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Abstract: The behaviors of functionally graded (FG) engineering structures are influenced by various
parameters, such as the boundary temperature, the angular velocity, variations in the thickness,
the weight of the structure, and the loading state. The thermo-elastic characteristics of FG rotating
circular disks under the loading of contact forces were investigated. Hooke’s law in plane stress
problems was applied to derive a pair of partial differential equations and a finite volume method was
developed due to the complexity of the governing equations. The thermo-elastic characteristics of the
FG rotating disks were investigated according to the variations in their outer boundary temperature
and angular velocity. The increase in the outer boundary temperature caused crack generation at
the inner surface of the circular disk and on the opposite side to the loading point. The increase in
the angular velocity caused unstable thermo-elastic behaviors near the area of the outer boundary
surface, especially at 0.7 < (r− a)/(b− a) < 0.9, and may have led to crack generation at the outer
surface of the rotating disk. These results may be applied to the design of functionally graded circular
cutters or grinding disks undergoing contact forces to produce proper and reliable thermo-elastic
characteristics for practical applications.

Keywords: contact force; functionally graded circular disk; finite volume method; thermo-elastic
characteristics

MSC: 74F05; 74S10

1. Introduction

Due to the emerging need for new materials to provide strong, stiff, and lightweight
structural components, research on composite materials (CMs) and functionally graded
materials (FGMs) is actively underway. CMs are made of two or more different materials;
FGMs are peculiar compositions of CMs and are usually made from two constituents with
continuous variations in their physical and mechanical properties in one or more directions.
CMs are exposed to significant problems, such as delamination and crack propagation,
because of their different thermal and mechanical properties, while the continuity variation
in FGMs reduces stress concentration and optimizes stress distribution. Nevertheless,
FGMs display good performance in high-temperature environments, especially under
severe temperatures. Owing to these, FGMs are widely used in space vehicles, nuclear
power plants, aircraft, and many other engineering applications.

Rotating circular disks are extensively used in many engineering components, such as
grinders, turbines, gears, flywheels, centrifugal compressors, circular saws, propellers, and
internal combustion engines. Dai and Dai [1] adopted an angular acceleration parameter
in a FG rotating circular disk under a loading of changing temperature field to resolve
the displacement and stress distributions. Using an infinitesimal theory combining plane
elasticity and the complementary functions method, Yildirim [2] presented hydrogen-
induced stresses in FG axisymmetric spheres, cylinders, and disks. They verified that the
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variation in the grading rules is more sensitive to radial stress than to hoop stress. A higher-
order finite beam element and the Lord–Shulman theory were utilized by Entezari et al. [3]
to analyze the thermomechanical properties of FG rotating disks. Pal and Das [4] used a
mathematical model approach to investigate the free vibration behavior of a FG rotating
annular micro-disk based on the potential energy and Hamilton’s principle. Royal et al. [5]
employed a variation formulation method involving the radial displacement field as the
unknown variable for the investigation of uniform-thickness FG rotating disk behavior, and
Arani et al. [6] performed an analysis of magneto-thermo-elastic stresses and thermo-piezo-
magneto-mechanical stresses in rotating FGM disks. Variable thickness is an indispensable
parameter in the stability performance of FG circular disks. Eraslan et al. [7] presented
analytical solutions for the elastic plastic stress distribution in annular rotating disks with
variable thickness profiles. The deformation and stresses of FG orthotropic non-uniform
rotating disks with material properties varying along the radial and tangential directions
were investigated by Sondhi et al. [8] using a finite element method, and they validated a
significant reduction in stresses in variable-thickness in comparison with uniform disks.
A FG rotating disk subjected to both mechanical and thermal stresses was considered by
Bayat et al. [9] to analyze the deformation and stresses, testifying to the superior stability
in the stresses and the displacement distribution profiles. Yildirim and Tutuncu [10]
performed an instability analysis of FGM rotating disks with variable thickness. Variable
material property theory was applied by Mahdavi et al. [11] to present an analysis of the
thermo-mechanical behavior of FG rotating discs with variable thickness, showing that discs
with variable thickness profiles have smaller stresses than those with constant thickness.
Kadkhodayan and Golmakani [12] carried out a non-linear analysis of FG solid and hollow
radiating axisymmetric disks with uniform and variable thickness undergoing bending
load. First-order shear deformation theory and the large-deflection von Karman equation
were adopted for the derivation of the governing equation. The weight of the engineering
structures is a crucial parameter in the determination of thermal and mechanical properties.
Khorsand and Tang [13] determined the optimized weight of a FG hollow disk with
variable density in the radial direction under the action of thermal-mechanical loads
using an algorithm with coupled co-evolutionary particle swarm optimization and the
differential quadrature method. Zeinkiewics and Campbell [14] used the combination of a
boundary element method and sequential linear programming to accomplish the curve
optimization of engineering structures with the purpose of reducing stress in the whole
body. A combination of simulated annealing, PSO, and the Karush–Kuhn–Tucker method
was applied by Jafari et al. [15] to obtain the optimized weights of rotating disks.

