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Abstract: In this paper, we provide a new bivariate distribution obtained from a Kibble-type bivari-
ate gamma distribution. The stochastic representation was obtained by the sum of a Kibble-type
bivariate random vector and a bivariate random vector builded by two independent gamma random
variables. In addition, the resulting bivariate density considers an infinite series of products of
two confluent hypergeometric functions. In particular, we derive the probability and cumulative
distribution functions, the moment generation and characteristic functions, the Hazard, Bonferroni
and Lorenz functions, and an approximation for the differential entropy and mutual information
index. Numerical examples showed the behavior of exact and approximated expressions.
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1. Introduction

Let Zy,i=1,...,v,v > 2, an independent sequence of standardized normal random
variables with correlation Corr(Zy, Zix) = p,i # j,and let Uy = 74 ZiZk withk = 1,2, then
Uy is a random variable with x?2 marginal distribution. According to [1], the distribution of
U = (U, Uy) " has a correlated bivariate chi-square distribution with v degrees of freedom
parameter and probability density function (pdf) given by

_ (ugtup)
27V (ugup) V2 2e 20#¢>F (1/ puuy ) 1)
01\ 7~/ s
2(3)(1—p2)r/? 27 4(1-p2)?

by; x) denotes the generalized hypergeometric function

fu(u) =

where F, 4(ay,az,...,ap;b1,by,...,
defined by

&, (ar)k(az)x - -
F,q.(ay,ar,...,a,,b1,by,...,b5x) = —, 2
a1tz by b b %) = )L 5 (s, T @

F(rla-)a) ,k € NU{0}, being the Pochhammer symbol [2].
2

Note that in this case, the correlation function of U is given by py; = p*.
Transformation W = %, B > 0 defines a random variable Gamma(v/2,3/2) dis-

tributed with density

forp,q =0,1,2,...,and with (a); =

v/2_ v/2—1
Fu(w) = (";) Y b, w>o. 3)

I'(3)
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The pdf of W = (W, Wz)T has a Kibble-type correlated bivariate gamma distribution [3],
given by
B
2=V BY (o w V/2_1872(1—p2)(w1+w2) v B20%wiw
fwlw) = 2Bl (5 L),

- F(%)z(l_pZ)v/Z 5’4(1—()2)2 @)

where E(W) = %, Var(W) = é—‘z” and py = p?. In Equations (1) and (4), the case p = 0
implies the product of two independent chi-square and gamma random variables (i.e., the
same result obtained by the bivariate normal distribution in the independency case).

The univariate and bivariate gamma distributions are basic distributions that have
been used to model data in many applications [4,5]. More recently, several examples of
bivariate distributions and their applications emerged: streamflow data [6], drought data
modeling [7], rainfall data modeling [8], wind speed data spatio-temporal modeling [9],
flood volume-peak data modeling [10], wireless communications models [11], and transmit
antennas system modeling [12].

In this paper, we build a generalization of bivariate gamma distribution using a Kibble
type bivariate gamma distribution. The stochastic representation was obtained by the sum
of a Kibble-type bivariate random vector and a bivariate random vector builded by two
independent gamma random variables. In addition, the resulting bivariate density consid-
ers an infinite series of products of two confluent hypergeometric functions. In particular,
we derive the pdf and cumulative distribution function (cdf), moment generation and
characteristic functions, Hazard, Bonferroni and Lorenz functions, and an approximation
for the differential entropy and mutual information index. Numerical examples showed the
behavior of exact and approximated expressions. All numerical examples were calculated
using the hypergeo package of R software [13].

The paper is organized as follows. Section 2 presents the generalization of the bivariate
gamma distribution, with its pdf (with simulations), cdf, moment generation and character-
istic functions, cross-product moment, covariance and correlation (with simulations), and
some special expected values. Moreover, the Hazard, Bonferroni and Lorenz functions are
computed. Section 3 presents the approximation for the differential entropy and mutual
information index (with simulations) for the generalized bivariate gamma distribution with
some numerical results. The paper ends with a discussion in Section 4. Proofs are available
in Appendix A section.

