding feature to capture essential parts of the input image and
to encourage the generator to produce a wide range of real data. Then a newly designed weighted
average ensemble model based on two pre-trained models, inceptionV3 and xception, to classify
transparent plastic bottles obtains an improved classification accuracy of 99.06%.

Keywords: deep learning; generative adversarial networks; image classification; transfer learning;
plastic bottle

MSC: 68U10

1. Introduction

Due to flexibility in terms of cost, light weight, processing, and ease of carrying, plastic
bottles are the most widely used material in daily life and industrial fields. Every day,
tons of plastic bottles are dumped as waste, and in addition, toxic, hazardous materials in
the trash are polluting the environment day by day [1]. An essential strategy for dealing
with this issue is the recycling process. Recycling plastic bottles can be used further in
new products, automobiles, textile, etc. Plastic bottle recycling has recently emerged
as a significant part of the plastic bottle industry, potentially saving fossil fuels while
simultaneously lowering greenhouse gas emissions [2].

The recycling task involves a lot of labor cost, and the DL approach helps in the way
to automatically classify waste plastic bottles for recycling tasks [3]. Much research has
been conducted to find a category of cost-effective PET bottle classifiers. PET bottles can
be divided into several categories based on chemical resins, transparency, and color [4].
PET plastic bottles have the highest recycling values compared to other plastic bottles.
The Ministry of Environment announced on 5 February that it would start a pilot project
for the separation and disposal of transparent plastic bottles from this month. At the
beginning of this month, five regions were phased out individually, including Busan,
Cheonan (Chungnam), Gimhae (Gyeongnam), Jeju, and Seogwipo. One of the changes
will require companies to label plastic bottles that are easy to remove. Legislative changes
will also bring system reforms to make recycling more convenient. Plastic bottles with
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easy-to-tear labels are produced in Japan. Designed to protect the environment from plastic
pollution, it promotes the growth and innovation of industry and human life through
comprehensive transformation: the production, use, and recycling of plastic bottles. PET
bottles must be colorless and unlabeled to be completely recycled. It is only possible to
crush transparent plastic bottles without labels into thin plastic flakes. These materials can
be utilized to create new plastic items.

Plastics are an inextricable aspect of human life, particularly in countries experiencing
rapid economic growth. Drinking water bottles and beverage bottles are two of the most
common plastic applications in everyday life. Plastic bottles must be separated according
to recyclable and non-recyclable to improve plastic bottle waste management. Recycling
is the process of rebirth; plastic bottles that have been discarded are recycled into high-
quality consumer goods. Recycled clear plastic bottles have been resurrected as garments,
eco-friendly purses, and cosmetic bottles, among other high-quality items. Previously, all
discarded plastic bottles used to make garments and other products in South Korea were
imported from abroad. Only 10% of the old plastic bottles collected in the community
were recycled into high-quality consumer goods. Another point to consider is that the
production of plastic emits a substantial quantity of greenhouse gases, which contributes to
global warming. Because recycling reduces crude oil and energy consumption, greenhouse
gas emissions, such as carbon dioxide, also decrease significantly. Transparent plastic
bottles are mainly used to make fiber materials for clothing, with polar fleece, a polyester
material that has lately gained popularity, being a notable example. However, the foreign
matter in waste bottles collected in South Korea throughout the disposal and composing
procedure raises concerns about their suitability for recycling. According to the application
requirements, the sorting equipment only needs to pick transparent plastic bottles in a
sorting process. So correct bottle classification is crucial in the sorting system based on
machine vision.

This paper proposes a GAN-based model, modified lightweight-GAN, to generate
synthetic images using a small dataset containing real plastic bottle images. The main
contribution is as follows:

• A new technique that enhances the imbalanced data problem using image data augmen-
tation is proposed based on a GAN-based framework, named modified lightweight-
GAN, that can generate high-quality images using a few original images.

• We propose a weighted average ensemble transfer learning-based method, IncepX-
Ensemble, to classify six types of plastic bottle images.