Recently, various methods to analyze the elastic and thermal-elastic characteristics of
FG circular-shape structures have been explored by many authors. Saini et al. [16] used
Kirchhoff’s plate theory and Eringen’s nonlocal elasticity theory to determine the behavior
of non-uniform FG asymmetric circular and annular nanodiscs in the thermal buckling
state. The power-law model was adopted to describe the temperature-independent effective
mechanical properties of FGMs. Timoshen beam theory and a finite element method were
applied by Gayen et al. [17] to study the stability behavior of a FG shaft rotor-disk system
considering various parameters, such as the rigid end bearing conditions, cracks, and
internal damping. Al-Furjan et al. [18] utilized three-dimensional refined higher-order
shear deformation theory and Hamilton’s principle, considering various sets of boundary
conditions, in the investigation of a non-polynomial framework for the bending responses of
FG graphene nanoplatelet composite reinforced disks. Sathujoda [19] presented a corrosion
detection method for the analysis of a FG rotor system describing the spatial variation in a
wavelet transform to modify the computed FG rotor-mode shapes into the wavelet domain,
in order to identify and locate the local corrosion defect. The successive approximation
method was applied by Saeedi et al. [20] to present the thermo-elasto-plastic behavior of a
thick-walled cylindrical shell made of FGM. The numerical solutions were obtained using
the differential quadrature method, involving the combination of the internal pressure on
and the temperature gradient of the shell. Moreover, theoretical research on thermo-elastic
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problems is underway. Liu et al. [21] employed the Tychonoff fixed-point theorem for
multivalued operators to prove the existence of a solution for the thermo-elastic contact
problem considering the nonlinear thermo-elastic constitutive law. The heat-exchange
boundary condition on the contact surface is expressed with the function of the normal
displacement and determined by the difference in the temperature of the body. Chawda
and Bhandakkar [22] proposed a semi-analytical technique for the solution of the mixed
boundary value problem in a FG circular annulus under the action of a radially varying
shear modulus. The Fourier series and Airy stress functions approaches were used to
investigate the elastic characteristics. Howell et al. [23] and Paoli and Shillor [24] utilized
Barber’s heat exchange condition to represent the thermal interaction upon contact between
a thermos-elastic body and a rigid thermally active foundation, in the absence of wear.
Paoli and Shillor used the Galerkin method to show the existence of a weak solution and
Howell et al. described two classes of dynamic thermo-elastic problem. Cao-Rial et al. [25]
explored the contact and the constitutive law governed by a normal damped response
function and the Duhamel–Neumann relation, respectively, to show the existence and
uniqueness of a solution to the dynamic thermo-elastic contact problem.

However, most of studies concerning the thermo-elastic contact problem are limited
to the boundary conditions caused by the temperature of the body. The contact forces
generated in-use between two different elastic structures are unrecognized and the investi-
gation into the thermal-mechanical behaviors of rotating FGM circular disks undergoing
various contact loads are not studied in depth in the literature, even though loads are
crucial parameters in the determination of thermo-elastic characteristics. We considered
the inner-outer boundary temperatures, angular velocity, and forces created due to the
contact during operation as contact loading parameters when conducting our research.
Nevertheless, a finite volume method was introduced for the detailed investigation of the
elastic and thermo-elastic characteristics over the sequentially changing circular domain.
In this study, the thermo-elastic characteristics of a rotating Al2O3/Al FGM disk under the
action of contact force loads are presented. The Young’s modulus, CTE, and density of the
FGM circular disks were assumed to vary exponentially only in the radial direction due
to symmetry with respect to the axis of the disk for a constant Poisson’s ratio. Hooke’s
law was applied, considering the contact forces, to obtain a pair of partial differential
equations, and a finite volume method was adopted for the numerical approaches due to
the complexity of the governing equation.

2. Materials and Methods

A rotating FGM circular disk subjected to contact forces was studied (see Figure 1).
The disk featured a concentric circular hole, and the origin of the polar coordinate system
r− θ was assumed to be located at the center of the disk and hole. As shown in Figure 1,
constituent materials, of dark and white colors, of FGM circular disk were designated by A
and B, and the distribution of each material varied continuously along the radial direction
only. The radii of the hole and outer surface of the disk were designated as a and b. Due
to the assumption of only radial variation in material distributions, the FGM disk can be
reduced to an axisymmetric problem and all properties relating the present circular disk
problem can be treated as functions of r only. Thus, the Young’s modulus, the coefficient of
the thermal expansion, and the density of the disk are assumed to vary exponentially as:

E = E0eβr, (1)

α = α0eϑr, (2)

ρ = ρ0eµr. (3)
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Figure 1. Schematic diagram of functionally graded circular disk model.

