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Abstract: In this paper, we study the stability of solutions to systems of differential equations with
discontinuous right-hand sides. We have investigated nonlinear and linear equations. Stability
sufficient conditions for linear equations are expressed as a logarithmic norm for coefficients of
systems of equations. Stability sufficient conditions for nonlinear equations are expressed as the
logarithmic norm of the Jacobian of the right-hand side of the system of equations. Sufficient
conditions for the stability of solutions of systems of differential equations expressed in terms
of logarithmic norms of the right-hand sides of equations (for systems of linear equations) and
the Jacobian of right-hand sides (for nonlinear equations) have the following advantages: (1) in
investigating stability in different metrics from the same standpoints, we have obtained a set of
sufficient conditions; (2) sufficient conditions are easily expressed; (3) robustness areas of systems
are easily determined with respect to the variation of their parameters; (4) in case of impulse action,
information on moments of impact distribution is not required; (5) a method to obtain sufficient
conditions of stability is extended to other definitions of stability (in particular, to p-moment stability).
The obtained sufficient conditions are used to study Hopfield neural networks with discontinuous
synapses and discontinuous activation functions.

Keywords: differential equations with discontinuous right-hand sides; Hopfield artificial neural
networks; stability

MSC: 34D20; 34A36

1. Introduction

Hopfield, Cohen–Grossberg and similar neural networks have been actively studied
recently due to their applications in physics and engineering [1–4]. Hopfield neural net-
works (HNNs) have found many applications in associative memory, repetitive learning,
classification of patterns, optimization problems and many others.

Today, two basic mathematical models are employed for neural network research:
either local field neural network models or static neural models. The basic model of local
field neural network is described as

dxi(t)
dt

= −xi(t) +
n

∑
j=1

wijgj(xj(t)) + Ii, i = 1, 2, . . . , n, (1)

where gi is a function of the ith neuron activation, xi is the state of the ith neuron, Ii is the
external input imposed on the ith neuron, wij stands for the synaptic connectivity value
between the jth neuron and the ith neuron, and n is the number of neurons in the network.
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A static neural network is defined by the system of equations

dxi(t)
dt

= −xi(t) + gi

(
n

∑
j=1

wijxj(t) + Ii

)
, i = 1, 2, . . . , n, (2)

where we used the same notation as above.
The local fields neural network (1) was introduced by Hopfield and it is the Hopfield

neural network that is usually referred to in the literature. The neural network (1) models
bidirectional associative memory networks [5] and cellular neural networks [6].

Static neural networks (2) are often referred to as Cohen–Grossberg networks. They
are widely used in optimization problems and in modeling brain processes, so-called
brain-state-in-a-box neural networks [7]. The research on stability for models such as (2)
was opened with the classical work [8].

The stability results for the basic model (2) as well as the results for a more general model,

dxi(t)
dt

= ai(xi)[bi(xi)−
n

∑
i=1

cij ϕj(xj)]

were obtained in [8,9].
Below, we present a brief review of the papers devoted to the stability of solutions for

systems of ordinary differential equations with discontinuous right-hand sides. Here, we
examined the stability of dynamic neural networks and obtained sufficient conditions for
their absolute and local asymptotic stability. The fixed points of the neural network are
associated with local minima of the network energy function. Interest in seeking for local
minima is due to the study of the memory problem for neural networks. Clearly, the more
local minima a neural network has, the greater potential memory it holds.

When solving computational mathematics problems on neural networks, asymptoti-
cally stable networks appear to be more preferable in general.

The derivation of sufficient conditions for stable neural networks in general is a rather
complicated problem. Its solution is known only in a few special cases.

In [10], sufficient conditions for stability for neural networks (1) have been obtained
based on Gershgorin circles. In [11], sufficient conditions for the global stability of solutions
of systems of Equation (1) have been obtained by a mapping method. In [12], the results of
works [10,11] have been generalized and new Lyapunov functions have been constructed.

In [13], it was proven that the diagonal stability of the interconnection matrix implies
the existence and uniqueness of an equilibrium and global stability of the equilibrium.

In [14], it was shown that the negative semidefiniteness of matrices ensures the stability
of Hopfield neural networks described by the Equation (1). In [15], the number of sufficient
conditions for the local exponential stability of HNNs was presented. In [16], the algorithm
of matrix norms was applied to the study of nonlinear dynamical systems.

The stability of recurrent systems that model identification problems was investigated
in [17].

Extensive literature is devoted to researching the stability of neural networks with
various time delays [18–22].

Constructing a mathematical model, we have to abstract from many phenomena—for
example, from the uncertainty. In [21], the stability of fuzzy cellular neural networks based
on the union of cellular neural networks and fuzzy logic methods has been studied. The cel-
lular neural networks are modeled by systems of differential equations with discontinuous
right-hand sides.

Along with continuous activation functions, there are a great number of applications
that are modeled by neural networks with discontinuous activation functions. Similar
models have been studied in [23].

The theory of differential equations with discontinuous right-hand sides is given in [24].
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Recall, following [24], the definitions of solutions for differential equations with
discontinuous right-hand sides and their stability.

Consider an equation or a system of equations in vector form

dx
dt

= f (t, x), (3)

where f (t, x) is a piece-wise continuous function or a vector function in domain Ω : {x ∈
Rn, t ∈ [0, ∞)}; M is a measure zero set of the function f (t, x) discontinuity points.

