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Abstract: This paper mainly deals with the issue of fixed-time synchronization of fuzzy-based
impulsive complex networks. By developing fixed-time stability of impulsive systems and proposing
a T-S fuzzy control strategy with pure power-law form, some simple criteria are acquired to achieve
fixed-time synchronization of fuzzy-based impulsive complex networks and the estimation of the
synchronized time is given. Ultimately, the presented control scheme and synchronization criteria are
verified by numerical simulation.
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1. Introduction

Complex networks are ubiquitous and the dynamic behaviors of considerable real
systems in society can be simulated by complex network models [1]. Nowadays, complex
networks have been acquired wide attention in different branches of science and engi-
neering. In addition, many real network systems, such as power grid [2], communication
network [3], image protection [4], and genetic regulatory network [5], are always subject
to various instantaneous disturbances caused by burst noises, frequency changes, etc.,
which lead to abrupt changes of system states at some certain instants and finally form
the impulsive phenomenon. In 1960, Miliman et al. initially studied stability of motion
with impulse [6]. Afterwards, complex networks with impulse have naturally attracted
widespread attention [7–9].

As is well known, many practical systems are sophisticated and nonlinear, it is thus
difficult to explore the dynamic characteristics of those systems by means of conventional
analysis methods and control strategies [10,11]. For this topic, Takagi and Sugeno proposed
a fuzzy model, i.e., T-S fuzzy model [12], which has universal function approximation
capability and can approximate any smooth nonlinear function on any convex compact
domain [13]. Furthermore, the T-S fuzzy controller is a versatile controller, because a
T-S fuzzy controller can always be found to stabilize the nonlinear system [14]. Recently,
much attention has been carried out on the dynamic analysis of various T-S fuzzy systems,
including filtering [15,16], stability [17,18], stabilization [19,20], synchronization [21–23]
and so forth.

As one of the most fundamental subjects in analysis and control for various systems,
synchronization has acquired widespread concern in recent decades. Generally, synchro-
nization refers to the consensus feature of nodes’ dynamics driven by interaction of nodes
or forced by additional control [24–26]. So far, many valuable results about synchronization
of deterministic fuzzy complex networks (FCNs) have been reported [27–30]. For instance,
the finite-time cluster synchronization for T-S fuzzy complex networks with discontinuous
subsystems and probabilistic coupling delays was concerned based on T-S fuzzy interpo-
lation approach and Fillipov solution [27]. Moreover, the synchronization of T-S fuzzy
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complex networks was analyzed in [28–30] via applying sampling control and adaptive
fuzzy control, respectively. Diversely, the influence of impulse on FCNs is considered and
excellent achievements have been obtained [31,32]. For example, the exponential pinning
synchronization of stochastic T-S fuzzy delayed complex networks with heterogeneous
impulsive delays was discussed based on fuzzy memory pinning impulsive control method
in [31]. The synchronization conditions for fuzzy-based complex networks with different
switching topologies and time-varying delays were established in [32] via applying fuzzy
impulsive control strategy. Significantly, these researches mainly focus on the asymptotic
synchronization based on the traditional asymptotic stability theory, which indicates that
network synchronization only happens when the time goes to infinity.

In many practical problems, such as image encryption and communication security,
it is popular to realize performance control in finite time. Considering the fact, various
finite-time techniques have been proposed to explore the synchronization about impulsive
networks [33,34], where the synchronized time (ST) is associated with the initial states of
networks. Regretfully, it is unrealistic to access all system’s initial states in many engi-
neering problems, so it is extremely difficult to estimate the settling time. To eliminate the
dependence on the initial states, fixed-time (FT) synchronization for impulsive complex net-
works (ICNs) was proposed [35–39], where the synchronization rate is improved compared
with asymptotic synchronization and the relevance between the ST and the initial states
is avoided compared with finite-time synchronization. Especially, the synchronization of
ICNs was analyzed in [36] via applying fixed-time stability theory and fixed-time control
protocols, in which the estimation of the synchronized time is more accurate than the
work [35]. The FT synchronization conditions of delayed complex systems with stochas-
tic perturbation were established in [37] by means of novel impulsive pinning control
strategy. Recently, by virtue of non-chattering control scheme, and conceiving a novel
time-dependent Lyapunov function, the FT stochastic synchronization for multi-weighted
impulsive complex dynamical networks was investigated in [38]. The FT synchronization
of time-varying delayed impulsive networks with discontinuous activation functions was
analyzed in [39] based on generalized variable transformation with suitable tunable vari-
ables and differential inclusion theory. Nevertheless, there seems to be no related reports
about the FT synchronization of fuzzy-based impulsive complex networks (FICNs). Thus,
it is urgent and worthy to be deeply studied to develop some innovative control protocols
and analysis techniques to explore the FT synchronization of FICNs.

Enlightened by the above analysis, the FT synchronization of FICNs will be deeply
addressed. The innovations of the paper are mainly demonstrated as below.