2. Bivariate Gamma Generalization

Let
Y=W+R, (5)

where R is a random variable, R ~ Gamma(a/2,/2), « > 0 and the distribution of W
is defined by Equation (3); thus Y ~ Gamma((« +v)/2,/2) is a random variable with
marginal gamma distribution and arbitrary shape, (« + v)/2, and scale, /2, based on «,
and v parameters. This type of construction has been proposed by [5,6,14-19] to build a
bivariate gamma distribution. Specifically, the authors considered the case Wy = W, in (3).
Properties of the bivariate gamma distribution can be found in [15,18,20,21].

In line with the stochastic representation (5), we consider the bivariate distribution of
Y = (Yy, Yz)—r as a generalization of the Cheriyan distribution [15], where

Y1 = Wi+ Ry,
Yo = Wh + Ry,

W = (W, W,) T is given in (3) and (4) with py = p?, and R; ~ Gamma(w;/2,8/2), a; > 0,
R; LRy, Vi#j, R LW, Vij. Thus, Y ~ Gamma((ay +v)/2,B/2),k=1,2.

In the following theorem, we provide a new bivariate distribution with gamma
marginal distributions obtained using a Kibble-type bivariate gamma distribution [3].
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Theorem 1. Let Wy = YV, Z%4 /B where Zy, i = 1,...,v, k = 1,2, is a finite sequence of

independent normal random variables with zero mean, unit variance, and correlation p. Let

Y = W+R, with W = (W, Wo) " and Ry ~ Gamma(ay/2,B8/2), k = 1,2. The pdf of
= (Y1,Y2)" is given by

aq+

BT (vaar)/2-1 (v+a2)/2-1,~ L (1) )
fip = BT D (4 )k
- v VT v VT —_ 2 2
T T CONGONS I
a vHar L Betn a0 v+ Bo*y2
><F11<2 7 k,2(1 o7) Fi, 2 +k 20-p7) ) (6)

where F 1(ay; by; x) is the confluent hypergeometric function defined in (2) for p = q = 1.

Theorem 1 shows that the pdf considers an infinite series of products of two confluent
hypergeometric functions. Note that when p = 0, pdf in Theorem 1 becomes the product
of two independent gamma random variables, Gamma((v + ax)/2,8/2),k = 1,2, i.e., the
same property of the bivariate normal distribution is accomplished. When a1 = ay =0,
then fy(y) = fw(w), i.e., Y is Kibble-type gamma distributed (see Figure 1).

Figure 1 shows the pdf of Equation (6) for some parameters of Y. When p increases, is
produced the largest values of 1 and y; in the pdf. When p = 0.25, the pdf is close at origin
(y1,y2 =~ 0), has positive bias and decays exponentially. When p = 0.5, the pdf has less bias,
but more symmetry and variability. When p = 0.75, the pdf has a bias to the right, but
with less bias than in the case p = 0.25. When § increases (decreases), its variance increases
(decreases). When v increases, the pdf shows heavy-tailed behavior, at the same time as
parameter ay, k = 1,2 increases (as the usual gamma distribution).

Theorem 2. The joint cdf of Y = (Y1,Y>) " in Equation (6) can be expressed as

viagray & (5 p% ay [(V+a Bt V4 a
Fy(Y1 < t, Yo < t) = (1-p? Yy 2ok o1 k . k02
YY1 <t, Y, <th)=(1-p7) 2 &K T21{ 5 5 + 20-p2) 2 +Kkp

ay (V4w Bt V+a >
— k ; k; 7
X72,1(21< 2 + /2<1_p2))/ 2 + Yy >/ ()

where 7,1(a1, (az, x); by; z) denotes the incomplete gaussian hypergeometric function as

Y2,1(a1, (a2, x); b1;2) = k;) (b)) k!

with incomplete Pochhammer symbols given by (ay; x) = % forag, ke C,x >0[2,22].

Theorem 2 shows that the joint pdf considers an infinite series of products of two
incomplete gaussian hypergeometric functions.
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Figure 1. Bivariate pdf of Equation (6) for some parameter combinations.

2.1. Moment Generation Function

In this section, we analyze the moment generation function of Y = (Y}, YZ)T, the
cross-product moment between Y; and Y;, and some particular expected values involving
these variables.