Each point (t, x) we associate with a set F(t, x) in n dimensional space. This set is
constructed as follows. If the function f (t, x) is continuous at the point (t, x), the set F(t, x)
contains just one point which matches with f (t, x). If f has a discontinuity point at (t, x),
the set F(t, x) is defined according to the related physical problem. One such method is
described in Section 1.5 in [25].

Definition 1 ([24]). A solution of the Equation (3) is called a solution of differential inclusion

dx
dt
∈ F(t, x), (4)

i.e., absolutely continuous vector function x(t) defined in interval or segment I and for which the
inclusion dx

dt ∈ F(t, x) is satisfied almost everywhere in I.

Definition 2 ([24]). The solution x = ϕ(t), t0 ≤ t < ∞ of differential inclusion (4) is called stable
if, for any ε > 0, there exists δ > 0 so that, for every x̃0, |x̃0(t0)− ϕ(t0)| < δ each solution x̃(t)
with the initial condition x̃(t0) = x̃0, t0 ≤ t < ∞ exists and satisfies the inequality

|x̃(t)− ϕ(t)| < ε for t0 ≤ t < ∞.

Definition 3 ([24]). The solution x = ϕ(t), t0 ≤ t < ∞ of differential inclusion (4) is called
asymptotically stable if it is stable and, in addition, lim

t→∞
|x̃(t)− ϕ(t)| = 0.

Definition 4 ([24]). The solution x = ϕ(t), t0 ≤ t < ∞, of differential inclusion (4) is called
stable in general if it is asymptotically stable for any initial x0 ∈ Rn, where Rn is n-dimensional
vector space.

Intense research on the stability of systems of ordinary differential equations with
discontinuous right-hand sides began in the middle of the last century in connection with
increasing interest in automatic control problems. In addition to the issues of automatic
control, automatic regulation [26] and the theory of relay systems, differential equations
with discontinuous right-hand sides are widely used to model various problems in physics
and engineering—in particular, the classical problem of dry friction [27]. Differential
equations for automatic control with variable structures and discontinuous right-hand
sides are obtained from differential equations with continuous right-hand sides when
passing to the limit along a parameter [24].

Today, the stability of solutions of systems of ordinary differential equations with
discontinuous right-hand sides is an active and growing field.

This is because there are numerous applications of systems of differential equations
with discontinuous right-hand sides (Filippov systems) for various problems in physics,
techniques, biology and medicine. A detailed bibliography is given in [28].

Recently, stability theory with discontinuous coefficients has been extended to nu-
merical mathematics. There are widely used various methods to determine solutions for
systems of linear and nonlinear algebraic equations.
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In [29], the authors have developed a continuous method for solving nonlinear oper-
ator equations. Each nonlinear operator equation is assigned with the Cauchy problem.
Convergence of the method is based on Lyapunov stability theory.

Collocation methods for solving initial and boundary problems for differential equa-
tions and the theory of B, D, G, P stability of their solutions has been developed and
presented in [30–32]. The latter also contains an extensive bibliography.

In [33], the second Lyapunov’s method was used to investigate semistability finite-
time stability differential inclusions for systems of differential equations with discontinuity
of the first kind on various manifolds. Semistability has a wider range of applications than
the stability condition.

Research is performed in several directions: (1) systems of differential equations with
one [34] and two [35] relays have been studied.

Stability of solutions of differential equations with one relay

dxi(t)
dt

= pisgn xi +
n

∑
j=1

cijxj, i = 1, 2, . . . , n. (5)

has been studied in [34].
In [35], the author investigates the stability of solutions of systems of differential equations

dx1(t)
dt = a1sgnx1(t) + b1sgnx2(t) + ∑n

j=2 c1,jxj(t),
dx2(t)

dt = a2sgnx1(t) + b2sgnx2(t) + ∑n
j=2 c2,jxj(t),

dxi(t)
dt = ∑n

j=1 ci,jxj(t), i = 3, .., n,

(6)

with constant coefficients.
Stability of solutions of systems of differential equations with relay [34,35] is based

on the study of transfer functions. There have been obtained necessary and sufficient
conditions for the stability of solutions for the systems (5), (6) expressed in terms of
coefficients of equations.

Numerous works have been devoted to the stability of systems of nonlinear switching
differential equations. For a bibliography, see [36].

Another class of problems is related to the study of sliding modes in automatic
regulation and control systems [37]. It is interesting to note that sliding modes are present
in ecology models [28].

When studying the stability of systems of nonlinear differential equations with discon-
tinuous right-hand sides, Lyapunov’s functions method [38–40] has been used.

Stability of neural networks described by the equations

dxi
dt

= −cixi +
n

∑
j=1

aij ϕj(xj), (7)

i = 1, 2, . . . , n and more general equations

dxi
dt

= −cixi −
n

∑
j=1

aij

n

∑
k=1

ajkgk(xk), (8)

i = 1, 2, . . . , n by the second Lyapunov method has been investigated in [41] assuming that
the functions gk(x), k = 1, 2, . . . , n are continuous. The following conditions are imposed
on the functions ϕj(xj)

A1. Each function ϕj(xj) is defined everywhere for −∞ < xj < ∞, continuous and
one-valued;

A2. Each function ϕj(xj) lies in the first and the third quadrant; xj 6= 0, moreover, the
inequalities are fulfilled xj ϕj(xj) > 0, j = 1, 2, . . . , n;

A3. lim|xj |→∞
∫ xj

0 ϕj(ρ)dρ = +∞, j = 1, 2, . . . , n.
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Stability of neural networks with discontinuous coefficients gi(x), i = 1, 2, . . . , n has
been studied in [42,43].