(1) Since the T-S fuzzy rules and impulsive coupling are all considered, the FICNs in
this article complement and extend the models without fuzzy rules in [35–40] and FCNs
without impulse [27–30].

(2) An improved fixed-time stability theorem is developed for impulsive systems,
where the more general linear term V(y(t)) is involved compared with [36]. Furthermore,
the subsequent control design can be simplified by using the stability theorem.

(3) A type of pure power-law control scheme is developed and some simple conditions
are established based on the FT stability theorem to realize FT synchronization of FICNs.
Note that the proposed control scheme here is a pure power-law form, which is simpler in
comparison with the previous FT control design given in [35–40], in which both the linear
part and the power-law term are involved.

The remainder of the work is arranged as below. The model of FICNs and some related
basic results are provided in Section 2. The FT synchronization is investigated for FICNs in
Section 3. A numerical example is provided to validate the theoretical results in Section 4.
Ultimately, the results of the paper are summarized.

Notations: In this paper, the sets of non-negative integers and real numbers are respec-
tively denoted by N+ and R. Rn represents the n-dimensional Euclidean space, and Rn×m is
the set of all n×m real matrices. N\ = {1, . . . , N} for positive integer N. For a matrix A, its
transpose is denoted as AT , its largest eigenvalue is represented as λmax(A) if it is symmet-
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ric. diag{·} represents a diagonal matrix, and Im denotes the identity matrix with m dimen-
sion. For any d = (d1, . . . , dn)T ∈ Rn, θ > 0, [d]θ =

(
sign(d1)|d1|θ , . . . , sign(dn)|dn|θ

)T .

2. Problem Description and Preliminaries

Since impulse effect is ubiquitous in network systems, the following fuzzy-based
impulsive network is considered:

Rule r: IF ϕ1(t) is Θr
1, . . ., ϕG(t) is Θr

G, THEN
żq(t) = f (zq(t)) + s〈r〉

N

∑
j=1

cqjΓ}(zj(t)) + u
〈r〉
q (t), t 6= tk, t ≥ 0,

4zq(tk) = ς
〈r〉
k

N

∑
j=1

cqjzj(t−k ), k ∈ N+, q ∈ N\, r ∈ M\,

(1)

where M is the number of fuzzy IF-THEN rules, ϕg(t) and Θr
g (g ∈ G\) are premise variables

and fuzzy sets, respectively, zq(t) =
(
zq1(t), . . . , zqn(t)

)T ∈ Rn denotes the state variable of

the node q at time t, f (zq(t)) =
(

f1(zq(t)), . . . , fn(zq(t))
)T represents nonlinear dynamical

function, function }(zq(t)) =
(
}̄(zq1(t)), . . . , }̄(zqn(t))

)T , Γ ∈ Rn×n is the internal coupling

matrix, s〈r〉 > 0 is the coupling strength, u〈r〉q (t) is the imposed control input on the qth node,

{tk, k ∈ N+} is a sequence of strictly increasing impulsive instants, ς
〈r〉
k is the strength of

impulse,4zq(tk) = zq(t+k )− zq(t−k ), zq(t+k ) = limt→t+k
zq(t), zq(t−k ) = limt→t−k

zq(t), with-

out loss of generality, we assume that zq(t) is right continuous at t = tk, i.e., zq(t+k ) = zq(tk).
C = (cqj)N×N is the adjacency matrix, here cqj > 0 if there has an edge between node j
and node q (q 6= j), otherwise, cqj = 0, and cqq = −∑N

j=1,j 6=q cqj, q ∈ N\. Furthermore, the
corresponding Laplacian matrix L = (lqj)N×N is defined as lqj = −cqj, j 6= q, the diagonal
elements lqq = ∑N

j=1,j 6=q cqj. The initial condition is given by zq(0) = ϕq(0) ∈ Rn, q ∈ N\.
Using the singleton fuzzifier, product fuzzy inference, and a weighted average de-

fuzzifier [12,13], T-S fuzzy network (1) is transformed into the following form

żq(t) = f (zq(t)) +
M

∑
r=1

Υr(ϕ(t))
[
s〈r〉

N

∑
j=1

cqjΓ}(zj(t)) + u
〈r〉
q (t)

]
,

t 6= tk, t ≥ 0,

4zq(tk) =
M

∑
r=1

Υr(ϕ(t))ς〈r〉k

N

∑
j=1

cqjzj(t−k ), k ∈ N+, q ∈ N\, r ∈ M\,

(2)

where ϕ(t) = (ϕ1(t), . . . , ϕG(t))T , Υr(ϕ(t)) = vr(ϕ(t))
M
∑

r=1
vr(ϕ(t))

, vr(ϕ(t)) =
G
∏

g=1
Θr

g(ϕg(t)), and

Θr
g(ϕg(t)) denotes the grade of membership of ϕg(t) in Θr

g.