• We construct a computationally efficient model and demonstrate its resilience based
on the two presented strategies.

2. Related Works

Deep learning with a small training dataset leads to overfitting issues. The capacity
to generalize data expansion was examined using deep neural network training data
extensions. Instead of using traditional data augmentation techniques, GAN can generate
more stable and realistic images.

A computer-aided machine learning-based plastic bottle classification technique was
proposed by [5]. Specifically, the authors performed feature extraction for classification
tasks by achieving 80% accuracy. The authors also proposed classification with the region
of interest segmentation technique with PET and non-PET plastic bottle dataset with two
classes and achieved 80% of accuracy [6]. Ref. [7] proposed an automated classification
of plastic bottles based on SVM for recycling purposes and achieved 97.3% of accuracy
based on the best computation time. A real-time application was designed for plastic
bottle identification, and the proposed system achieved an accuracy of 97% [8]. Generative
adversarial networks are an advanced technique for data augmentation and use semi-
supervised cycleGAN to augment the training data. Hazra et al. proposed generating
synthetic images for bone marrow cells using GAN and the classification approach using
the transfer learning model [9]. The proposed model achieved 95% precision and 96% recall.
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The authors of [10] proposed an inception-cycleGAN model that will classify COVID-
19 X-ray images and achieved 94.2% of accuracy. An artificial intelligence-based plastic
bottle color classification system was proposed by [11] and achieved 94.14% of accuracy.
Wang et al. [12] proposed the recycling of used plastic bottles based on a support vector
machine algorithm, and accuracy reached 94.7%. In [13], medical image classification is a
famous approach; the researcher applied data augmentation using GAN and using three
transfer learning models to overcome the training-time constraints. They achieved 86.45%
of accuracy using the inceptionV3 model. Srivastav et al. [14] proposed an approach of
generating a synthetic image using GAN to improve the diagnosis of pneumonia disease
using chest X-ray image classification and achieved 94.5% accuracy. Waste management and
waste classification are essential issues for the environment and human health. Recycling is
one most basic forms of waste management; we need to classify the particular waste that
can be recycled. There are few publicly available datasets for waste classification; for this
reason, Alsabei et al. [15] proposed a model that can classify waste using pre-trained models,
and for generating data, they applied the GAN approach. In [16], an intelligent system for
waste sorting using a skip-connection-based model was proposed, and the novel model
achieved 95% of accuracy. Pio et al. [17] hypothesized that combining a transfer learning
approach with the metabolic features developed will deliver a considerable improvement
in reconstruction accuracy. A new combined methodology was proposed for a higher
recognition rate and robustness to enhance a low-resolution video [18]. GAN and transfer
learning are used to deal with license plate image recognition in various challenging
situations. Mohammed et al. [19] suggested an ensemble classifier that decreases both the
space and temporal complexity of the generated ensemble members while classifying an
instance by improving prediction time while maintaining significant accuracy.

3. Dataset

In our experiment, we collected plastic bottle images from the industry in South Korea.
However, it is not a publicly available dataset. We intend to build models that correctly
classify plastic bottle images before deploying them into a plastic bottle recycling machine.
The precise detection and identification of plastic bottles is the most significant challenge
when designing a recycling machine in preventing fraud. It depends on precision and cost.

There are few publicly plastic bottle datasets available. Trashnet [20] is a dataset used
for trash classification that has plastic bottle images in it. Each image in the PET bottle
dataset contains only one object, a plastic bottle, and a plain background. The human eye
more easily perceives this but not by a recycling machine. There are no other objects in the
image that could provide additional information.