It was assumed in [42] that

gi(x) = g(x) =
{

1, x > 0,
0, x < 0,

i = 1, 2, . . . , n. To ensure the stability of a neural network, the method based on the
majorization of the nonlinear part of Equation (7) by a constant and further solving the
differential has been proposed.

Stability of the solutions of Equation (7) with discontinuous nonlinear functions was
investigated with the second Lyapunov method in [43]. The study of sliding mode stability
is also reported in [43].

The detailed research of neural networks including Hopfield networks is given in [44].
The stability of neural networks with various activation functions in general has been
studied, as well as the stability at separated stationary points. The basic technique of neural
network stability in [44] appears to be the use of Lyapunov’s and energy functions. In [44],
one can find an extensive bibliography on the stability of neural networks described with
differential and difference equations.

The exponential stability of a Hopfield neural network on the timeline has been
investigated in [45]. Stability of the neural networks described by differential equations

dxi(t)
dt

= −eixi +
n

∑
j=1

gij(xj), i = 1, 2, . . . , n, (9)

with functions gij(xj), i, j = 1, 2, . . . , n having discontinuities of the first kind at separate
points has been studied in [25,46].

In this paper, we investigate the stability of solutions of systems of linear and nonlinear
equations with discontinuous right-hand sides. We obtained sufficient conditions for the
asymptotic stability for systems of differential equations used when studying HNNs’
stability with discontinuous synapses and activation functions.

We study the stability of solutions for systems of differential equations regardless of
how an inclusion equation is defined. With this approach, it is essential to use the first
Lyapunov method.

It is possible to suggest that in applying the second Lyapunov method, one has to
construct separate Lyapunov–Krasovski functionals for each area where the right-hand
side of the differential equation system is continuous.

The paper is divided into the Introduction, three sections and the Conclusions.
Section 2 introduces the definitions and the notation used throughout the paper. Section 3
examines the stability of solutions of differential equations with discontinuous right-hand
sides. In Section 4, we analyze the stability of Hopfield neural networks. The obtained
results are drawn in the final section.

2. Definitions and Notations

We now introduce a few definitions used in this paper.
Here, Dkg(t, u1, . . . , un) stands for a partial derivative

Dkg(t, u1, . . . , un) = ∂g(t, u1, . . . , un)/∂uk, k = 1, 2, . . . , n.
Moreover, we employ the following notation: B(a, r) = {z ∈ B : ‖z − a‖ ≤ r},

S(a, r) = {z ∈ B : ‖z− a‖ = r}, Re(K) = <(K) = (K + K∗)/2, Λ(K) = lim
h↓0

(‖I + hK‖ −

1)h−1. Here, B is a Banach space, a ∈ B, K is a linear and bounded operator on B, Λ(K) is
the logarithmic norm [47] of the operator K, K∗ is the conjugate operator to K, and I stands
for the identity operator.

The main properties of the logarithmic norm are given in [47].
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If A is an n× n matrix, then Λ(A) can readily be computed for the corresponding
norms of linear vector spaces.

The logarithmic norm is known for operators in the most frequently used spaces.
Let A = {aij}, i, j = 1, 2, . . . , n be a real matrix.
In the n-dimensional space Rn of vectors x = (x1, . . . , xn), the following norms are

often used:

- ‖x‖1 =
n
∑

i=1
|xi|;

- ‖x‖2 = max
1≤i≤n

|xi|;

- ‖x‖3 = (
n
∑

i=1
x2

i )
1/2.

Below are some expressions of the logarithmic norm of a matrix A = (aij) correspond-
ing to the norms of the vectors given above:

Λ1(A) = max
1≤j≤n

(
ajj + ∑

i 6=j
|aij|

)
;

Λ2(A) = max
1≤i≤n

(
aii + ∑

j 6=i
|aij|

)
;

Λ3(A) = λmax

(
A + A∗

2

)
,

where A∗ is the conjugate matrix for A.

3. Stability of Solutions to Equations Systems with Discontinuous Right-Hand Sides
3.1. Stability of Solutions to Linear Equations Systems with Discontinuous Coefficients

Consider the Cauchy problem

dxi(t)
dt

=
n

∑
j=1

aij(t)xj(t), t ≥ 0, (10)

xi(0) = xi, i = 1, 2, . . . , n, (11)

with discontinuous coefficients aij(t), i, j = 1, 2, . . . , n.
We assume that the functions aij(t) are continuous everywhere except a countable set

of points ζ1, ζ2, . . . , where the functions have discontinuities.
The following statement is valid.

Theorem 1. Let the following conditions be satisfied:
(1) Functions aij(t) are continuous everywhere except a countable set of points ζ1, ζ2, .., where

the functions have discontinuities. There is at most a finite number of discontinuities on each
[0, A], 0 < A < ∞. The coefficients {aij(t)} at ζ1, ζ2, . . . , have discontinuities of the first kind or
discontinuities of the second kind integrable in L-metric:

∫ ζ1
l+1

ζ1
l

|aij(t)|dt ≤ clij < ∞, i, j = 1, 2, . . . , n, l = 1, 2, ...