Since the disk is composed of 100% material A at the surface of the hole (r = a) and 100%
material B at the outer surface (r = b), the constants in Equations (1)–(3) can be determined
as follows:

E0 = EAe−βa, (4)

α0 = αAe−ϑa, (5)

ρ0 = ρAe−µa, (6)

β =
1

a− b
ln(

EA
EB

), (7)

ϑ =
1

a− b
ln(

αA
αB

), (8)

µ =
1

a− b
ln(

ρA
ρB

). (9)

The subscripts A and B denote the properties of the constituent materials A and B,
respectively. However, the non-subscripted variables were used to denote the properties of
FGM composed of the materials A and B.

2.1. Mathematical Formulation

Let T(r) be the function of temperature variation at any distance r. Next, based on
Hooke’s law in plane stress problems [26], the strain–stress relations undergoing thermal
expansion are written as

εr =
1
E [σr − υσθ ] + αT, εθ = 1

E [σθ − υσr] + αT,
τrθ = E

2(1+ν)
γrθ , τθz = 0, τrz = 0. (10)

in polar coordinates. The strain-displacement components are given by

εr =
∂u
∂r , εθ = 1

r
∂v
∂θ + u

r , εz = 0,
γrθ = 1

r
∂u
∂θ + ∂v

∂r −
v
r , γzθ = 0, γrz = 0.

(11)

Now, equilibrium equations in polar coordinates are

∂σr

∂r
+

1
r

∂τrθ

∂θ
+

σr − σθ

r
+ ρω2r = 0,

∂σθ

∂θ
+ r

∂τrθ

∂r
+ 2τrθ = 0. (12)

The governing equations are, through the combination of Equations (10)–(12),

∂u
∂r

(
r ∂u

∂r

)
+ 1−υ

2r
∂2u
∂θ2 − 3−υ

2r
∂v
∂θ + 1+υ

2
∂2v
∂r∂θ −

u
r + 1−υ2

E ρω2r2 = (υ + 1)αr dT(r)
dr ,

1−υ
2

∂
∂r

(
r ∂v

∂r

)
+ 1

r
∂2v
∂θ2 − 3−υ

2r
∂u
∂θ + 1+υ

2
∂2u
∂r∂θ −

1−υ
2

v
r = 0.

(13)
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2.2. Temperature Distribution Profiles

We assume that the disk is subjected to the loading of symmetric temperature in
the radial direction only. Consequently, the differential equation for the temperature
distribution in the polar coordinate is

1
r

∂

∂r

(
r

∂T
∂r

)
= 0. (14)

The general solution of Equation (14) takes the form of

T(r) = c1 lnr + c2, (15)

where c1 and c2 are integral constants. The following boundary conditions

σr(a, θ) = 0, σr(b, θ − {0}) = 0, σr(b, 0) = P at contact point,

are used to investigate the thermo-elastic characteristics of a present rotating circular disk
subjected to contacting forces.

2.3. Finite Volume Formulation

Since a pair of governing equations is too complicated to solve analytically, a nu-
merical technique is required for the approximation. To this end, a finite volume method
for approximated solutions is used; the domain is divided up into control volumes and
integrates the field equations over each control volume (see Figure 2).
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The finite surface mesh is denoted by (i, j) and the discretization for the governing
equations is developed based on the following relations at the adjacent locations.(

∂w
∂r

)
i,j+ 1

2

=
wi,j+1−wi,j

∆r ,
(

∂w
∂r

)
i,j− 1

2

=
wi,j−wi,j−1

∆r ,
(

∂w
∂r

)
i,j−1

=
wi,j+1−wi,j−1

2∆r ,(
∂w
∂θ

)
i+ 1

2 ,j
=

wi+1,j−wi,j
∆r ,

(
∂w
∂θ

)
i− 1

2 ,j
=

wi,j−wi−1,j
∆r ,

(
∂w
∂θ

)
i,j−1

=
wi+1,j−wi−1,j

2∆θ ,

wm+ 1
2 ,j+1 = wm,j+1 +

1
4
(
3wm,j+1 − 4wm−1,j+1 + wm−2,j+1

)
,

wm− 1
2 ,j+1 = wm−1,j+1 +

1
4
(
wm,j+1 − wm−2,j+1

)
, wi+ 1

2 ,j+ 1
2
= 1

2

(
wi+ 1

2 ,j+1 + wi+ 1
2 ,j

)
.

(16)

The subscript 1
2 implies the value of the displacement at the boundary of the control

surface (see Figure 2b). Based on the above relations at the adjacent locations, the governing
equations are discretized through the following processes:

∫
CV

∂

∂r

(
r

∂u
∂r

)
dV =

∫ [(
r

∂u
∂r

)
n
−
(

r
∂u
∂r

)
s

]
dθ = ∆θ[ri,j+ 1

2

(
∂u
∂r

)
i,j+ 1

2

− ri,j− 1
2

(
∂u
∂r

)
i,j− 1

2

]



Mathematics 2022, 10, 1518 6 of 16

= ∆θ

{
ri,j+ 1

2

[ui,j+1 − ui,j

∆r

]
− ri,j− 1

2

[ui,j − ui,j−1

∆r

]}
,

∫
CV

1− ν

2r
∂

∂θ

(
∂u
∂θ

)
dV=

∫ [ 1− ν

2rw

(
∂u
∂θ

)
w
− 1− ν

2re

(
∂u
∂θ

)
e

]
dr = ∆r[

1− ν

2ri,j

(
∂u
∂θ

)
i+ 1

2 ,j
− 1− ν

2ri,j

(
∂u
∂θ

)
i− 1

2 ,j
]