In addition, since vr(ϕ(t)) ≥ 0, r ∈ M\ and
M
∑

r=1
vr(ϕ(t)) > 0, then Υr(ϕ(t)) ≥ 0 and

M
∑

r=1
Υr(ϕ(t)) = 1.

Remark 1. At present, linear systems have been widely studied, but considerable practical systems
are nonlinear, which makes the analysis of control problems extremely difficult [13]. However, Takagi
and Sugeno [12] found that by using the qualitative and linguistic information of nonlinear dynamic
systems, a set of fuzzy IF-THEN languages can be introduced to describe the local input-output
relationship of nonlinear systems. Meanwhile, these local subsystems are fuzzy mixed through
appropriate membership function, so that the whole fuzzy system model can be established. In view
of this advantage, a kind of fuzzy-based impulsive coupling network (2) is considered in this paper.
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Consider the synchronous state satisfying the following equation

ν̇(t) = f (ν(t)), t ≥ 0, (3)

in which ν(t) =
(
ν1(t), . . . , νn(t)

)T ∈ Rn is the state variable. The initial value is provided as
ν(0) = ψ(0) ∈ Rn.

By setting εq(t) = zq(t)− ν(t), the error dynamic model is described by

ε̇q(t) =
M

∑
r=1

Υr(ϕ(t))
[
s〈r〉

N

∑
j=1

cqjΓ}̂(εj(t)) + u
〈r〉
q (t)

]
+ f (zq(t))− f (ν(t)), t 6= tk, t ≥ 0,

4εq(tk) =
M

∑
r=1

Υr(ϕ(t))ς〈r〉k

N

∑
j=1

cqjεj(t−k ), k ∈ N+,

q ∈ N\, r ∈ M\,

(4)

where }̂(εj(t)) = }(zj(t))− }(ν(t)) =
( ¯̂}(εq1(t)), . . . , ¯̂}(εqn(t))

)T .

Assumption 1. There has a positive real number ω such that for any µ, υ ∈ Rn,

‖ f (µ)− f (υ)‖ ≤ ω‖µ− υ‖.

Assumption 2. There exists a real number α > 0, such that for any a 6= b ∈ R,

}̄(a)− }̄(b)
a− b

≥ α.

Definition 1 ([41]). The fuzzy-based impulsive network (2) is said to reach FT synchronization,
provided that there exist two real numbers T∗(ε(0)) ≥ 0 and Tmax > 0 such that

lim
t→T∗(ε(0))

‖ε(t)‖ = 0, ε(t) = 0 for all t ≥ T∗(ε(0)),

and T∗(ε(0)) ≤ Tmax for any ε(0) ∈ RnN , and

T(ε(0)) = inf{T∗(ε(0)) ≥ 0 : ‖ε(t)‖ = 0, t ≥ T∗(ε(0))}

is said to the synchronized time of network (2), where ε(t) = (εT
1 (t), . . . , εT

N(t))
T .

Lemma 1 ([42]). If xi ≥ 0 for i ∈ n\, 0 ≤ v ≤ 1, p > 1, then

∑
i∈n\

xv
i ≥ ( ∑

i∈n\

xi)
v, ∑

i∈n\

xp
i ≥ n1−p( ∑

i∈n\

xi)
p.

Consider the following impulsive system{
ẏ(t) = h

(
y(t)

)
, t 6= tk,

∆y(tk) = Φ(y(t−k )), k ∈ N+,
(5)

in which y ∈ Rn, h : Rn → Rn and Φ : Rn → Rn are continuous functions, h(0) = 0 and
Φ(0) = 0.

Definition 2 ([36]). The scalar function V(y(t)) defined on Rn is called to belong to class V if
(i) It is locally Lipschitzian with respect to y and V(0) = 0;
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(ii) It is positive definite and radially unbounded;
(iii) It is continuous on the interval [tk−1, tk) with k ∈ N+, and limt→t−k

V(y(t)) = V
(
y
(
t−k
))

.

Assumption 3 ([35,36]). The impulsive time set {ts, s ∈ N+}, satisfying 0 = t0 < t1 < . . . <
ts−1 < ts < . . . and lims→+∞ ts = +∞, belongs to I(τmin, τmax) , {τmin ≤ ts − ts−1 ≤ τmax},
in which τmin, τmax are positive constants.

By Assumption 3, for any time interval ([, t), the number of impulsive jumps denoted by ι([, t)
satisfies t−[

τmax
− 1 ≤ ι([, t) ≤ t−[

τmin
.

Lemma 2 ([36]). Considering system (5), assume that there exist a function V(y(t)) ∈ V and
numbers ξ, π > 0, $ > 1, σ, η ∈ (0, 1), such that

d
dt

V(y(t)) ≤ −ξV$(y(t))− πVσ(y(t)), t 6= tk, t ≥ 0,

V(y(tk)) ≤ ηV(y(t−k )), k ∈ N+,
(6)

then y(t) = 0 for t ≥ T1, here

T1 =
τmax

(1− σ) ln η
ln
( πτmin

πτmin − ησ−1 ln η

)
+

τmax

(1− $) ln η
ln
(
1− η1−$ ln η

ξτmax

)
.