Our dataset, named the PET-bottle dataset, has six classes, having a total number of
1667 plastic bottle images. We divided the plastic bottle images according to the design
and bottle specification; we uniquely named three classes, Bottle_ShapeA, Bottle_ShapeB,
and Bottle_ShapeC, and the other three classes are called Masinda, Pepsi, and Samdasoo,
respectively. Plastic bottles which do not have a label on them but have black caps are
named Bottle_ShapeA. Plastic bottles with a design on the body and a white cap but
without a label are named Bottle_ShapeB. Plastic bottles that do not have any design or
label on them but have a red cap are designated as Bottle_ShapeC. Masinda is a drinking
water bottle company whose class depicts a company label and sky-colored cap. Pepsi is
a well-known soft drink manufacturing company whose class represents a label with a
company logo and black cap. Jeju Samdasoo is a mineral water brand developed by the
Jeju Province Development Corporation; this plastic bottle image depicts a label with a
company logo and white cap. Details of the original dataset are given in Table 1. The Sl
number represents the numerical value for six classes, from 0 to 5; the class name depicts
all the six classes we have used for our experiment. The images per class section describes
the images containing each class.

It is noticeable that the dataset is small, and classes are primarily imbalanced in the
original dataset, with most data labeled as the Samdasoo class. Training a deep neural
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network to categorize the data into six categories will over-fit the data with this unbalanced
dataset.

Table 1. Detailed specification of original dataset.

Sl Number Class Name Images per Class

0 Bottle_ShapeA 169
1 Bottle_ShapeB 238
2 Bottle_ShapeC 41
3 Masinda 249
4 Pepsi 339
5 Samdasoo 631

Total 1667

4. Methodology

The proposed method is discussed in this section. Figure 1 depicts the proposed
method’s block diagram. Our proposed method can be divided into five parts. The first
block (a) shows the overview of the original dataset with the class label. In the second
block, (b) synthetic images are generated using a modified lightweight-GAN model for
data augmentation. The third block (c) is traditional data augmentation based on basic
image manipulation techniques. In the fourth block, the (d) pre-trained ImageNet model is
fine-tuned on our dataset for plastic bottle classification. In the last part, (e) is the evaluation
metrics for classification. A detailed explanation is given in the following subsections.

Figure 1. Workflow of the proposed framework. (a) shows the overview of the original dataset with
the class label; (b) synthetic images are generated using a modified lightweight-GAN model for data
augmentation; (c) is traditional data augmentation based on basic image manipulation techniques;
(d) pre-trained ImageNet model is fine-tuned on our dataset for plastic bottle classification; (e) is the
evaluation metrics for classification.
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4.1. Original Dataset Description

Our dataset contains 1667 images of plastic bottles, which are segmented into six classes.
The PET bottle dataset is divided into six types according to the bottle specification details.

4.2. Synthetic Image Generation Using Modified Lightweight-GAN Model

Recently, researchers have focused on combining GANs with other models or tech-
niques that allow for superior data reconstruction. We improvised a new approach to our
model. We used convolution layers compatible with high-resolution images for both G and
D. The basic GAN architecture for the generator and discriminator are graphically depicted
in Figure 2. The model structure of G and D and a description of the component layers are
shown in Figures 3 and 4.

4.2.1. Generative Adversarial Networks

The generative adversarial network (GAN) was developed by Goodfellow et al. in
2014 [21]. This intriguing invention has been gaining interest in various machine learning
fields. GAN consists of two interacting neural networks. It is a generator (G) and a
discriminator (D). The generator network is trained to map points in the latent space to
generate new data instances. The discriminator network is trained to distinguish between
the actual and plausible images produced by the generator network. Eventually, the
generator generates images that resemble actual training samples. The generator is updated
based on the discriminator’s predictions to have better images at the training time. The
discriminator increases its ability to distinguish between actual and fake images. The
difference between real and counterfeit labels determines the discriminator loss. The label
specifies whether the image is artificial or natural. The general diagram of GAN is shown
in Figure 2.

Figure 2. Generative adversarial networks architecture.

The main objective of GAN theory can be painted as a two-player min–max game
which can be defined by,

min
G

max
D

V(D, G) = Ex∼Pd(x)[logD(x)] +Ernv∼Prnv(rnv)[log(1− D(G(rnv))] (1)

The discriminator and the generator are involved in a min–max game with the value
function V(D, G). The discriminator is trying to minimize its reward V(D, G), and the
generator is attempting to reduce the discriminator’s reward or, in other words, maximize
its loss.