=
1− ν

2ri,j
∆r
{[ui+1,j − ui,j

∆θ

]
−
[ui,j − ui−1,j

∆θ

]}
,

∫
CV

3− ν

2r
∂v
∂θ

dV = ∆r
[

3− ν

2rw
vw −

3− ν

2re
∆reve

]
= ∆r

3− ν

2ri,j

[
vi+ 1

2 ,j − vi− 1
2 ,j

]
= ∆r

3− ν

2ri,j

[
(vi,j +

1
4
(
3vi,j − 4vi−1,j + vi−2,j

)
)−

(
vi−1,j +

1
4
(
vi,j − vi−2,j

))]
,

∫
CV

1 + ν

2
∂

∂r

(
∂v
∂θ

)
dV =

1 + ν

2
∆r∆θ


(

∂v
∂θ

)
n
− ( ∂v

∂θ )s

∆r

 =
1 + ν

2
∆θ

[(
∂v
∂θ

)
i,j+ 1

2

−
(

∂v
∂θ

)
i,j− 1

2

]

=
1 + ν

2
∆θ[

vi+ 1
2 ,j+ 1

2
− vi− 1

2 ,j+ 1
2

∆θ
−

vi+ 1
2 ,j− 1

2
− vi− 1

2 ,j− 1
2

∆θ

]
,

=
1 + ν

2

[
1
2

(
vi+ 1

2, ,j+1 + vi+ 1
2 ,j

)
− 1

2

(
vi+ 1

2 ,j + vi+ 1
2 ,j−1

)
− 1

2

(
vi− 1

2 ,j+1 + vi− 1
2 ,j

)
+

1
2

(
vi− 1

2 ,j + vi− 1
2 ,j−1

)]

=
1 + ν

4

[
vi+ 1

2 ,j+1 − vi+ 1
2 ,j−1 − vi− 1

2 ,j+1 + vi− 1
2 ,j−1

]
=

1 + ν

4
[

(
vi,j+1 +

1
4
(
3vi,j+1 − 4vi−1,j+1 + vi−2,j+1

))
−
(

vi,j−1 +
1
4
(
3vi,j−1 − 4vi−1,j−1 + vi−2,j−1

))

−
(

vi−1,j+1 +
1
4
(
vi,j+1 − vi−2,j+1

))
+

(
vi−1,j−1 +

1
4
(
vi−1,j−1 − vi−2,j−1

))
],

∫
CV

(
−u

r
+

1− ν2

E
ρω2r2

)
dV = ∆r∆θ

(
−uP

rP
+

1− ν2

E
ρω2r2

P

)
= ∆r∆θ

(
−

ui,j

ri,i
+

1− ν2

E
ρω2r2

i,j

)
,

∫
CV

(ν + 1)αr
dT
dr

dV = (ν + 1)αrP∆θ[Tn − Ts] = (ν + 1)αri,j∆θ
[

Ti,j+ 1
2
− Ti,j− 1

2

]
,

∫
CV

1− ν

2
∂

∂r

(
r

∂v
∂r

)
dV =

1− ν

2
∆θ

[
rn

vN − vP
∆r

− rs
vp − vs

∆r

]
=

1− ν

2
∆θ

∆r

[
ri,j+ 1

2

(
vi,j+1 − vi,j

)
− ri,j− 1

2

(
vi,j − vi,j−1

)]
,∫

CV

1
r

∂

∂θ

(
∂v
∂θ

)
dV =

∆r
∆θ

1
ri,j

[
vi+1,j − 2vi,j + vi−1,j

]
,

∫
CV

3− ν

2r
∂u
∂θ

dV =
3− ν

2
1

ri,j

[(
ui,j +

1
4

(
3ui,j − 4ui−1,j + ui−2,j

))
−
(

ui−1,j +
1
4

(
ui,j − ui−2,j

))]
,

∫
CV

1 + ν

2
∂

∂r

(
∂u
∂θ

)
dV ==

1 + ν

4
[

(
ui,j+1 +

1
4
(
3ui,j+1 − 4ui−1,j+1 + ui−2,j+1

))
−
(

ui,j−1 +
1
4
(
3ui,j−1 − 4ui−1,j−1 + ui−2,j−1

))
−
(

ui−1,j+1 +
1
4
(
ui,j+1 − ui−2,j+1

))
+

(
ui−1,j−1 +

1
4
(
ui−1,j−1 − ui−2,j−1

))
],
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∫
CV

1− ν

2
v
r

dV = ∆r∆θ
1− ν

2
vP
rP

= ∆r∆θ
1− ν

2
1

ri,j
vi,j

The discretized linear systems of the governing equations are

A11ui+1,j + A12ui,j+1 + A13ui,j + A14ui,j−1 + A15ui−1,j + B11vi,j+1 + B12vi,j + B13vi,j−1