Lemma 3. Considering system (5), if there exist a function V(y(t)) ∈ V , and several constants
0 < κ < min{ξ, π}, $ > 1, σ, η ∈ (0, 1), such that

d
dt

V(y(t)) ≤ κV(y(t))− ξV$(y(t))− πVσ(y(t)), t 6= tk, t ≥ 0,

V(y(tk)) ≤ ηV(y(t−k )), k ∈ N+,
(7)

then y(t) = 0 for t ≥ T2, here

T2 =
τmax

(1− σ) ln η
ln
( (π − κ)τmin

(π − κ)τmin − ησ−1 ln η

)
+

τmax

(1− $) ln η
ln
(
1− η1−$ ln η

(ξ − κ)τmax

)
.

Proof. When t 6= tk, let Ξ(V) = −κV + ξV$ +πVσ, from the condition 0 < κ < min{ξ, π},{
Ξ(V) ≥ ξV$ + (π − κ)Vσ > 0, 0 < V ≤ 1,

Ξ(V) ≥ (ξ − κ)V$ + πVσ > 0, V > 1,

which indicates that Ξ(V) > 0 for all V > 0. So, the following impulsive comparison
system is considered

ṁ(t) =
{
−(π − κ)(m(t))σ, 0 < m(t) ≤ 1, t 6= tk,
−(ξ − κ)(m(t))$, m(t) > 1, t 6= tk,

m(tk) = θm(t−k ),

m(0) = m0 ≥ V(y(0)).

Similar to the proof of Lemma 2 given in [36], V(y(t)) = 0 and y(t) = 0 for any t ≥ T2.
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Remark 2. The FT stability and the estimation of settling time are given in Lemma 2 when
0 < η < 1. Note that if system (5) has no impulse, i.e., η = 1, we can get τmin = τmax, and by
using the equivalent replacement,

lim
η→1

( τmax

(1− σ) ln η
ln
( πτmin

πτmin − ησ−1 ln η

)
+

τmax

(1− $) ln η
ln
(
1− η1−$ ln η

ξτmax

))
= lim

η→1

( τmax

(1− σ) ln η
· ησ−1 ln η

πτmin − ησ−1 ln η
+

τmax

(1− $) ln η
· η1−$ − ln η

ξτmax

)
=

1
π(1− σ)

+
1

ξ($− 1)
.

So, when η = 1, the ST is estimated as

T3 =
1

π(1− σ)
+

1
ξ($− 1)

.

In Lemma 3, similarly, when η = 1, the ST is evaluated by

T4 =
1

(π − κ)(1− σ)
+

1
(ξ − κ)($− 1)

.

Remark 3. Compared with Lemma 2 given in [36], a general condition is provided in Lemma 3,
in which the linear term V(y(t)) is involved. It makes Lemma 3 more flexible and the subsequent
control design more pithy.

3. Fixed-Time Synchronization

In this section, a T-S fuzzy control scheme is proposed to ensure FT synchronization of
impulsive network (2).

The following fixed-time fuzzy control strategy is designed:
Rule r: IF ϕ1(t) is Θr

1, . . ., ϕG(t) is Θr
G, THEN

u
〈r〉
q (t) =− β

〈r〉
1 [εq(t)]θ1 − β

〈r〉
2 [εq(t)]θ2 , q ∈ N\, r ∈ M\, (8)

where β
〈r〉
1 , β

〈r〉
2 > 0, 0 < θ1 < 1, θ2 > 1.

For any r ∈ M\, ` ∈ n\ and �= 1, 2, denote
ρ〈r〉 = λmax

(
ωIN − s〈r〉αγ`L

)
,

λ̃ = max
r∈R\

{
ρ〈r〉
}

, β̃� = min
r∈R\

{
β
〈r〉
�
}

,

ξ̃ = β̃2(nN)
1−θ2

2 , ς̃ = min
k∈N+ ,r∈R\

{
ς
〈r〉
k
}

.

Theorem 1. Based on Assumptions 1–3 and the control protocol (8), system (2) is fixed-time
synchronized if there exists η̃ ∈ (0, 1) such that(

−η̃ IN (IN − ς̃L)T

∗ −IN

)
≤ 0. (9)
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Moreover, the settling-time is evaluated by

T(ε(0)) ≤



T̂1 =
2τmax

(1− θ1) ln η̃
ln
( 2β̃1τmin

2β̃1τmin − η̃
θ1−1

2 ln η̃

)
+

2τmax

(1− θ2) ln η̃
ln
(
1− η̃

1−θ2
2 ln η̃

2ξ̃τmax

)
, λ̃ ≤ 0,

T̂2 =
2τmax

(1− θ1) ln η̃
ln
( 2(β̃1 − λ̃)τmin

2(β̃1 − λ̃)τmin − η̃
θ1−1

2 ln η̃

)
+

2τmax

(1− θ2) ln η̃
ln
(
1− η̃

1−θ2
2 ln η̃

2(ξ̃ − λ̃)τmax

)
, 0 < λ̃ < min{ξ̃, β̃1}.