The generator always tries to minimize the following loss function; on the other hand,
the discriminator always maximizes it. In GAN, the generator receives the original input
data x, adds random noise variable Prnv(rnv) and generates samples G(rnv). D(x) is
the discriminator’s estimate of the probability that real instance x is real over the data
distribution Pd. D(G(rnv)) is the discriminator’s estimate of the probability that a fake
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instance is real. The generator tries to create almost perfect images to fool the discriminator.
In contrast, the discriminator tries to improve the performance by distinguishing real
and fake samples until the time that the samples generated from the generator cannot be
distinguished from real data samples.

4.2.2. Generator Network

The generator needs to be impending with the deeper network to generate good
synthesized images to orchestrate with high images. A deeper network means more of
a convolution layer and more training time for up-sampling. Considering GPU for the
training, we first fed the original image data and resized it into 128× 128× 3. The image
was scaled to [−1, 1] pixel values to match the generator. It was issued because it uses the
tanh activation function. The generator network inputs a 100 × 1 noise vector and generates
fake samples. We used four convolution layers with ReLU activation to create high-quality
synthesized images. Figure 3 illustrates the generator model architecture.

Figure 3. The architecture of the generator.

4.2.3. Discriminator Network

Following the assumption that the encoder and discriminator network information
overlaps, we partially amalgamated the encoder into the discriminator [22]. The main
objective of the encoder is to learn the representation feature, whereas the discriminator
aims to discover the discriminating feature.

Lpixel
recons = Eq∼Dencoder(x),x∼Ireal

[||κ(q)− τ(x)||] (2)

where the discriminator’s feature map is q, the κ function processes q, and the decoder’s
function τ reflects processing on sample x from real images Ireal .

Figure 4 illustrates the discriminator model architecture. Firstly, we resize the original
image to produce the I part. Then, the main part of our discriminator acts as an encoder
to extract a good image feature map, and the decoder can produce a good reconstruction
I′. The decoder consists of four convolutional layers to create the image 128× 128. Finally,
the discriminator and decoder are trained together to minimize the reconstruction loss by
matching the part I′ to I. The auto-encoding technique used is a common strategy for self-
supervised learning that has been shown to improve model robustness and generalization
capabilities [23–25].
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Figure 4. The architecture of the discriminator.

Recently, generative models have focused on combining new strategies with the GAN
model. In many approaches, the authors combined GAN and VAE to generate a good
image [22]. On the other hand, our proposed model is a pure GAN with a significantly more
simple generator and discriminator and an auto-encoding function. The auto-encoding
training is exclusively used for discriminator regularization and does not include the
generator [26].

Here, a hinge adversarial loss for GAN is suggested, incorporating SVM margins and
considering actual and fake samples falling within the margins while calculating the loss.
Artificial samples outside of the boundaries that partially incorporate false local patterns
are ignored in the generator training stage [27,28].

LD = −Ex∼Ireal [min(0,−1 + D(x))]−Ez∼P(z)[min(0,−1− D(G(z))] + Lpixel
recons (3)

LG = −Ez∼P(z)[D(G(z))] (4)

4.3. Traditional Data Augmentation Techniques

In this section, we describe traditional data augmentation based on basic image
manipulation techniques [29]. Additionally, consider issues with limited datasets and
how imbalances and data expansion can be helpful for oversampling solutions [30]. Class
imbalance describes the dataset as a biased ratio of the majority to a sample of the minority.