+ B14vi−1,j+1 + B15vi−1,j + B16vi−1,j−1 + B17vi−2,j+1 + B18vi−2,j + B19vi−2,j−1 = fi,j,

A21ui,j+1 + A22ui,j + A23ui,j−1 + A24ui−1,j+1 + A25ui−1,j + A26ui−1,j−1 + A27ui−2,j+1

+ A28ui−2,j + A29ui−2,j−1 + B21vi+1,j + B22vi,j+1 + B23vi,j + B24vi,j−1 + B25vi−1,j = 0,

where

A11 =
1− ν

2
∆r
∆θ

1
ri,j

, A12 =
∆θ

∆r
ri,j+ 1

2
, A13 = −∆θ

∆r

(
ri,j+ 1

2
+ ri,j− 1

2

)
−
[
(1− υ)

∆r
∆θ

+ ∆r∆θ

]
1

ri,j
,

A14 =
∆θ

∆r
ri,j− 1

2
, A15 =

1− ν

2
∆r
∆θ

1
ri,j

, B11 =
3
8
(1 + υ), B12 = −3

4
(3− υ)∆r

1
ri,j

,

B13 = − 7
16

(1 + υ), B14 = −1
2
(1 + υ), B15 =

5
2
(3− υ)

1
ri,j

, B16 =
9

16
(1 + υ),

B17 =
1
8
(1 + υ), B18 = −3

4
(3− υ)∆r

1
ri,j

, B19 = −1
8
(1 + υ),

fi,j = (1 + υ)αri,j∆θ
(

Ti,j+ 1
2
− Ti,j− 1

2

)
− ∆r∆θρω2 1− υ2

E
ri,j

2

A21 =
3
8
(1 + υ), A22 =

3
4
(3− υ)∆r

1
ri,j

, A23 = − 7
16

(1 + υ), A24 = −1
2
(1 + υ),

A25 = −(3− υ)∆r
1

ri,j
, A26 =

9
16

(1 + υ), A27 =
1
8
(1 + υ), A28 = (3− υ)∆r

1
ri,j

,

A29 = −1
8
(1 + υ), B21 =

∆r
∆θ

1
ri,j

, B22 =
∆θ

∆r
ri,j+ 1

2
,

B23 = −∆θ

∆r

(
ri,j+ 1

2
+ ri,j− 1

2

)
− 1− υ

2
∆r∆θ

1
ri,j
− 2

∆r
∆θ

1
ri,j

, B24 =
∆θ

∆r
ri,j− 1

2
, B25 =

∆r
∆θ

1
ri,j

.

2.4. Validation of Numerical Approach

For the validation of the finite volume method, Laplace equation

∂

∂r

(
r

∂∅
∂r

)
+

1
r

∂2∅
∂θ2 = 0, 1 ≤ r ≤ R (17)

with completementary conditions of (i) boundary condition: ∅(R, θ) = V0, (ii) symmetry
about the x-axis: ∅(θ) = ∅(2π− θ) is considered. Note that the analytical solution of
Equation (17) satisfying the completementary conditions is

∅(r, θ) = V0 +

(
R2

r
− r
)

cos θ.

The discretized form of Laplace equation is depicted through the following process:∫
CV

∂

∂r

(
r

∂∅
∂r

)
dV =

∫ [(
r

∂∅
∂r

)
n
−
(

r
∂∅
∂r

)
s

]
dθ = rn∆θn

(
∂∅
∂r

)
n
− rs∆θs

(
∂∅
∂r

)
s

= rn∆θn

[
∅N −∅P

δrPN

]
− rs∆θs

[
∅P −∅S

δrSP

]
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=
rn∆θn

δrPN

∅N +
rs∆θs

δrSP

∅S − (
rn∆θn

δrPN

+
rs∆θs

δrSP

)∅P,

∫
CV

1
r

∂

∂θ

(
∂∅
∂θ

)
dV =

1
rw

∆rw

(
∂∅
∂θ

)
w
− 1

re
∆re

(
∂∅
∂θ

)
e

=
1

rw

∆rw

δθWP

∅W +
1
re

∆re

δθPE

∅E − (
1
re

∆re

δθPE

+
1

rw

∆rw

δθWP

)∅P,

ap∅p = aN∅N + aS∅s + aE∅E + aW∅W ,

aN =
rn∆θn

δrPN

, aS =
rs∆θs

δrSP

, aE =
1
re

∆re

δθPE

, aW =
1

rw

∆rw

δθWP

,

aP =
rn∆θn

δrPN

+
rs∆θs

δrSP

+
1
re

∆re

δθPE

+
1

rw

∆rw

δθWP

.

Under the chosen conditions of

δrNS = 2∆r, δrPN = δrSP = ∆r, δθEW = 2∆θ, δθPW = δθPE = ∆θ,

the validation of the finite volume method was processed, and the result is described in
Figure 3. The numerical solution was almost identical to the analytical solution, which
shows the stability of the finite volume approach.
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+
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Figure 3. Validation of finite volume method compared with analytic solution at 𝑟 = 2. Figure 3. Validation of finite volume method compared with analytic solution at r = 2.