Proof. Select the following Lyapunov function

V(ε(t)) =
( N

∑
q=1

εT
q (t)εq(t)

) 1
2
.

When t 6= tk, for any ε(t) ∈ RnN\{0},

d
dt

V(ε(t)) =
1

V(ε(t))

N

∑
q=1

εT
q (t)

[(
f (zq(t))− f (ν(t))

)
+

M

∑
r=1

Υr(ϕ(t))
(

s〈r〉
N

∑
j=1

cqjΓ}̂(εj(t))

− β
〈r〉
1 [εq(t)]θ1 − β

〈r〉
2 [εq(t)]θ2

)]
. (10)

Firstly, denote ε`(t) = (ε1`(t), . . . , εN`(t))T with ` ∈ n\, and according to Assumption 1,
one has

N

∑
q=1

εT
q (t)

(
f (zq(t))− f (ν(t))

)
≤

N

∑
q=1
‖εq(t)‖ω‖εq(t)‖

=ω
N

∑
q=1

εT
q (t)εq(t)

=
n

∑
`=1

εT
` (t)ωINε`(t). (11)
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In addition,

M

∑
r=1

Υr(ϕ(t))s〈r〉
N

∑
q=1

N

∑
j=1

εT
q (t)cqjΓ}̂(εj(t))

=
M

∑
r=1

Υr(ϕ(t))s〈r〉
[
− 1

2

N

∑
q=1

N

∑
j=1

(
εq(t)− εj(t)

)TcqjΓ

×
(
}̂(εq(t))− }̂(εj(t))

)]
=

M

∑
r=1

Υr(ϕ(t))s〈r〉
[
− 1

2

n

∑
`=1

γ`

N

∑
q=1

N

∑
j=1

cqj
(
εq`(t)− εj`(t)

)
×
( ¯̂}(εq`(t))− ¯̂}(εj`(t))

)]
≤

M

∑
r=1

Υr(ϕ(t))s〈r〉
[
− α

2

n

∑
`=1

γ`

N

∑
q=1

N

∑
j=1

cqj
(
εq`(t)− εj`(t)

)2
]

=−
M

∑
r=1

Υr(ϕ(t))s〈r〉α
n

∑
`=1

γ`ε
T
` (t)Lε`(t). (12)

Using Lemma 1,

−
M

∑
r=1

Υr(ϕ(t))β
〈r〉
1

N

∑
q=1

εT
q (t)[εq(t)]θ1

=−
M

∑
r=1

Υr(ϕ(t))β
〈r〉
1

N

∑
q=1

n

∑
`=1
|εq`(t)|θ1+1

≤−
M

∑
r=1

Υr(ϕ(t))β
〈r〉
1

( N

∑
q=1

n

∑
`=1

ε2
q`(t)

) θ1+1
2

=−
M

∑
r=1

Υr(ϕ(t))β
〈r〉
1 Vθ1+1(ε(t))

≤− β̃1Vθ1+1(ε(t)), (13)

and

−
M

∑
r=1

Υr(ϕ(t))β
〈r〉
2

N

∑
q=1

εT
q (t)[εq(t)]θ2

=−
M

∑
r=1

Υr(ϕ(t))β
〈r〉
2

N

∑
q=1

n

∑
`=1
|εq`(t)|θ2+1

≤−
M

∑
r=1

Υr(ϕ(t))β
〈r〉
2 (nN)

1−θ2
2

( N

∑
q=1

n

∑
`=1

ε2
q`(t)

) θ2+1
2

≤− β̃2(nN)
1−θ2

2 Vθ2+1(ε(t)). (14)

Therefore,
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d
dt

V(ε(t)) ≤ 1
V(ε(t))

M

∑
r=1

Υr(ϕ(t))
n

∑
`=1

εT
` (t)

(
ωIN − s〈r〉αγ`L

)
ε`(t)

− 1
V(ε(t))

β̃1Vθ1+1(ε(t))− 1
V(ε(t))

β̃2(nN)
1−θ2

2 Vθ2+1(ε(t))

≤λ̃V(ε(t))− β̃1Vθ1(ε(t))− ξ̃Vθ2(ε(t)).

On the other hand, for t = tk, it has

4εq(tk) = εq(t+k )− εq(t−k )

=
M

∑
r=1

Υr(ϕ(t−k ))ς
〈r〉
k

N

∑
j=1

cqjεj(t−k ) q ∈ N\,

therefore,

4ε(tk) = −
M

∑
r=1

Υr(ϕ(t−k ))ς
〈r〉
k (L⊗ In)ε(t−k ).