• Flipping :
There are two types of flipping used for image transformation; horizontal flipping
is more common than vertical flipping. This augmentation is one of the simplest to
employ and has shown to be effective on various datasets.p′

q′

1

 =

−1 0 0
0 1 0
0 0 1

×
p

q
1

 (5)

p′ = −p, q′ = q (6)

Horizontal flipping formulas are depicted in Equations (5) and (6).p′

q′

1

 =

1 0 0
0 −1 0
0 0 1

×
p

q
1

 (7)

p′ = p, q′ = −q (8)

Vertical flipping formulas are depicted in Equations (7) and (8).
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• Rotation :
The image is rotated right or left on an axis between [0–360] degree for rotation
augmentations. The rotation degree parameter significantly impacts the safety of
rotation augmentations. Outside of the rotating area, pixels are be filled with 0, and
the formula of rotation is given in Equation (9).

R =

 cos(q) sin(q) 0
−sin(q) cos(q) 0

0 0 1

 (9)

where q specifies the angle of rotation.
• Translation :

To avoid data-position bias, shifting the image left, right, up, or down is a valuable
adjustment, so the neural network looks everywhere in the image to capture it. The
original image is translated into the [0–255] value range.

t =

 1 0 0
0 1 0
tx ty 1

 (10)

where in Equation (10), tx specifies the displacement along the x axis, and ty specifies
the displacement along the y axis.

• Noise added :
Noise is an exciting augmentation technique; noise injection injects a matrix of random
values usually drawn from a Gaussian distribution. Stochastic data expansion is
applied when the neural network sees the same image, which is slightly different.
This difference can be seen as adding noise to the data sample and letting the neural
network learn generalized features rather than overfitting the dataset.

4.4. Transfer Learning

Transfer learning techniques are used to improve the performance of machine learning
algorithms using labeled data. TL efforts learn and apply one or more source tasks to
enhance learning in related fields. It has been studied as a machine learning process to
solve problems. TL includes pre-training models that have already been trained on large
datasets and models that have been retrained at several levels of the model on a small
training set. The initial layer of the pre-training network will be changed if necessary. You
can use the final layer of the model’s fine-tuning parameters to learn the capabilities of the
new dataset [31]. According to the new task, models that have already been trained will
be retrained with a smaller new dataset, and the model weights will be modified. Newly
developed neural networks parameters are not built from scratch. The DL algorithm can
achieve higher functionality or performance for many problems, but they need a lot of data
for training time.

As a result, it can be helpful to reuse pre-trained models for similar tasks. We used
two pre-trained models named inceptionV3 and Xception. The PET bottle dataset is used
to fine-tune the models once they have been pre-trained with the ImageNet dataset [32].
The most common method for fine-tuning is to delete the last completely connected layer
of pre-trained CNN models and replace it with a new fully connected layer (the same size
as the number of classes in our dataset). Our PET bottle dataset contains six categories.
Finally, the suggested method meets the goal of providing excellent classification results
with a small dataset.

4.4.1. InceptionV3 and Xception

The pre-trained network models InceptionV3 and Xception were trained on millions
of images from the ImageNet dataset. The InceptionV3 [33] and Xception [34] networks
include 48 and 71 layers, respectively, and require a 299 × 299 × 3-pixel input image. The
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structure of the InceptionV3 and Xception are shown in Figures 5 and 6. While Inception
considers typical congestion and yield issues, efficient results can be obtained by using
asymmetric filters and bottlenecks and replacing large filters with smaller ones. Xception
is simpler and more efficient. Using cross-channel and spatial correlations independently,
Xception provides more specific and efficient outcomes. For the Xception model, depth-
wise separable convolution is also proposed, as well as the use of cardinality to develop
better abstractions.

Figure 5. InceptionV3 model architecture.

Figure 6. Xception model architecture.

4.4.2. Ensemble Learning

Ensemble learning is a way of combining multiple models to benefit in terms of
computation and performance. The results of an ensemble of deep neural networks are
always superior to those of a single model. The average ensemble learning was used in this
study, with the same weights allocated to each model.

P =
∑ Mi

N
(11)

where, in Equation (11), Mi is the probability of model i, and N is the total number
of models.