3. Numerical Results and Discussion

The differential equation introduced in Section 2.1 was applied to obtain the tempera-
ture distribution profile. The symbols Ta and Tb represent the temperature degrees of the
inner and outer boundaries, respectively, and the values of Ta and Tb are used to determine
the integral constants. The finite volume formula derived in Section 2.3 was employed to
search for the approximated solutions of the different components of displacement, stress,
and strain for an Al2O3/Al FGM circular disk. Table 1 shows the mechanical and thermal
properties of these ingredient materials.

Table 1. Mechanical and thermal properties used for analyzing thermo-elastic characteristics of
rotating FGM circular disks.

Material/Property Elastic Module
(MPa)

Thermal
Coefficient
(10−6/◦C)

Thermal
Conductivity

(W/m−◦C)

Density
(g/cm3)

Substrate (Al) 71 23.1 237 2.70

Top (Al2O3) 380 8.0 30 0.96
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The influence of the outer surface temperature on the thermo-elastic characteristics is
exhibited in Figures 4–6. Figure 4 explains the displacement distributions. At the contact
point θ = 0, the radial displacement of the circular disk developed in the direction of
the concentric hole until around (r− a)/(b− a) = 0.9, and an abrupt rise occurred in
the opposite direction after (r− a)/(b− a) = 0.9 (see Figure 4a). The magnitude of the
radial displacement increased with the rise in the outer surface temperature, and the
largest displacement occurred at the contact point. However, a different phase in the radial
distribution appeared at θ = 180. As shown in Figure 4b, greater radial displacement was
produced in the direction of the concentric hole in terms of magnitude, and the largest radial
displacement occurred around (r− a)/(b− a) = 0.3, with Tb = 600. The circumferential
displacement presented the normalized radius values of (r− a)/(b− a) = 0.1 and 0.9. Near
the inner surface of the circular disk, the circumferential displacement was sensitive to the
variation in the outer surface temperature and developed in the negative direction (see
Figure 4c). A larger circumferential displacement appeared along with the increase in the
outer surface temperature, and the largest circumferential displacement occurred around
θ = 0.5 radian of Tb = 600. As shown in Figure 4d, the circumferential displacement
experienced dramatic change in both positive and negative directions near the outer
boundary of the circular disk. The influence of the outer surface temperature variation on
the circumferential displacement was minor at θ = 0, and the effects of the temperature
variation appeared after θ = 1 radian, displaying a greater displacement with the growth
in the outer boundary temperature.
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Figure 5 presents the influence of the outer surface temperature variation on the stress
distributions. As shown in Figure 5a, most of the area of the circular disk was under
compressive radial stress, except the near part of inner and outer boundaries at θ = 0.
The variation in the outer boundary temperature’s influence on the compressive radial
stress distribution and the magnitude grew larger with the growth in the outer surface
temperature until around (r− a)/(b− a) = 0.85, whereas an inappreciable effect developed
near the area of the outer boundary. A larger effect occurred at the opposite side to the
loading point, according to the variation in the outer boundary temperature, and the
rate of decline of the radial stress increased due to the increase in the outer boundary
temperature (see Figure 5b). At the normalized radius (r− a)/(b− a)= 0.1, the entire area
was under compressive circumferential stress, and the change width of the compressive
stress grew with the increase in the outer boundary temperature (see Figure 5c). Both the
compressive and the tensile circumferential stress were exposed over the circular disk at
(r− a)/(b− a) = 0.9, and the circumferential stress changed from tensile to compressive as
the angle variable after θ increased (see Figure 5d). The circumferential stress distribution
decreased as the outer boundary temperature increased, and the decline pattern was similar.
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Figure 5. Effects of outer boundary temperature on the components of stress: (a) Radial at θ = 0, (b) ra-
dial at θ = 180, (c) circumferential at (r− a)/(b− a) = 0.1, (d) circumferential at (r− a)/(b− a) = 0.9.