Here, ζ1
l are the points that satisfy ζi < ζ1

i < ζi+1, i = 0, 1, . . . , ζ0 = 0;
(2) The Cauchy problem (10)–(11) has a solution for t ≥ 0 and any initial conditions;
(3) The inequality Λ(A(t)) ≤ −κ, κ > 0 is valid everywhere except a set of points ζ1, ζ2, . . .

Here, A(t) = {aij(t)}n
i,j=1.

Then, zero solution of the system (10) is asymptotically stable in general.
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Set Λ(A(t)) equal to zero at discontinuity points ζi. By the theorem, we have a
finite number of discontinuities in each time interval. Thus, it does not change the value∫ t

0 Λ(A(τ))dτ.

Proof of Theorem 1. Consider a time interval [0, ζ1). The Wintner estimate is valid [47]
within this interval

‖x(t)‖ ≤ ‖x(0)‖ exp
{∫ t

0
Λ(A(τ))dτ

}
, t ∈ [0, ζ1). (12)

The function ‖x(t)‖ is continuous for t ≥ 0, and then the Inequality (12) is correct for
t ∈ [0, ζ1]. Therefore,

‖x(ζ1)‖ ≤ ‖x(0)‖ exp
{∫ ζ1

0
Λ(A(τ))dτ

}
.

Consider an interval [ζ1, ζ2]. First, assume that functions aij(t) have discontinuities
of the first kind at ζ2. Let A+(t) = {a+ij (t)}, i, j = 1, 2, . . . , n be a matrix with elements
defined by

a+ij (t) =

aij(t), t 6= ζ2,
lim

t→ζ2+0
aij(t), t = ζ2.

We take xi(ζ1), i = 1, 2, . . . , n, as initial values. Repeat the arguments above, for
t ∈ [ζ1, ζ2], and we have

‖x(t)‖ ≤ ‖x(ζ1)‖ exp
{∫ t

ζ1
Λ(A+(τ))dτ

}
=

= ‖x(ζ1)‖ exp
{∫ t

ζ1
Λ(A(τ))dτ

}
≤ ‖x(0)‖ exp

{∫ t
0 Λ(A(τ))dτ

}
.

Next, we consider the case where functions aij(t) have discontinuities of the second
kind and integrals

∫ ∞
0 |aij(t)|dt exist. Obviously, for t ∈ [0, ζ1), the Inequality (12) is valid.

Since the function x(t) is continuous, the inequality is valid on the interval [0, ζ1]. From the
continuity of ‖x(t)‖, it follows that a point ζ1

1(ζ1 < ζ1
1 < ζ2) such that

‖x(t)‖ ≤ ‖x0‖+ ‖x0‖
exp

{∫ t
0 Λ(A(τ))dτ

}
− 1

2

exists for t ∈ [ζ1, ζ1
1].

By taking xi(ζ
1
1), i = 1, 2, . . . , n as initial conditions and repeating the arguments above,

we verify immediately the validity of the inequality

‖x(t)‖ ≤ ‖x0‖ exp
{∫ t

0
Λ(A(τ))dτ

}
,

for 0 ≤ t ≤ ζ2. Repeating the process in each interval [ζl , ζl+1], we can observe that the
inequality is correct for 0 ≤ t ≤ ∞.

Let us consider the case when coefficients aij(t) have a countable number of disconti-
nuity points.

Let the function a11(t) have a countable number of discontinuity points located in
interval [b1, b2] with measure ∆ = |b2 − b1|, b1 > 0.

The following assertion is true.
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Theorem 2. Let the following conditions be satisfied:
(1) The functions aij are continuous everywhere except a countable number of points located in

the interval [b1, b2], b1 > 0, ∆ = |b2 − b1|.
(2) The Cauchy problem (10), (11) has a solution for all t ≥ 0 and for any initial conditions.
(3) The inequality Λ(A(t)) ≤ −κ, κ > 0 holds everywhere except the interval [b1, b2]. Here,

A(t) = {aij(t)}, i, j = 1, 2, ..., n;
(4) The inequality is valid

b1∫
0

Λ(A(τ))dτ + A∆ < 0,

where A = sup
τ∈[b1,b2]

‖A(τ)‖.

Then, a trivial solution of the system of Equation (10) is asymptotically stable.

Proof of Theorem 2. Consider [0, b1]. From Wintner inequality [47], it follows that for
t ∈ [0, b1]

‖x(t)‖ ≤ ‖x(0)‖ exp
{∫ t

0
Λ(A(τ))dτ

}
.

Take [b1, b2]. Here, we have

x(t) = x(b1) +
∫ t

b1

A(τ)x(τ)dτ,

and the integral is understood in the sense of Lebesgue.
Thus,

‖x(t)‖ ≤ ‖x(b1)‖+
∫ t

b1

‖A(τ)‖‖x(τ)‖dτ ≤ ‖x(b1)‖+ A
∫ t

b1

‖x(τ)‖dτ.

where A = maxb1≤t≤b2 ‖A(t)‖.
From Gronwall–Bellman inequality, it follows that

‖x(t)‖ ≤ ‖x(b1)‖ exp{A(t− b1)}.