According to (9), one gets

V(ε(tk)) = V(ε(t+k ))

=
(

εT(t+k )ε(t
+
k )
) 1

2

≤
(

εT(t−k )
((
(IN − ς̃L)T(IN − ς̃L)

)
⊗ In

)
ε(t−k )

) 1
2

≤ η̃
1
2 V(ε(t−k )).

When λ̃ ≤ 0, in view of Lemma 2, system (2) achieves synchronization in a fixed time
T̂1. If 0 < λ̃ < min{ξ̃, β̃1}, system (2) achieves synchronization within a fixed time T̂2 by
utilizing Lemma 3.

Especially, if impulsive dynamic network (2) without fuzzy rules [43,44], the network
model is changed into the following network

żq(t) = f (zq(t)) + s
N

∑
j=1

cqjΓ}(zj(t)) + uq(t), t 6= tk, t ≥ 0,

4zq(tk) = ςk

N

∑
j=1

cqjzj(t−k ), k ∈ N+, q ∈ N\.

(15)

Correspondingly, the error dynamic model is described by

ε̇q(t) = f (zq(t))− f (ν(t)) + s
N

∑
j=1

cqjΓ}̂(εj(t))

+ uq(t), t 6= tk, t ≥ 0,

4εq(tk) = ςk

N

∑
j=1

cqjεj(t−k ), k ∈ N+, q ∈ N\,
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where }̂(εj(t)) = }(zj(t))− }(ν(t)). At this point, the control strategy (8) is reduced to the
following form

uq(t) =− β1[εq(t)]θ1 − β2[εq(t)]θ2 , q ∈ N\, (16)

with β1, β2 > 0, 0 < θ1 < 1, θ2 > 1.

Corollary 1. Under Assumptions 1–3 and the control protocol (16), if there exists η̂ ∈ (0, 1)
such that (

−η̂ IN (IN − ς̂L)T

∗ −IN

)
≤ 0, (17)

then system (15) is FT synchronized. Besides, the ST is evaluated by

T(ε(0)) ≤



T̂3 =
2τmax

(1− θ1) ln η̂
ln
( 2β1τmin

2β1τmin − η̂
θ1−1

2 ln η̂

)
+

2τmax

(1− θ2) ln η̂
ln
(
1− η̂

1−θ2
2 ln η̂

2ξ̂τmax

)
, λ̂ ≤ 0,

T̂4 =
2τmax

(1− θ1) ln η̂
ln
( 2(β1 − λ̂)τmin

2(β1 − λ̂)τmin − η̂
θ1−1

2 ln η̂

)
+

2τmax

(1− θ2) ln η̂
ln
(
1− η̂

1−θ2
2 ln η̂

2(ξ̂ − λ̂)τmax

)
, 0 < λ̂ < min{ξ̂, β1}.

Here λ̂ = λmax
(
ωIN − sαγ`L

)
, ` ∈ n\, ξ̂ = β2(nN)

1−θ2
2 , ς̂ = min

k∈N+

{ςk}.

If any two nodes in fuzzy-based network (2) are interconnected only at the impulsive
time, then (2) is converted to the following form

żq(t) = f (zq(t)) +
M

∑
r=1

Υr(ϕ(t))u〈r〉q (t), t 6= tk, t ≥ 0,

4zq(tk) =
M

∑
r=1

Υr(ϕ(t))ς〈r〉k

N

∑
j=1

cqjzj(t−k ),

k ∈ N+, q ∈ N\, r ∈ M\.

(18)

Remark 4. Notably, system (2) is a kind of network with mixed continuous coupling and impulse
coupling. In this kind of network, the state information of a large number of nodes needs to be
continuously transmitted, so there is a great possibility of communication congestion. However, the
impulsive coupling mode is different, which requires less information to be transmitted through the
network and occupies fewer communication channels. Considering this fact, the network model (18)
with impulsive coupling only is introduced in this paper.

According to Theorem 1, the following Corollary 2 can be easily derived.
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Corollary 2. Based on Assumptions 1–3 and the control protocol (8), if there exists η̃ ∈ (0, 1)
satisfying (9), then system (18) is FT synchronized at the fixed time T̂5, where

T̂5 =
2τmax

(1− θ1) ln η̃
ln
( 2(β̃1 −ω)τmin

2(β̃1 −ω)τmin − η̃
θ1−1

2 ln η̃

)
+

2τmax

(1− θ2) ln η̃
ln
(
1− η̃

1−θ2
2 ln η̃

2(ξ̃ −ω)τmax

)
, 0 < ω < min{ξ̃, β̃1}.