The effects of the outer surface temperature variation on the strain distributions
are displayed in Figure 6. As shown in Figure 6a,b, the change in the outer boundary
temperature exerted a minor influence on the radial strain distributions at the loading
point, while a nontrivial effect was expressed on the opposite side. The magnitude of
the radial strain increased, θ = 180, with the increase in the outer surface temperature.
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Figure 6c demonstrates that the near area of the inner boundary was susceptible to changes
in outer boundary temperature, and the magnitude of compressible strain grew in the
concentric direction of the circular disk as the temperature increased. The decline rate was
larger with the growth in the outer boundary temperature, and the largest circumferential
strain in magnitude occurred around θ = 2 radian of Tb = 600. A different phase developed
over the near area of the outer boundary of the circular disk. While the circumferential
strain distribution developed to the outer direction of circular disk for Tb = 150, the
distribution progressed into the concentric hall, according to the increase in the outer
boundary temperature (see Figure 6d).
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The influence of the angular velocity on the thermo-elastic characteristics are pre-
sented in Figures 7–9. The values of the revolutions per minute N = 150, N = 300, N = 600,
and N = 1000 were chosen as the representative angular velocities. Figure 7 exhibits the
displacement distributions. As shown in Figure 7a, the effect of the angular velocity on the
radial displacement was small at θ = 0 and a slightly larger radial displacement was pro-
duced with the growth in the angular velocity over the area of 0.2 < (r− a)/(b− a) < 0.9.
However, the opposite side to the loading point reacted sensitively to the variation in
the angular velocity and the radial displacement distributions displayed complex change
patterns with the increase in the angular velocity (see Figure 7b). With the increase in the
angular velocity, the magnitude of the radial displacement grew, and the fluctuation in the
distribution became more complex, especially over the area around (r− a)/(b− a) = 0.72
of N = 1000. Figure 7c exhibits that the variation in the angular velocity’s influence on the
circumferential displacement distribution over the near area of the inner boundary. The
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magnitude of the circumferential displacement dwindled as the angular velocity increased.
However, the effect of the angular velocity was minor over the near area of the outer
boundary of the circumferential displacement (see Figure 7d). The magnitudes of the
circumferential displacements were almost identical until around θ = 1 radian, and minor
growth developed as the angular velocity increased after the value.
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Figure 8 explains the effects of the angular velocity on the stresses. The variation in
the angular velocity exerted a trivial influence on the radial stress at the loading point (see
Figure 8a), and the distributions were almost identical. As shown in Figure 8b, the opposite
side to the loading point reacted sensitively to the variation in the angular velocity. With the
growth in the angular velocity, the magnitude of the radial stress decreased until around
r−a
b−a = 0.7, and the magnitude increased over the interval of 0.7 < (r− a)/(b− a) < 0.9,
exhibiting a dramatic plunge over 0.73 < (r− a)/(b− a) < 0.8 of N = 1000. Figure 8c,d
demonstrates that the inner boundary area of the circular disk was susceptible to changes
in the effect of the angular velocity on the circumferential stress, while the near area of the
outer surface was unresponsive. The magnitude of the compressive circumferential stress
over the near part of the inner boundary decreased when the value of the angular velocity
increased, whereas the distribution profiles were almost same over the near area of the
outer surface.
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The influence of the angular velocity on the strain distributions are presented in
Figure 9. As shown in Figure 9a, the radial strain distribution at the loading point was
not affected by the variation in the angular velocity, and the distribution profiles were
identical. However, the variation in the angular velocity affected the radial strain over the
opposite side to the loading point (see Figure 9b). With the growth in the angular velocity,
the magnitude of the radial strain distribution decreased until around (r− a)/(b− a) = 0.7
and increased over the interval of 0.7 < (r− a)/(b− a) < 0.9, displaying a sudden drop
around (r− a)/(b− a) = 0.73 of N = 1000. As shown in Figure 9c,d, the angular velocity
was a crucial parameter in the circumferential strain distribution. The magnitude of the
circumferential strain distribution over the near area of the inner boundary declined as the
value of the angular velocity increased, while the magnitude increased over the near area
of the outer surface with increase in the angular velocity.

The thermo-elastic characteristics of the FG rotating circular disks subjected to contact
force were investigated according to the variation in their outer boundary temperature and
angular velocity. The results made it possible to reach some conclusions, as follows: (i) The
growth in the outer boundary temperature caused crack generation at the inner surface
of the circular disk and over the opposite side to the loading point; and (ii) the increase
in the angular velocity led to unstable thermo-elastic behaviors over the near area of the
outer boundary surface, especially 0.7 < (r− a)/(b− a) < 0.9, and may have led to crack
generation at the outer surface of the rotating disk.



Mathematics 2022, 10, 1518 14 of 16

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 17 
 

 

  
(c) (d) 

Figure 8. Effects of angular velocity on the components of stress: (a) Radial at θ = 0, (b) radial at 

θ = 180, (c) circumferential at (r − a)/(b − a) = 0.1, (d) circumferential at (r − a)/(b − a) = 0.9. 

The influence of the angular velocity on the strain distributions are presented in Fig-

ure 9. As shown in Figure 9a, the radial strain distribution at the loading point was not 

affected by the variation in the angular velocity, and the distribution profiles were identi-

cal. However, the variation in the angular velocity affected the radial strain over the op-

posite side to the loading point (see Figure 9b). With the growth in the angular velocity, 

the magnitude of the radial strain distribution decreased until around (r − a)/(b − a) = 

0.7 and increased over the interval of 0.7 < (r − a)/(b − a)< 0.9, displaying a sudden drop 

around (r − a)/(b − a) = 0.73 of N = 1000. As shown in Figure 9c,d, the angular velocity 

was a crucial parameter in the circumferential strain distribution. The magnitude of the 

circumferential strain distribution over the near area of the inner boundary declined as 

the value of the angular velocity increased, while the magnitude increased over the near 

area of the outer surface with increase in the angular velocity. 