Thus, for t ∈ [b1, b2],

‖x(t)‖ ≤ ‖x(0)‖ exp
{∫ b1

0 Λ(A(τ))dτ + A(t− b1)
}

≤ exp
{∫ b1

0 Λ(A(τ))dτ + A(b2 − b1)
}
‖x(0)‖.

(13)

Therefore, if
∫ b1

0 Λ(A(τ))dτ + A∆ < 0, then ‖x(b2)‖ ≤ ‖x(0)‖ and a trivial solution
of the system of Equation (10) is stable.

It is easy to see that the obtained results can be extended to systems of switching
differential equations. At the same time, the stability condition is extended to systems
of differential equations with an arbitrary number of relays. Moreover, the suggested
method allows one to obtain sufficient conditions for the stability of solutions of systems of
nonlinear equations with relay. Similarly, based on the results presented in Sections 2 and 3,
one can formulate sufficient conditions for the stability of switching systems.

Example. We consider a system of differential equations with relay

dxk(t)
dt

=
m

∑
l=1

akl(t)sgn xl(t) +
n

∑
l=1

bkl(t)xl(t), k = 1, 2, . . . , n.
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Theorem 1 implies that for the asymptotic stability of the trivial solution of this system,
it is sufficient to fulfill the following conditions: for each t ∈ [0, ∞)

bkk(t) +
m

∑
l=1
|akl(t)|+

n

∑
l=1,l 6=k

|bkl(t)| ≤ −ξ, ξ > 0.

3.2. Stability of Solutions for Systems of Nonlinear Non-Autonomous Differential Equations with
Discontinuous Right-Hand Sides

First, let us recall the sufficient stability conditions for systems of nonlinear differential
equations with continuous right-hand sides that we gave previously [48], and which we
extensively use below.

Consider the system of equations

dxi(t)
dt

= ai(t, x1(t), . . . , xn(t)), i = 1, 2, . . . , n, (14)

with the initial conditions
xi(0) = xi, i = 1, 2, . . . , n. (15)

Let x∗(t) = (x∗1(t), . . . , x∗n(t)) be a steady-state solution of the Cauchy problems (14)
and (15).

Let the functions ai(t, u1, ..., un) be continuous with respect to the first variable and
have partial derivatives with respect to other variables satisfying the Lipschitz condition
with a coefficient A:

|Djai(t, x∗1 , . . . , x∗n)− Djai(t, y∗1 , . . . , y∗n)| ≤ A(|x∗1 − y∗1 |+ . . . + |x∗n − y∗n|), i, j = 1, . . . , n. (16)

Let χ = const > 0. Let, for t ∈ [0, ∞), the following conditions be satisfied

Diai(t, x∗1(t), . . . , x∗n(t)) +
n

∑
j=1,j 6=i

∣∣∣Djai(t, x∗1(t), . . . , x∗n(t))
∣∣∣ < −χ < 0, i = 1, . . . , n. (17)

Theorem 3 ([48]). Let the system (14) have a steady-state solution x∗(t) = (x∗1(t), . . . , x∗n(t)). Let
the functions ai(t, x1, . . . , xn), i = 1, 2, . . . , n be continuous with respect to the first variable, con-
tinuously differentiate to other variables and partial derivatives satisfy the Lipschitz condition (16).
Let, for all t ≥ 0, the conditions (17) be satisfied. Then, the steady-state solution x∗(t) of the
system of Equation (14) is asymptotically stable in the R3

n space metric of n-dimensional vectors
v = (v1, . . . , vn) with norm ‖v‖ = max1≤j≤n |vj|.

Consider a system of nonlinear equations

dui(t)
dt

= ai(t, u1(t), . . . , un(t)), i = 1, 2, . . . , n, t ≥ 0, (18)

with initial conditions
ui(0) = ui, i = 1, 2, . . . , n. (19)

Their right-hand sides are continuous everywhere except a countable set of values
(ζi, ui

1, . . . , ui
n), i = 1, 2, . . . , in which they have discontinuities.

For the sake of simplicity, we consider two cases here:
(1) there are discontinuities with respect to variable t;
(2) there are discontinuities with respect to variable u1.

Consider the first case. Assume that the functions aj(t; u1, . . . , un), j = 1, 2, . . . , n have
discontinuities with respect to t at points ζi, i = 1, 2, . . . ; 0 < ζ1 < ζ2 < . . . . For convenience,
let j = 1. The functions ai(t; u1, . . . , un), i = 2, 3, . . . , n are assumed to be continuous.

We impose the following constraints on ai(t, u1, . . . , un), i = 1, 2, . . . , n:
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(1) functions ai(t, u1, . . . , un), i = 2, . . . , n are continuous with respect to t(t ∈ [0, ∞))
and have partial derivatives that satisfy the Lipschitz condition with coefficient q with
respect to other variables

|Dkai(t, u1, . . . , un)− Dkai(t, v1, . . . , vn)| ≤ q
n

∑
i=1
|ui − vi|, k = 1, 2, . . . , n, t ∈ [0, ∞); (20)

(2) the function a1(t, u1, . . . , un) is continuous for t ∈ [0, ζ1) ∪∞
i=1 (ζi, ζi+1). For t, it has

partial derivatives with respect to other variables satisfying the Lipschitz condition with
coefficient q

|Dja1(t, u1, . . . , un)− Dja1(t, v1, . . . , vn)| ≤ q
n

∑
i=1
|ui − vi|, , j = 1, 2, . . . , n; (21)