When there is no impulsive interference, system (2) is changed into the following form

żq(t) = f (zq(t)) +
M

∑
r=1

Υr(ϕ(t))
[
s〈r〉

N

∑
j=1

cqjΓ}(zj(t))

+ u
〈r〉
q (t)

]
, q ∈ N\, r ∈ M\.

(19)

Corollary 3. Under Assumptions 1 and 2 and the control protocol (8), systems (19) achieves FT
synchronization, the ST is evaluated by

T(ε(0)) ≤


T̂6 =

1
β̃1(1− θ1)

+
1

ξ̃(θ2 − 1)
, λ̃ ≤ 0,

T̂7 =
1

(β̃1 − λ̃)(1− θ1)
+

1
(ξ̃ − λ̃)(θ2 − 1)

, 0 < λ̃ < min{ξ̃, β̃1}.

Remark 5. In the existing results [27–30], the synchronization for fuzzy-based complex networks
was investigated. Differently, Yang et al. [31] and Behinfaraz et al. [32] considered the impact of
impulse on fuzzy-based complex networks. However, the above results are about the asymptotic and
finite-time synchronization of fuzzy complex networks, in which the initial values need to be obtained
in advance. Different from the above results, a fixed-time fuzzy control strategy is designed, and the
synchronization of impulsive coupled network is deeply explored based on T-S fuzzy logic theory in
this paper, in which the synchronization time is independent of the initial state of the system.

Remark 6. In [36,37,39], FT synchronization has been discussed for complex networks with
impulsive effect by designing the following hybrid control strategy composed of linear part and
power-law term:

uq(t) =− β0εq(t)− β1[εq(t)]θ1 − β2[εq(t)]θ2 , q ∈ N\,

where β0, β1, β2 > 0, 0 < θ1 < 1, θ2 > 1. Actually, the linear part −β0εq(t) is only to ensure
asymptotic synchronization, while the power-law term −β1[εq(t)]θ1 − β2[εq(t)]θ2 is the core to
achieve FT synchronization. Based on this idea, a new FT stability theorem is proposed for impulsive
system in Lemma 3 to facilitate the design of pure power-law control scheme (8), and the FT
synchronization of fuzzy-based impulsive coupled networks is also ensured under the new design in
this paper. Evidently, our control design is simpler and effective.

Remark 7. Over the years, there have been many excellent results on the synchronization of complex
networks [33–41,45,46]. Specially, the influences of actuator saturation and stochastic coupling
strength on the network were considered in [45]. Besides, the passivity-based synchronization for
complex networks under Markovian jump parameters, actuator fault and random coupling delay
was considered in [46]. In these articles, the effects of random perturbations on network dynamics
are covered, which is more consistent with many real-world applications, since systems are often
subject to unpredictable sudden changes and sudden environmental disturbances. Therefore, it is of
practical significance to apply the methods of control design and theoretical analysis proposed in this
paper to further study the fixed-time control of complex networks with random disturbances, which
will be one of the directions of future research.
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4. Numerical Example

To verify the above stability and synchronization results, two numerical examples and
several related simulations are provided by using Matlab software in this part.

Example 1. The following system is considered
ẏi(t) = κiyi(t)− ξi sign(yi(t))|yi(t)|$

− πi sign(yi(t))|yi(t)|σ, t 6= tk, t ≥ 0,

yi(tk) = ℘iyi(t−k ), k ∈ N+, i = 1, 2, 3,

(20)

where y = (y1, y2, y3)
T ∈ R3, $ > 1, σ ∈ (0, 1), κi ≥ 0, ξi, πi > 0, ℘i ∈ (−1, 1).

Similarly, by defining V(y(t)) = ‖y(t)‖1, for any y(t) ∈ R3\{0}, one has
d
dt

V(y(t)) ≤ κV(y(t))− ξV$(y(t))− πVσ(y(t)), t 6= tk, t ≥ 0,

V(y(tk)) ≤ ℘V(y(t−k )), k ∈ N+,

where κ = max{κi, i = 1, 2, 3}, ξ = 31−$ min{ξi, i = 1, 2, 3}, π = min{πi, i = 1, 2, 3},
℘ = max{|℘i|, i = 1, 2, 3}. Choose κ1 = 0.8, κ2 = 0.7, κ3 = 0.6, ξ1 = ξ3 = 2.1, ξ2 = 2,
π1 = 1.6,π2 = 1,π3 = 1.3,℘1 = −0.6, ℘2 = 0.4, ℘3 = 0.5, τmin = 0.08, τmax = 0.14, $ = 1.6
and σ = 0.5. It can be obtained that system (20) is stable within the time T2 = 3.4663 through
Lemma 3, and its numerical simulation is shown in Figure 1. However, the origin of system (20)
can not be ensured according to Lemma 2, which shows that the stability condition of Lemma 3
proposed in this article is less conservative and more applicable than [36].

0 1 2 3 4 5 6

-8

-6

-4

-2

0

2

4

6

8

Figure 1. FT stability of system (20).