Proposition 1. The joint moment generation (mgf) and characteristic functions of Y = (Y1,Y2) "
given in Equation (6) are

NS

an B(1—o?) : B(1—p?) 7 B(1—p?)
Mitr,t2) = ([/5—2(1—Pz)tﬂ[ﬁ—Z(l—Pz)tz]—ﬁzpz> <(ﬁ—z<1—p2>t1>—ﬁp2> <(ﬁ—2(1—92)t2)—ﬁpz) ®)

and

4 X
2 2

P - %)
((ﬁ—Z(l—pz)itz)_ﬁPZ) )

a2 B(1—p?) 2 B(1—p?)
ol t2) = f ([13 ~2(1 = p2)ina][f - 2(1— p)ita] — /3292> ((ﬁ —2(1—R)ity) - ﬁPz)

respectively.
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Assuming p = 0, thus M(t1,0) = (ﬁ) * and M(0, 1) = (ﬁ) * , which are
the mgf’s of a gamma random variable. The proof of the characteristic function of Y is
trivial, following the proof of Proposition 1 for M(ty,t,).

Proposition 2. The cross-product moment of Y = (Y1,Y>) " in Equation (6) can be expressed as

() g (s (s 1) o (9,52 00) (0),

E(Y?Y?) =
e () S (), (),
X F2,1<“21,VJ;“1 +a+k;'/J;0‘1 +k;p2)F2,1<“22,VJ;“2 +b+k;1h;”62 +k;p2), (10)

where F, 1 (a1, a; by; x) is the gaussian hypergeometric function defined in (2) for p = 2 and g = 1.

Proposition 2 shows that the cross-product moment considers an infinite series of
products of two gaussian hypergeometric functions. A direct result of Proposition 2 is the
following Corollary 1, that presents the expected value and variance of marginal gamma
random variable Y;, and the covariance and correlation between two marginal gamma
random variables, Y7 and Y5.

Corollary 1. IfY = (Y1,Y>) T, it has pdf according to (6). According to Proposition 2, we have
@ E(Y) = "*I;‘k, k=12
(b)  Var(Yy) = W, k=12

(c)

Cov(Yi,Ya) = %&V”‘z) {(1 NS $)e(5+1) (52 41)

2 V+2k 2 V+2k .
X(l pv+oc1+2k)<1 pv+a2+2k 1

(d)

_Vta)vtm) [ ey (%)k(w%_'_l)k(w%jq)k 2%
S B O

o VH+2k o V+2k _
X<1 pv+a1+2k)<1 P Tmrak)

The proofs of parts (a) and (b) are trivial. For parts (c) and (d), the Euler for-
mula (9.131.1.11) of [23] is used, F,1(a,b,¢c,;x) = (1 — x)c_b_”FZJ (c—a,c—b,cx), and
Proposition 2 witha = b = 1.

Figure 2 shows the correlation py of Corollary 1d for some pdf parameters of Y (6).
For all cases, when a7 and &, increase, the correlation py decreases. When v increases,
correlation py slowly decreases from small to large values of a1 and a;. When parameter
p (the normal distribution correlation) increases, the correlation py increases, as does its
maximum value (from 0.06 to 0.55). We can observe in Corollary 1d that correlation py
does not depend on S.

The following Proposition 3 is useful for computing differential entropy and mutual
information index of Section 3.
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Proposition 3. IfY = (Y1,Y2) " have pdf given in (6), then

(a)
21— )R 1) & (), (55 0% (o vbe v
Ey[Y)] = | , Pz,l(i, 14k ’+k;p2), (11)
| Br(T) T 22 2
ij=1,2i+#].
(b)
o () () -
Ey[log Y] = ﬂ—ﬁwﬂwigmﬁgiL%ﬁg‘{wg%+k+mﬂ—bgﬁf%ﬂy ifp>0; (12)
- L L
p(25%) —1og (§), ifp=0.

i,j=1,2,i# j; where p(x) = L logT(x) is the digamma function.

p =025 p=05 0 =075

Figure 2. Correlation py of Corollary 1d for some parameter combinations.