(3) for t ∈ [0, ∞)

Diai(t, x∗1(t), . . . , x∗n(t)) +
n

∑
j=1,j 6=i

∣∣∣Djai(t, x∗1(t), . . . , x∗n(t))
∣∣∣ < −χ < 0, i = 2, 3, . . . , n; (22)

(4) for t ∈ [0, ζ1) ∪∞
i=1 (ζi, ζi+1)

D1a1(t, x∗1(t), . . . , x∗n(t)) +
n

∑
j=2

∣∣∣Dja1(t, x∗1(t), . . . , x∗n(t))
∣∣∣ < −χ < 0, (23)

where χ = const > 0.
Now, consider the time interval t ∈ [0, ζ1].
Let ‖u(0)‖ ≤ δ, where δ ≤ χ/(4qn2). In [48], it was shown that in order to fulfill the

conditions (20)–(23) in time interval t ∈ [0, ζ1], the trajectory of the solution of the Cauchy
problems (18) and (19) does not leave a ball B(0, δ). It was also shown that for t ∈ [0, ζ1], it
holds that

‖u(t)‖ ≤ e−χt/4‖u(0)‖ ≤ e−χt/4δ. (24)

Since the function ‖u(t)‖ is continuous for t ∈ [0, ∞), we can find ζ ′1, ζ1 < ζ ′1 < ζ2
such that |ζ ′1 − ζ1| < |ζ2 − ζ1|/10 and ‖u(t)‖ ≤ e−χζ1/8‖u(0)‖ for t ∈ [ζ1, ζ ′1]. Obviously,
for t ∈ [ζ ′1, ζ2], ‖u(t)‖ ≤ e−χ(t−ζ ′1)/4‖u(ζ ′1)‖ ≤ e−χ(t−ζ ′1)/4e−χζ1/8‖u(0)‖.

For t = ζ2, we have ‖u(ζ2)‖ ≤ e−χ(ζ2−ζ ′1)/4e−χζ1/8‖u(0)‖ < e−χ∆1/8e−χ∆0/8‖u(0)‖.
Here and below, ∆k = |ζk+1 − ζk|.

Consider the interval [ζ2, ζ3]. From function ‖u(t)‖, t ∈ [0, ∞) continuity, it follows that
there is an interval [ζ2, ζ ′2] such that |ζ ′2 − ζ2| < ∆3/10 and ‖u(t)‖ ≤ e−χ(∆0+∆1)/8‖u0‖ for
t ∈ [ζ2, ζ ′2]. Then, if t ∈ [ζ ′2, ζ3] ‖u(t)‖ ≤ e−χ(t−ζ ′2)/4‖u(ζ ′2)‖ ≤ e−χ(t−ζ ′2)/4e−χ(∆0+∆1)/8‖u0‖,
‖u(ζ3)‖ < e−χ(ζ3−ζ2)/8e−χ(∆0+∆1)/8‖u0‖ = e−χ(∆0+∆1+∆2)/8‖u0‖.

Repeating the process, we have for t ∈ [ζk, ζk+1] : ‖u(ζk+1)‖ < e
−χ(

k
∑

l=0
∆l)/8

. Therefore,
t→ ∞ ‖u(t)‖ → 0.

Asymptotic stability is proven.

Theorem 4. Let the following conditions be fulfilled:
(1) the Cauchy problems (14) and (15) has a steady-state solution x∗(t), x∗(t) = (x∗1(t), . . . , x∗n(t)),
t ≥ 0;
(2) functions aij(t, x1, x2, . . . , xn) are continuous with respect to variables x1, . . . , xn and have a set
of countable discontinuities ζ1, . . . , ζn, ... with respect to t. Moreover, in each finite time interval
[0, T), there is at most a finite number of discontinuities;
(3) at every point of continuity with respect to t, functions aij(t, x1, . . . , xn) have partial derivatives
with respect to x1, . . . , xn and satisfy the Inequalities (20), (21);
(4) the conditions (22), (23) are fulfilled.
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Then, a steady-state solution of the Cauchy problems (14) and (15) is asymptotically stable.

Now, we move on to the case where functions ai(t, u1, . . . , un), i = 1, 2, . . . , n have
discontinuities with respect to ui, i = 1, 2, . . . , n.

For simplicity, we restrict the discussion to the case where the function a1(t, u1, . . . , un)
has a discontinuity at u1 for u1 = u∗1 .

Assume that a gap occurs at time t = η1 > 0 and u1(η1) = u∗1 .
Let, for −∞ < u1 < u∗1 , −∞ < ui < ∞, i = 2, . . . , n and for u∗1 < u1 < ∞, −∞ <

ui < ∞, i = 2, . . . , n, functions ai(t, u1, . . . , un), i = 1, . . . , n have partial derivatives that

satisfy the Lipschitz condition |Djai(t, u1, . . . , un)− Djai(t, v1, . . . , vn)| ≤ q
n
∑

i=1
|ui − vi|, j =

1, 2, . . . , n.
Consider a time interval [0, η1). The conditions of Theorem 3 are verified in each

[0, b] ⊂ [0, η1). Therefore, for t ∈ [0, η1), the inequality occurs ‖u(t)‖ ≤ e−χt/4δ < δ.
Although the function ‖u(t)‖ is continuous for t ∈ [0, ∞), the inequality ‖u(t)‖ ≤

e−χt/4δ is valid for t ∈ [0, η1].
Consider special features of the transition of the Cauchy problem solution trajectories (18)

and (19) through t = η1.
There are two possible cases:

(1) there is an interval (η1, η1 + ∆1], in which u1(t) 6= u1(η1);
(2) there is a time interval [η1, η1 + ∆2], in which u1(t) = u1(η1).