Example 2. Consider a class of fuzzy-based impulsive networks composed of 9 nodes, its dynamic
model is written as 

żq(t) = f (zq(t)) +
2

∑
r=1

Υr(ϕ(t))
[
s〈r〉

9

∑
j=1

cqjΓ}(zj(t))

+ u
〈r〉
q (t)

]
, t 6= tk, t ≥ 0,

4zq(tk) =
2

∑
r=1

Υr(ϕ(t))ς〈r〉k

9

∑
j=1

cqjzj(t−k ), k ∈ N+,

q = 1, . . . , 9,

(21)
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where zq(t) =
(
zq1(t), zq2(t), zq3(t)

)T , s〈1〉 = 0.5, s〈2〉 = 1, Γ = 2I3, Υ1(z) = 1− 0.1sin4(z),

Υ2(z) = 0.1sin4(z), }(zq(t)) =
(
}(zq1(t)),}(zq2(t)),}(zq3(t))

)T , }(φ) = 5φ + 2sinφ,

f (zq(t)) = Wzq(t) + Ψχ(zq(t)), χ(zq(t)) =
(
χ1(zq1(t)), χ2(zq2(t)), χ3(zq3(t))

)T , χ`(φ) =

0.5(|φ + 1| − |φ − 1|), ` = 1, 2, 3, W = −I3, the impulsive control gains ς
〈1〉
k and ς

〈2〉
k are

arbitrarily taken from (−2,−1) ∪ (−1, 0), and

Ψ =

 1.25 −3.2 −3.2
−3.2 1.1 −4.4
−3.2 4.4 1.0

.

The topology of model (21) is expressed in Figure 2.

Figure 2. Topology structure of impulsive network (21).

The dynamic behavior of synchronous state is described as

ν̇(t) = Wν(t) + Ψχ(ν(t)), (22)

and the dynamical behavior of system (22) is illustrated by Figure 3, in which the initial
value is chosen as (ψ1(0), ψ2(0), ψ3(0))T = (1.8, 1,−1.3)T .

-2
2

-1

1

0

0

1

-1

2

21.510.50-0.5-1-1.5-2

Figure 3. Phase diagram of system (22).
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Consider the FT synchronization of system (21) based on the control strategy (8).
By simple computation, ω = 7.3391, α = 4, λ̃ = 7.3391. Choose β

〈1〉
1 = 8.6, β

〈2〉
1 = 9,

β
〈1〉
2 = 14, β

〈2〉
2 = 13.5, θ1 = 0.4, θ2 = 1.3, η̃ = 0.45, τmin = 0.08, τmax = 0.1, then conditions

0 < λ̃ < min{ξ̃, β̃1} and (9) are satisfied. By Theorem 1, the FT synchronization between
system (21) and system (22) is ensured within the time T̂2 = 2.2497. The corresponding
simulation result is revealed in Figure 4 by picking random initial values. Distinctly, in
contrast to the work in [27] about finite-time synchronization, the proposed FT synchroniza-
tion control has a better robust performance since they allow the FICNs possess arbitrary
initial states.

0 0.5 1 1.5 2 2.5 3
-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 4. FT synchronization error of network (21).

In addition, since λ̃ > 0, Lemma 2 given in [36] cannot be used to judge that system
(21) is fixed-time synchronized, but the fixed-time synchronization is ensured by Lemma 3
proposed in this paper, so Lemma 3 can be applied more flexibly.

5. Conclusions

In this paper, the FT synchronization of impulsive coupling networks based on T-S
fuzzy is discussed. Firstly, by proposing a fuzzy control strategy and using Lyapunov
method, some conditions of FT synchronization of fuzzy impulsive network are obtained,
and the upper bound of synchronization time is estimated. It is worth noting that the
controller designed in this paper is in the form of pure power-law, which is simpler and
more effective than the traditional design composed of linear part and power-law part.
Finally, a numerical example is given to illustrate the feasibility of the proposed control
scheme and criteria.

When studying the synchronization of fuzzy-based impulsive coupled networks in
this paper, the model considered has the same membership function and fuzzy rules as the
designed control strategy. However, if the membership function and fuzzy rules between
the model and the control strategy are different, how to design a simple and effective con-
trol strategy to study the synchronization control problem of impulsive complex networks
remains to be discussed. In addition, it is noted that although fuzzy is considered in the
network model and fuzzy control strategies are designed, the synchronization conditions
established are independent of fuzziness. Therefore, the discussion to establish synchro-
nization conditions depending on fuzzy rules should be considered in the future research.

Moreover, note that the synchronization can be solved for a fixed-time under the
FT control protocol (8) by adjusting the control parameters. However, the adjustment
may be seriously troublesome since the relation between the convergence time and the
parameters are not clear. Besides, the faster convergence time may result in larger control
costs. Therefore, how to design an effective control strategy to achieve synchronization in
the specified-time remains to be further explored.
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