2.2. Hazard, Bonferroni and Lorenz Functions

The Bonferroni and Lorenz curves [24] have many practical applications not only
in economy, but also in fields like reliability, lifetime testing, insurance, and medicine.
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For random vector Y = (Y1,Y2)" with cdf F(y) = Fy(Y; < y1,Y2 < ), the Hazard,
Bonferroni and Lorenz functions are defined by

Zy(t) = 1{Y ggt), (13)
with t = (tl,tZ)T;
By(Y) = F(y)lE[Y] /Oq /Oq yfy(y)dy1dya, (14)

with g a real scalar, 0 < g < 4o0; and
L4(Y) = By(y)E[Y], (15)

respectively.

The Bonferroni curve for pdf (6) considered F(y) and E[Y], obtained from Theorem 2
and Proposition 2 (by replacing a = b = 1), respectively. The double integral of the left side
of (14) is obtained with the following Proposition.

Proposition 4. Let Y = (Y1,Y>)" be a random vector with pdf given in (6) and q a real scalar,
0 < g < oo, thus

(1_pz)(v+u¢1+az)/2+2r(vz¢_~_1>1~(V+%+1>
(S
00 (K) erl M—l—l p2k
Carc e

w (V4w Bq s B
X’)’2,1< ( +1+k,2(1_p2)>, +k,p

/Oq /Oq yfy(y)dy1dys = !

2\ 2 2
a (vt Bq JVta oo
X’Yz,1<2,< 5 +1+k’2(1—p2))' 5 +k;p” ),

where 7y, 1(a1, (a2, x); by; z) is denoted in Theorem 2.

Given that F(y) and E[Y] depend on incomplete and complete gaussian hypergeo-
metric functions, respectively, the Hazard, Bonferroni and Lorenz curves can be computed
using these functions.

3. Differential Entropy and Mutual Information Index

The differential entropy of a random variable Y is a variation measure of information
uncertainty [25]. In particular, the differential entropy of Y = (Y1, Y2) " with pdf fy(y) is
defined by

H(Y) = ~Exllog ()} = = [~ [ fu(y)log fr(y)dydye, (16)

and measures the contained information in Y based on its pdf’s parameters. The following
Remarks 1 and 2 will be used in the Proposition 5 to approximate the differential entropy
of Y.

Remark 1 ([26]). For a positive and fixed y;, and fixed parameters ay, k = 1,2, p and B, we have

a vtai PPy ) v (5)s ( Be*y> )5 -
F1l = L = +0(v™), n=1,2,...,
1,1(2 2 2(1_P2) ;} (VJEDL,-)SS! 2(1_P2) (| ‘ )
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as |v]| — oo.

Remark 2 (Formula 1.511 of [23]). Ifn — coand x = u/n (i.e., x turn around 0, =1 < x <1,
and there exists a constant y > 0 such that |log (1 +u/n) —u/n| < u/n?), see Lemma 3.2
of [27]), we get

log (14 x) = x4+ O(n2).

Proposition 5. The differential entropy of a random vector Y = (Y1, Y>) " with probability density
function given in (6) can be approximated as

&1 +u2

BT (1= p2yv2
0%)
:) - (‘”;"‘1 —1>Ey[log Y] - (’”;"‘2 —1)]Ey[log Y]

. 2 (3 2 (P
o (P e+ (e, -1 e

where By[Yy] and Ey[log Yi], k = 1,2, can be computed using parts (a) and (b) of Proposition 3,
respectively.

Under dependence assumption (p # 0), the mutual information index (MII) [25,28,29]
between Y] and Y; is defined by

M(Y1,Y2) :E{log{ S, yo) H / / fr(yy2 log{ S, yo) >}dy1d]/2- (17)

H(Yy) =

S (1) fra (2) S (1) fra (2
It is clear from (17) that MII between Y7 and Y, can be expressed in terms of marginal
and joint differential entropies, M(Y) = H (Y1) + H(Y2) — H(Y) [25]. According to (5),
the differential entropy of each gamma distribution is

& +v é a +v et ap +v -
5 10g(2)+logf( > >—|—<1 5 >1p( 5 ), k=12 (18)

Therefore, the MII between Y; and Y; can be computed using (18) and Proposition (5).
Under independence assumption p = 0, the mutual information index between Y7 and Y,
is 0; otherwise, this index is positive [28,29]. Moreover, the MII increases with the degree
of dependence between the components of Y7 and Y,. Therefore, the MII is an association
measure between Y7 and Y5, which could be compared with correlation py.