We will study each case separately.
First, from continuity of the function ‖u(t)‖, it follows that there is h, h < η1/10 so

that t ∈ [η1, η1 + h], ‖u(t)‖ < e−χt/8δ.
Therefore, for t ∈ [0, η1 + h], the inequality ‖u(t)‖ ≤ e−χt/8δ is valid. Clearly, ‖u(η1 +

h)‖ ≤ e−χ(η1+h)/8δ.
For t ∈ [η1 + h, ∞), the inequality ‖u(t)‖ ≤ e−χ(t−η1−h)/4‖u(η1 + h)‖

≤ e−χ(t−η1−h)/4e−χ(η1+h)/8δ ≤ e−χt/8δ is valid.
Therefore, ‖u(t)‖ ≤ e−χt/8δ, for t ∈ [0, ∞).
Thus, for the first case, the stability of the steady-state solution for the system of

Equation (18) is proven.
Now, we move on to the second case. Since u1(t) = u1(η1) for t ∈ [η1, η1 + ∆1], in this

time interval instead of (18), one should observe the following system of equations

0 = a1(t, u1(η1), u2(t), . . . , un(t)). (25)

dui(t)
dt

= ai(t, u1(η1), u2(t), . . . , un(t)), i = 2, . . . , n. (26)

The system of Equation (26) is considered under initial condition ui(η1) = ui,
i = 2, 3, . . . , n.

We assume that functions u2(t), . . . , un(t) satisfy the condition (25) for t ∈ [η1, η1 +∆1].
The system of Equation (26) is studied similarly to the system (18) in the space of

lower dimension. Sufficient conditions of stability for the solution of the system (26) for
t ∈ [η1, η1 + ∆1] are constructed similarly to the sufficient conditions of stability for the
solution of the system (18) on the time interval t ∈ [0, ζ1]. We omit the details. Finally, we
investigate the time interval t ∈ [η1 + ∆1, ∞] and employ the arguments given in [48].

Now, we must consider the case of a countable set of discontinuities. It suffices to
observe the case where there are discontinuities with respect to u1 for ūi

1, i = 1, 2, . . . . We
suggest that the discontinuities occur at the time moments t∗i : a1(t∗i , ūi

1(t
∗
i ), . . . , un(t∗i )),

i = 1, 2, . . . . As above, we will assume that at each finite time interval [0, T], there is a finite
number of discontinuities.

Here, we also must consider two cases:
(1) ui

1(t) 6= ūi
1(t
∗
i ) in an interval t ∈ (t∗i , t∗i + h1

i );
(2) there is an interval [t∗i , t∗i + hi], where ui

1(t) = ūi
i(t
∗
i ).
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For convenience, we observe the first case. The second one leads to the case of a system
of a lower dimension.

To each time moment t∗i , i = 1, 2, . . . associated with a function discontinuity
a1(t, u1(t), . . . , un(t)) we assign a number ζ ′i so that t∗i < ζ ′i < t∗i+1, |ζ ′i − t∗i | ≤ |t∗i+1 − t∗i |/4,
i = 1, 2, . . . .

Repeating the above arguments for each time interval [0, ζ ′1], [ζ
′
i , ζ ′i+1], i = 1, 2, · · · , we

verify the validity of the following statement.

Theorem 5. Let the following conditions be fulfilled:
(1) the Cauchy problems (14)–(15) has a steady-state solution x∗(t), x∗(t) = (x∗1(t), . . . , x∗n(t));
(2) functions aij(t, x1, . . . , xn) are continuous with respect to variables (t, x1, . . . , xn) everywhere
except a countable set of discontinuities with respect to variables x1, . . . , xn that occur at time
moments t∗i , i = 1, 2, . . . . Moreover, in each finite time interval, there is a finite number of
discontinuities;
(3) at continuity points, functions aij(t, x1, . . . , xn) have partial derivatives with respect to variables
x1, . . . , xn that satisfy the Lipschitz condition;
(4) the conditions (22), (23) are fulfilled.

Then, a steady-state solution of the Cauchy problems (14)–(15) is asymptotically stable.

4. Stability of Hopfield Neural Networks

In this section, we investigate the stability of Hopfield neural networks, which are
modeled by a system of nonlinear differential equations

dxi(t)
dt

= −ai(t)xi(t) +
n

∑
j=1

wi,j(t)gj(xj(t)), (27)

with discontinuous coefficients ai(t) and activation functions gi(x), i = 1, 2, . . . , n.
We will perform our study of the stability of neural networks (27) in two stages. The

first stage includes a case with discontinuous coefficients ai(t). The second one considers
discontinuity of activation function gi(x), i = 1, 2, . . . , n.