DL models have different architectures and complexity; they do not provide the same
result. Therefore, assigning more weights to the model performing better is convenient.
By this, the maximum output can be extracted from any model. The challenge is to find
the correct combination of model weights. We used the grid search technique to solve this
challenge, as shown in Figure 7. A total of 1000 weight combinations were used. The search
procedure continues until all varieties have been checked. The approach finally provided
us with the ideal weight combination for the maximum of our given evaluation metric.
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Figure 7. Grid search method for finding the weights.

4.5. Evaluation Metrics

The performance of our model was evaluated, using accuracy, precision, and recall,
and the F1-score based on the confusion matrix; it includes four indicators, true positive
(TP), false positive (FP), false negative (FN), and true negative (TN).

Accuracy is calculated by dividing the number of true positives and true negatives
by the total number of instances. Precision is calculated with actual positive classes from
the total predicted classes. The recall is derived by dividing the real positive values by
the actual positive values. The F1-score is simply the average of precision and recall.
Equations (12)–(15) show the accuracy, precision, recall, and F1-score calculations.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(12)

Precision =
TP

(TP + FP)
(13)

Recall =
TP

(TP + FN)
(14)

F1-score = 2× Precision× Recall
(Precision + Recall)

(15)

5. Results
5.1. Experimental Setup

In this study, the first part of the experiments, the modified lightweight-GAN model
was trained in 500 epochs and generated synthetic images of PET bottles for each of the
six categories. The weights of the generator and discriminator models were updated after
each epoch to produce a composite image as close as possible to the actual image. After
network training, the PET bottle dataset has 4200 images, including original and synthetic
images generated from the modified lightweight-GAN model and traditional augmentation
methods. In the second series of experiments, the pre-trained Inception V3 and Xception
models were trained using the original training set and a combination of the training set
and the image of the generated plastic bottle. Later, we employed a weighted average
ensemble to enhance the classification performance using the IncepX-Ensemble model.
The samples of real plastic bottle images and synthetic images generated by the modified
lightweight-GAN model are shown in Figure 8. For training hyperparameter settings, we
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used binary cross-entropy as the cost function, a learning rate of 0.0001, and Adam as the
optimizer. We used 100 epochs and a batch size of 32 for every model.

Figure 8. Original plastic bottle images and synthetic plastic bottle images generated by modified
lightweight-GAN.
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We divided our dataset that has 4200 images, which includes original plastic bottle
images and generated images by the GAN model. Further, we split our dataset into
training, validation, and testing sets for training. The training set is given to the machine
learning model to analyze and learn the feature; the validation dataset is a sample of the
data retained from the model training and is used to estimate the model’s method while
optimizing the model’s hyperparameters. The test set is not used for training, and it is
used to determine whether the model’s hypothesis is correct. In the experiment, we first
divided the dataset into 60% for training and 40% for test data. In addition, the holdout
test data were split into 10% for validation (0.25% of total holdout test data) and 30% for
testing (0.75% of entire holdout test data). Details of the experimental dataset are given in
the Table 2.

Table 2. Details of the dataset after data augmentation using both augmentation techniques.

Sl No. Class Name Images per Class Training (60%) Validation (10%) Testing (30%)

0 Bottl_ShapeA 700 420 70 210
1 Bottl_ShapeB 700 420 70 210
2 Bottle_ShapeC 700 420 70 210
3 Masinda 700 420 70 210
4 Pepsi 700 420 70 210
5 Samdasoo 700 420 70 210

Total 4200 2520 420 210

5.2. Performance Metrics of GAN

We used two metrics to measure the model performance, as shown in Table 3.

• The IS is an objective metric for assessing the quality of synthetic images generated
by the generative adversarial networks model. The IS was proposed by [35], and it
captures the two properties of generated images: image quality, and image diversity.

• The FID is a metric that measures the overall semantic realism that compares the
distance between feature vectors calculated for real and generated images. FID score
was proposed by [36] to improve the performance over inception score.

Table 3. Quantitative comparison on our dataset—inception score (IS), Frechet inception distance (FID).