Figure 3 illustrates the behavior of MII assuming several values for parameters of Y.
The case p = 0 was omitted for the above mentioned reasons, and the case p = 0.5 was
omitted because results are similar to the case p = 0.25. We observed that M(Y1,Y>) <0
for small values of B, which is related to approximation (A16) being wrongly utilized when
the argument is outside (—1, 1] in Remark 2. However, when the argument is inside (-1, 1],
we get M(Y1,Y2) > 0 and increases for large values of § and any values of v, as in the
analysis of py in Figure 2.
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a;=1, a,=1, p=0.25 M(Y4,Y,) a;=1, a,=8, p=0.25 M(Y4,Y,)
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Figure 3. Mutual information index for several parameters of density given in (6).

4. Concluding Remarks

In this paper, we presented a generalization of bivariate gamma distribution based on
a Kibble type bivariate gamma distribution. The stochastic representation was obtained by
the sum of a Kibble-type bivariate random vector and a bivariate random vector builded
by two independent gamma random variables. Moreover, the resulting bivariate den-
sity considers an infinite series of products of two confluent hypergeometric functions.
In particular, we derived the probability and cumulative distribution functions, moment
generation and characteristic functions, covariance, correlation and cross-product moment,
Hazard, Bonferroni and Lorenz functions, and an approximation for the differential entropy
and mutual information index. Numerical examples showed the behavior of exact and
approximated expressions.

Previous work by [30] considered the generalization of this paper to represent bivariate
Superstatistics based on Boltzmann factors. However, further work derived from this study
could extend to the multivariate case (d-dimensional). A possible extension is considering
Equation (6) of [31] for the joint pdf of our vector (Wi, ..., W;) T, corresponding to a pdf
based on a gamma distribution with simple Markov chain-type correlation. When d = 2,
this pdf coincides with Kibble distribution defined in (4). Thus,

Y1 =W+ Ry

Y; =W;+ Ry,
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Ay

<

where Ry,..., Ry, R; ~ Gamma(w;/2,6/2),i =1,...,d are independent and gamma dis-
tributed random variables. However, the properties obtained in this study could be difficult
to obtain for this multivariate version and the use of generalized hypergeometric function
must be carefully handled. In addition, it is possible to consider the Probability Transfor-
mation method using the theory of the space transformation of random variables and the
probability conservation principle. Thus, we could evaluate the pdf of a d-dimensional
invertible transformation [32].

Inferential aspects could also be considered in future work. For example: (i) a nu-
merical approach could be used in the optimization of log-likelihood function; (ii) the
pseudo-likelihood method by considering the optimization of an objective function that
depends on a bivariate pdf could be used; and (iii) a Bayesian approach could be useful.
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Appendix A

Proof of Theorem 1. Let w; = y; —r; and wy, = y, — rp be a transformation in (4),
0 < rx < yx, k = 1,2, with Jacobian J((wy,wz) — (y1,y2)) = 1. Using series expansion of
the hypergeometric function Fj 1, we get

1 Y2
/mmw|mmmm

B () (g g
O/ / EOT(HIT(Z) 127

o
o V1 V2 (g)”*al?z (1 — 1) (y2 — rz)]v/z+k_1ric1/2—1%2/2716*2(%2)(%*VZ)esziZ) (i)

‘EJ! P51 - )7

1(k) 202 k
T S A, )

Then, using Fubini’s Theorem and formula (3.383.1.11) of [23], we obtain
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n ;BPZ y2 ir
I(k) = /(yl — )2 2 a0 gy /(1/2 — 1)/ 22 a0 P iy
0 0
aq ap L+vc1 +h—1 (V‘*'“Z) +k—1 N v + 151 1
_ D +KT (z)ﬂ(z) 1 Yy 2 11<2 Sk (/ipyz)> (A2)