  

(a) (b) 

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 17 
 

 

  

(c) (d) 

Figure 9. Effects of angular velocity on the components of strain: (a) Radial at θ = 0, (b) radial at 

θ = 180, (c) circumferential at (r − a)/(b − a) = 0.1, (d) circumferential at (r − a)/(b − a) = 0.9. 

The thermo-elastic characteristics of the FG rotating circular disks subjected to con-

tact force were investigated according to the variation in their outer boundary tempera-

ture and angular velocity. The results made it possible to reach some conclusions, as fol-

lows: (i) The growth in the outer boundary temperature caused crack generation at the 

inner surface of the circular disk and over the opposite side to the loading point; and(ii) 

the increase in the angular velocity led to unstable thermo-elastic behaviors over the near 

area of the outer boundary surface, especially 0.7 < (r − a)/(b − a) < 0.9, and may have 

led to crack generation at the outer surface of the rotating disk.  

4. Conclusions 

As FG circular disks are widely used in engineering structures, the investigation of 

the thermo-elastic characteristics of FG circular disks is a highly meaningful task. FG cir-

cular disks undergoing contact forces were adopted to explore the influences of outer 

boundary temperature and angular velocity on FG circular disks. The main results ob-

tained were as follows:  

With the growth in the outer boundary temperature:  

(i) A larger displacement distribution developed in the concentric direction.  

(ii) The magnitudes of the displacement, stress, and strain distribution profiles increased 

over the area of the inner surface.  

(iii) The opposite side to the loading point reacted sensitively and the magnitudes of the 

displacement, stress, and strain distribution profiles increased over the opposite area. 

With the growth in the angular velocity:  

(i) The radial displacement distributions displayed complex change patterns over the 

opposite side to the loading point. 

(ii) The distribution profiles of the displacement, stress, and strain over the near area of 

the inner surface moved in the outer-surface direction and the magnitudes decreased.  

(iii) The interval 0.7 < (r − a)/(b − a) < 0.9 was the most susceptible area to the variation 

in the angular velocity, and a dramatic drop appeared at around (r − a)/(b − a) = 

0.73 of N = 1000. 

Through the present study, it was demonstrated that the thermo-elastic characteris-

tics of FG circular disks subjected to contact forces are susceptible to variations in outer 

boundary temperature and angular velocity. Therefore, both parameters are crucial fac-

tors in the design of FG circular cutters or grinding disks undergoing loading pressure to 

promote proper and reliable thermo-elastic characteristics for practical applications. 

 
Funding: This research received no external funding. 

Figure 9. Effects of angular velocity on the components of strain: (a) Radial at θ = 0, (b) radial at
θ = 180, (c) circumferential at (r− a)/(b− a) = 0.1, (d) circumferential at (r− a)/(b− a) = 0.9.

4. Conclusions

As FG circular disks are widely used in engineering structures, the investigation of the
thermo-elastic characteristics of FG circular disks is a highly meaningful task. FG circular
disks undergoing contact forces were adopted to explore the influences of outer boundary
temperature and angular velocity on FG circular disks. The main results obtained were
as follows:

With the growth in the outer boundary temperature:

(i) A larger displacement distribution developed in the concentric direction.
(ii) The magnitudes of the displacement, stress, and strain distribution profiles increased

over the area of the inner surface.
(iii) The opposite side to the loading point reacted sensitively and the magnitudes of the

displacement, stress, and strain distribution profiles increased over the opposite area.

With the growth in the angular velocity:

(i) The radial displacement distributions displayed complex change patterns over the
opposite side to the loading point.

(ii) The distribution profiles of the displacement, stress, and strain over the near area of
the inner surface moved in the outer-surface direction and the magnitudes decreased.

(iii) The interval 0.7 < (r− a)/(b− a) < 0.9 was the most susceptible area to the variation
in the angular velocity, and a dramatic drop appeared at around (r− a)/(b− a) = 0.73
of N = 1000.

Through the present study, it was demonstrated that the thermo-elastic characteristics
of FG circular disks subjected to contact forces are susceptible to variations in outer bound-
ary temperature and angular velocity. Therefore, both parameters are crucial factors in the
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design of FG circular cutters or grinding disks undergoing loading pressure to promote
proper and reliable thermo-elastic characteristics for practical applications.
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Nomenclatures

u radial displacement component
v circumferential displacement component
εr radial strain
εθ circumferential strain
γ shearing strain
σr radial stress
σθ circumferential stress
τ shearing stress
ν Poisson’s ratio
ω angular velocity
N revolutions per minute (rpm)
r radius of circular disk
E Young’s modulus
E0 initial amount of Young’s modulus
α thermal expansion coefficient
α0 initial amount of thermal expansion coefficient
ρ density of disk
ρ0 initial amount of density
β growth rate of E
ϑ growth rate of α

µ growth rate of ρ

T temperature on circular domain
h thickness of homogeneous part
P contact force
a hole radius of circular disk
b outer-surface radius of circular disk
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