Sl No. Accuracy IS FID

1 DCGAN 12.36 73.4
2 LSGAN 10.06 67.6
3 WGAN-GP 9.67 72.3
4 TrGAN 9.82 65.4
5 ACGAN 9.47 76.3
6 CGAN 9.89 70.0

7 Modified lightweight-GAN 9.42 64.7

5.3. Implementation Details

Specification details for performing the experiments are given below in Table 4. We
used the Windows operating system with a single GPU and 32 GB of RAM. We trained our
model on Tensorflow 2.6.0 version, CUDA Toolkit version 11.2 and cuDNN version 8.1.
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Table 4. System components and specification.

Component Description

Operating system Windows 10 64 bit
Browser Google Chrome
CPU Intel(R) Core(TM) i5-8500K CPU @ 3.70 GHz
RAM 32 GB
Programming language Python 3.8.5
GPU NVIDIA GeForce RTX 2070
CUDA CUDA Toolkit version 11.2
cuDNN cuDNN version 8.1
Tensorflow Tensorflow version 2.6.0
IDE jupyter
Machine learning algorithm Modified lightweight-GAN
Machine learning algorithm Xception
Machine learning algorithm InceptionV3

5.4. Classification Performance Details

In Table 5, we show how the performance of pre-trained models, such as Incep-
tionV3 [37], Xception [38] and our ensemble model IncepX-Ensemble, may be used to
determine how well classifiers can classify plastic bottle types after being trained with both
original and synthetic data. The results show that the accuracy of the models is enhanced
when synthetic data generated by GAN models are used to train the model. Among all the
GAN models, our proposed IncepX-Ensemble model produced the best accuracy value of
99.06%.

Table 5. Comparison of IncepX-Ensemble with other existing models.

Model/Classifier InceptionV3 Xception IncepX-Ensemble

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
Original Data 86.6 89.2 88.6 90.1 92.8 87.2 93.2 90.1 93.5 93.7 92.8 93.8

DCGAN 81.2 82.4 79.6 80.4 90.8 92.1 92.6 91.5 92.4 94.7 95.2 94.6
LSGAN 83.2 81.9 85.4 83.6 85.4 86.3 90.6 86.4 84.4 85.3 84.0 85.4

WGAN-GP 93.1 92.6 94.2 93.9 93.6 93.2 94.2 94.4 97.2 97.4 96.4 97.6
ACGAN 89.9 89.1 90.1 90.5 91.4 91.2 92.0 91.6 95.5 95.7 94.5 96.2
CGAN 97.1 98.3 96.5 97.9 98.4 97.2 98.3 97.9 97.1 98.6 98.7 98.7

Modified Lightweight-GAN 98.8 98.2 99.0 98.6 98.9 97.4 98.7 98.5 99.0 99.1 99.3 99.2

Acc, Pre, Rec, and F1 refer to accuracy, precision, recall, and f1-score, respectively.

We also assessed the performance of classification models that use original data and
actual and synthetic data. We employed two different combinations of augmentation
procedures for the augmentation of plastic bottle images. To produce synthetic data,
Augmentation-1 employs a modified lightweight-GAN. Flipping, rotation, translation, and
noise addition are all used in Augmentation-2. We kept the total number of images for each
example to ensure a fair comparison.

In Table 6, we show the performance of the traditional augmentation technique with
transfer learning models. We also examined classification model performance utilizing
original, augmented data and a synthetic image generated by our model, which produces
better quality images and performs better. We can notice that in the case of noise addition,
accuracy is fairly low because of overfitting.
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Table 6. Accuracy, precision, recall, and F1-score of different classification using traditional augmen-
tation methods and a combination of original with synthetic data.