F(V+"‘1+k) . —l—k)

Combining Equations (A2) and (A1), the result is obtained. O

Proof of Theorem 2. Using series expansion of the hypergeometric function F; ;, we get

)1/-&-“142—va f oty 5
(v+aq1)/2-1 (v+ap)/2-1 —m(yﬁyz)
" 1 Y2 €
v/2

g
(“52) (1 —p2)v/2y
(g)k> (ﬁzpzylyz) Fiy (oq vihm g Bo*y1 ))

<3
— (vt v+ay 4(1 — o2 27 2 2(1 — p?
k=0 k.( > )k( (1—p%)2 (I-p
v vt o Bty
XF11(2 > +k,2(17p2) dy (A3)
g +an
By k
(8) £ 5 5 Wtmm) (g )
+ + —
F<V 2“1)]"(%%) (1 —p2)¥/2 k=0 mi=0m;=0 k! I/ZKJCI)k(%LM)k =P
o ) ey )
(vt 2(1—-p vtay 2(1—p
m1.< - +k)m1 115! ( +k>m2
Using Fubini’s Theorem and formula (3.381.1) of [23], we obtain
i By ¢ Bya
I(k, my, my) = /y§v+a1)/2+k+m1—1e—z(l_pz)dyl /]/£V+a2)/2+k+m2_1€_2(1‘92)dyz
0 0
oy (vrar)/2+k+my oy (V) /24k+my
:<2(1ﬁp)) <2(1ﬁp)) (A4)

V+a Bt vV+an Bta
”( 2 +k+’”l'z<1—p2>>7< 2 +k+m2,2(1_p2)),

where y(a,x) = [T e~'t""1dt,a > 0is the lower incomplete gamma function. Combining
Equations (A3) and (A4), we obtain
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(1_ 2)(v+a +ap)/2 o (K) ok
Y1 <t,Y,<t)= r(%)r(lv?z) kzo kl("*’“]z)];?l/?z)k
L5 (%) 7 (58 Kb, L ) 2
m= mll(”% +k)m1
(1 — p?)vtataz)/2 e (z)kpzk
(i) B, (),

o () (5 +h ), T(H5 +E)™

i (“72),"27(”2“2 +k+mz,%)pz’”2
my=0 mzl(# +k)m2

5 i (20 (25 b 1f) 122 0
x X
my=0 mll(Lﬂq -‘rk) " iy =0 H’Iz.(iwrzaz +k) y
_ 2\ (v+aq+ap)/2 kP ap (vt Bt vt o
(1-p%) Z m(z,< 5 Thanog e the

ay (v+a Bta V+tap .2
><72/1<2,( 2 +k’2(17p2)>' 2 +k,p).

This concludes the proof. [

Proof of Proposition 1. By definition of mfg and using series expansion of hypergeometric
function F; 1, we get

a1 +ap

(/;)H & & (5)dkm,my) [
M(ty, tz) = 1—-(1/+tx1)1"(1/+%)(1 2)v/2 ; Z: 2: ‘21; vta (4( ) )

1 — p2)2
> P

(2)m Bp ™ () Bo® \™
Xmll(";"l+k)ml (2(1—92)> mzl(v-;(erk)mz(Z(l—pZ)) ' (A5)

Using Fubini’s Theorem and formula (3.381.4) of [23], we obtain

o) 2>

(vtay)/2+k+mp—1 —Myl T (vtap)/2+k+my—1 —%yz
k m1,m2 / 1 175 2092 dylfyz 2 270 2(1-p%) dy,
0

0
2(1—p?) (vtar) /24k+my 2(1 - p?) (v+ap) /2+k+my
N ([3—2(1—pz)t1> ([3—2(1—Pz)tz>

xr(w;“l +k+m1>r<w;“2 +k+m2).