First, let functions ai(t), i = 1, 2, . . . , n have discontinuities of the first kind. It is
enough to restrict ourselves to the case of one point of discontinuity. Assume that the
function a11(t) is discontinuous at the point b1, 0 < b1 < ∞. Without loss of generality, we
suggest gj(0) = 0, j = 1, 2, . . . , n, |gi(x)| ≤ αi|x|, i = 1, 2, . . . , n.

Now, we investigate the stability of the zero solution of the system of Equation (27).
In the interval (0, b1], the norm of the solution of Equation (27) for initial value

x(0) = x0, x(0) = (x1(0), . . . , xn(0)), (28)

is estimated by the inequality

‖x(t)‖ ≤ exp
{∫ t

0 Λ(A(τ))dτ
}
‖x(0)‖

+
∫ t

0 exp
{∫ t

s Λ(A(τ))dτ
}
‖F(t, x(s))‖ds,

(29)

where A(t) = {aij(t)}, i, j = 1, 2, . . . , n,

F(t, x(t)) =

(
n

∑
j=1

w1j(t)gj(x(t)), . . . ,
n

∑
j=1

wnj(t)gj(x(t))

)T

.

Proceeding with the Inequality (29), we have

‖x(t)‖ ≤ exp
{∫ t

0
Λ(A(τ))dτ

}
‖x(0)‖+ γ

∫ t

0
exp

{∫ t

s
Λ(A(τ))dτ

}
‖x(s)‖ds, (30)

where γ is defined from the inequality ‖F(t, x(t))‖ ≤ γ‖x(t)‖.
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From the Inequality (30), using well-known methods, we have the estimate

‖x(t)‖ ≤ exp
{∫ t

0
Λ(A(τ))dτ + γt

}
‖x(0)‖, t ∈ [0, b1].

Taking x(b1) = (x1(b1), . . . , xn(b1)) as the initial value and repeating the arguments
given in the proof of Theorem 1, we obtain the inequality

‖x(t)‖ ≤ exp
{∫ t

0
Λ(A(τ))dτ + γt

}
‖x(0)‖,

which is valid for t ∈ [0, ∞).
From this inequality, it follows that when the condition{∫ t

0
Λ(A(τ))dτ + γt

}
< 0,

is satisfied, the system of Equation (27) is asymptotically stable in general.
Thus, the following statement has been proven.

Theorem 6. Let the following conditions be fulfilled:
(1) functions ai, i = 1, 2, . . . , n are continuous everywhere in [0, ∞) except a finite number of

points where they have discontinuities of the first kind;
(2) functions gi(t) are continuous;
(3) |gj(x(t))| ≤ αj|x(t)|;
(4) in t ∈ [0, ∞), the following condition is satisfied∫ t

0
Λ(A(τ))dτ + γt < 0,

where gamma is defined from the inequality ‖F(t, x(t))‖ ≤ γ‖x(t)‖.
Then, the Hopfield neural network is stable in general.

Consider the case of discontinuity in synapses wij(t), i, j = 1, 2, . . . , n. For conve-
nience, we restrict ourselves to the discontinuity of the function w11(t) at the time moment
b1, 0 < b1 < ∞.

Let us represent the system of Equation (27) as

dx1(t)
dt

= −a1(t)x1(t) + w11(t)g′1(0)x1(t)

+w11(t)u1(x1(t)) +
n

∑
j=2

w1j(t)gj(xj(t)),

dxi(t)
dt

= −ai(t)xi(t) +
n

∑
j=1

wij(t)gj(xj(t)), i = 2, 3, . . . , n. (31)

Here, u1(x1(t)) = g1(x1(t))− g′1(0)x1(t).
It is essential that |u1(x1(t))| = o(|x1(t)|), since we examine the trivial solution of the

system (27). Therefore,

|u1(x1(t))| = |g(x1(t))− g1(0)− g′1(0)x1(t)| ≤ B|x1(t)|2,

where B = max
0<θ(x1(t))<1

|g′′(θ(x1(t)))|.

Obviously, the system of Equation (31) has a structure similar to that of the sys-
tem of Equation (27). The difference is that the coefficient for x1(t) now is equal to
−a1(t) + w11(t)g′1(0), and the vector function F(x(t)) contains w11(t)u1(x(t)) instead of
w11(t)g1(x(t)).

Taking this remark into account, the assertion of Theorem 7 extends to the system (31).
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Finally, we consider the case which involves discontinuous activation functions.
Clearly, the system of Equation (18) is a special case of the system of Equation (18).
Theorem 5’s statements are readily extended to this.

5. Conclusions

In this paper, we obtain sufficient conditions of asymptotic stability for solutions of
linear and nonlinear systems of ordinary differential equations with discontinuous right-
hand sides. We have derived conditions for local asymptotic stability and stability in
general and the obtained sufficient conditions have been used to investigate the stability
of Hopfield neural networks with discontinuous synapses and activation functions. The
proposed method for studying Hopfield neural networks can also be applied to other types
of artificial neural networks.

The authors hope to continue their study in the following directions:

- stability of solutions of systems of differential equations with discontinuous right-hand
sides and delays;

- stability of solutions of systems of parabolic equations with discontinuous right-
hand sides;

- stability of solutions of systems of hyperbolic equations with discontinuous right-
hand sides.

We intend to use the obtained results in the following fields:

- Ecology. There are a lot of regions with dramatic climate change. Models with
discontinuities describe the dynamics of populations very well.

- Problems of automatic regulation and control.
- Mathematical models of immunology during therapy.
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