Tradition Augmentation/Classifier InceptionV3 Xception IncepX-Ensemble

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
Original Data 86.2 75.0 86.1 86.0 86.2 75.2 89.0 86.8 88.2 87.1 94.2 89.0

Flipping 87.1 83.2 91.0 86.0 88.0 91.1 79.8 84.5 87.1 88.1 93.0 89.1
Rotation 88.5 79.7 86.5 82.2 86.1 82.0 83.5 75.8 87.0 87.1 84.1 73.0

Translation 85.1 76.5 88.1 80.2 86.2 82.2 85.1 87.5 88.1 81.1 88.0 82.2
Noise Addition 75.2 72.0 77.1 75.6 75.6 76.0 77.0 77.1 75.8 75.2 77.2 76.1

Modified Lightweight-GAN 89.8 87.4 83.7 83.3 91.3 89.3 88.5 88.7 93.1 89.6 92.9 92.1

Acc, Pre, Rec, and F1 refer to accuracy, precision, recall, and f1-score, respectively.

We evaluated our IncepX-Ensemble model with the ImgaeNet dataset in Table 7. We
first trained the models with the original imageNet data and tested the model with actual
data. The model can be easily adapted to support fine-tuning for classification tasks. We
used the dataset for 60% for training and 40% for testing, and further testing data were
split into 0.75% of the total holdout test data and 0.25% validation. The performance
of the classification models using synthetic data, augmented data and a mix of original
and synthetic data was then determined using the same procedure. The images created
by our suggested improved lightweight-GAN model are of higher quality. It performs
quantitatively better than existing GAN models, as can be seen from all of the findings.

Table 7. Evaluation of our proposed model on the ImageNet dataset.

Original + Synthetic Image/Classifier InceptionV3 Xception IncepX-Ensemble

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
Original Data 93.9 92.5 95.8 94.3 94.4 94.6 92.9 92.9 96.2 95.8 96.1 95.6

Rotation 95.6 94.7 97.9 95.6 95.9 91.1 94.9 96.2 96.9 95.3 95.6 97.1
Translation 94.6 94.9 93.0 95.4 94.5 93.9 92.6 94.9 95.2 93.8 93.2 95.7

ACGAN 95.3 87.3 91.3 92.2 95.2 87.0 91.0 94.1 95.6 94.2 93.6 94.0
WGAN-GP 95.6 95.4 96.1 96.0 96.2 95.9 89.6 95.5 96.8 95.4 96.2 96.1

CGAN 94.6 95.0 96.1 95.3 75.6 76.0 77.0 77.1 95.8 92.5 95.4 96.0

Modified Lightweight-GAN 96.2 95.2 93.7 96.3 97.6 96.3 97.5 98.2 98.9 96.6 95.9 99.1

Acc, Pre, Rec, and F1 refer to accuracy, precision, recall, and f1-score, respectively.

6. Conclusions

The aim is to develop an application-based system that automatically detects plastic
bottle images. Our proposed approach is simple: to overcome the small and imbalanced
dataset, we first applied a modified lightweight-GAN method to generate synthetic images
of plastic bottles. Next, we developed a transfer learning-based model, IncepX-Ensemble,
classifying different plastic bottle images. Therefore, we developed a new system using
the transfer learning technique, and a new framework was developed by integrating with
modified lightweight-GAN. Modified lightweight-GAN was used for data augmentation
enhancement of the dataset, and the proposed transfer learning-based model was trained
and evaluated using original and generated images. Finally, we designed a weighted
average ensemble model named IncepX-Ensemble, tuning the influence of the base models
using the grid search technique. However, the two transfer learning models show excellent
performance, though in some cases, the two models fail to classify plastic bottles correctly.
To obtain an improved performance, we used a combination of transfer learning and the
weighted average technique to boost the application performance. The obtained results
indicate the algorithm’s efficacy with 99.06% accuracy. Future work may validate the
proposed model to evaluate recycling performance using more diverse big data. We plan to
use the model we developed to explore other datasets and waste management applications
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in the future. We hope that this will play a positive role in plastic bottle waste management
and environmental growth.
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DL Deep Learning
GAN Generative Adversarial Networks
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LSGAN Least Squares GAN
WGAN-GP Wasserstein GAN-Gradient Penalty
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