Combining Equations (A5) and (A6), we obtain

(A6)

ﬁv+ a1+a2)/2(1 —p )(v+a1+az)/2 ) (1) ,3292 k
M(t1, t2) ( ) (v+az> B—2(1— )tl] V+a1)/2[ﬁ_2(1 —p )tﬂ(vﬂz)/g kz;') k,(wal)z €v+a2)k <’3 -2(1 *Pz)t1>
(%), D (5 et m) B’ o (%)L (152 +k+ma) Be? "
><mlzz(] ml.(# +k) (;372(17‘02)1‘ ) 2: my (H'“Z +k> </3*2(1*P2)t2>
ﬁv+(u¢1+a2)/2(1_pZ)(v+a1+a’2)/2 o (%)k 52p2 k
T [B-2(1— )] 2[p — 2(1 — p2)y] (022 kzzo K ( [B—2(1—p)t][p—2(1- Pz)tz]>

ad (%)ml ,5‘02 o (%)mz ﬁpz "2
o (patizm) L, (attopm)

my=0

ny
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k

Considering ). (e (1 —x)~7, the last equality yields

k=0

B 51/+(a1+a2)/2(1 _ pZ)(V+a1+a2)/2 ‘szz y
M(tk, t2) = [B—2(1— p2)11] ) /2[g — 2(1 — p2)ty] H82) /2 (1 20— dnlp 21— pz)t2}>

(1_/5—~2([ip—p)t><l_/3—2(ﬁlp—p)t)

This concludes the proof. [

Proof of Proposition 2. By definition of cross-product moment and using series expansion
of the hypergeometric function F; ;, we get

N 00 co
E(Yizyzb)_ - (22+a // (vtar)/24+a—1 £v+a2)/2+b71€*ﬁ(y1+yz)
NESNES /)
S (5)« B2o%y1y2 \* o vta | BoPn ap V+ap Bo*y2
L (), () (4<1—p2>2> A5 *"'2(1—&))&1(? 2 TRy )
/x+ﬂc2
é)v-‘r R v ) k
2 & f)kl(krm]rmZ) ( ﬁ Y ) (A
- 7)
T (ST P77 g s o 8 (58), (7

2
S (B B (B "
X ml!(v+tx1 +k) <2(1_p2)) my! (V—‘rtxz +k) (2(1—p2)) .

Using Fubini’s Theorem and formula (3.381.4) of [23], we obtain

? ; 3 2
I(k, ml,mz) _ /y§v+a1)/2+u+k+mlfle* z(ﬂzwyl /y£v+¢xz)/2+b+k+mzfl€* 2(1372) d]/z
0 0
2] — o2 (v+aq) /24-a+k+my 21 — o2 (v+az)/24b+k+m;
_(2=pT) 21-p7) Tk ) T( Y52 L pkmy ). (AS)
B B 2 2
Combining Equations (A7) and (A8), we obtain
2 ﬂ+b( ) (vtag+ap)/2+a+b oo (%) p2k
E(Yng) = <7> vaq va: Z vta ¢ vHa:
f ( Or(e) se(e)(452),
(), T (S5 +atktm) o o (),,T(4552 +b+k+m )™
X
ml—O my ( ax] +k) my=0 m <V+2“2 +k> iy
_ <7)u+b( —p )(v+a1+u¢2)/2+a+b i (%)k‘DZk
vt vta; vt vHa;
Pl r(sr(se) =m(se) (452),
& (), (552 +a+k) 1r(”%" +a+k)? o (9),, (52 +k)mzr(”2“2 +b+Kk)p?
X .
vty v4ap
my= =1 +k y= =2 +k
= mi(5 k), =0 ml (52 +K),,

This concludes the proof using basic algebra. [

Proof of Proposition 3. For (a), we have
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EylY;] =

() B

(&)Tm .sz ™ ( 2 )mz ﬁpz "
X ! (v+21x, +k) (2(1—p2)> - <v+rx] +k> <2(1—p2)> .

nmy 1y

Using Fubini’s Theorem and formula (3.381.4) of [23], we obtain

Byi s Py
(va;)/2+k+my ~ 5oy (v+aj)/2+k+m =1 —-———
; ! e 201-p )dyl- Y e 20l-p )dy]

I(k,my,mp) = [y,

(2(1 _ pz))v+(tx,-+uc]-)/2+2k+m1+m2+1r(V s

B > +k+m1+1)F<

1/+06]'
2

+k+m1).

The proof is straightforward by combining Equations (A9) and (A10).

For (b), we have

O
2

)

]EY [log Yl] =

kkml,m2<

)5,

- W ) ()
P

x - (v+1xl_|_k) 2(1—p2) (V+a;+k) 2(1—p?

(5T () 072 o

2 2

mq my

Using Fubini’s Theorem and formulas (3.381.4) and (4.352.1) of [23], we obtain

Py;

202 k
41— p2)2)

s _ By ¢ . .
1(k, my, m2) :/log(yi)yl(v+m)/2+k+mrle Z(H)z)dyi/y](v+a;)/2+k+m2 1, 207 gy

p

[ obem) o (e )|

2] — o2 v (o) /24 2k+my 4y ) v+ a;
_ <<P>> r(‘“+2%+k+m1)r( 5 ’+k+mz)

The proof is straightforward by combining Equations (A11) and (A12). O

Proof of Proposition 4. By replacing a = b = 1 in Proposition 2, we have

(A9)

(A10)

(A11)

(A12)
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<
~
o
—=
o
\&
<
—_—
<
+
2
=
-
~
N
—
<
s
=
N
=
S~
N
VA
<
=
+
<
S
N

>< 7 4
kg‘) k!(vg“l)k(ivgaz 4(1-p2)2) \27 2 2(1
w vtay oo Bo’y
XF11<2 > +k,2(1_p2) dy (A13)

; o == () dkmm) ()
( ';“2)(1 — p2)/2 ,;gm;(m;o k!(ZVJrk“l)k(VEaz)k (4(1 _P2)2>

2

(3 ), g2 \" (P, B® \™
><rr11!<”+22"‘1-|—k> <2(1—P2)) mz!<v+22“2+k> (2(1—P2)) .

ny

Using Fubini’s Theorem and formula (3.381.1) of [23], we obtain

q q
_ By B
I(k,mq,mp) = /ygl/+0(1)/2+k+m1€ 2(1,p2)dy1/y§v+a2)/2+k+mze 2<1*P2)dy2

B (2(1 - p2> > (v+ag)/24+14+k+my (2(1 _ p2> ) (v+ap)/24+14+k+m; AL
a p p

v+ Bq v+ an Bq

2 2

where (-, -) is the lower incomplete gamma function. Combining Equations (A13) and
(A14), we obtain

4(1 _ pZ)(V-M] +ap)/242 o (K)k‘DZk

/‘q /q yfy(y)dydy: = Y
X prCn(2) (e (),

R R e B e
=0 m1‘<'/+% +k)m1
4(17‘02)(1/+zx1+zx2)/2+2 ) (v)kPZk
() R, (),

0 (%)ml(lﬂ—p‘1 +l+k'2(1ﬁp)) r(w%+l+k)p2ml

g (B (8 1kt gl )
=0 mZI(H% +k)

ny

X

m;=0 ml.(w%-‘rk)m
1

> (3),, (452 + 14k ol )| T(52 414 k) g2

X

=0 mp! <v+a2 +k>
my

Mot A T 1) e (8 (5 1) (5 )

P 5 a(E)(F)
a (vt Bq vt o a (V+ap Bq V+ap
X721<2( 2 +1+k,2(17p2)), 2 +k,p>7z,1<2,< 2 +1+k,2(17p2)> 2 +kP)

This concludes the proof. [
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Proof of Proposition 5. Evaluating the density (6) in the definition (16), we have

+
TZ (v+a1)/2—1y(v+k2)/2—1 — (1/5/1 )(y1+y2)

ﬂ V+l’(1 e
0o oo 2 Y1 2
—/0 /0 fy(y)log ( ) dy1dy>

r( () A
0o oo 0 (z) B2p? k
—/0 /o fx(y)log { Zok'(wal;kngaz)k (4(1p_y;g)22>

n Vo o V4w 2
XPH( 1, L ﬁp_y;2)>Fl,1<2' 2k 5p_y;2))}dyldy2_

27 2 2(1 27 2 2(1

Then

+a1+a2
(g) (1—p2)7v/2 LB
vy \p (vt 2(1— p?
r( - )r( - ) (1—p%)
— (1/-;0(1 — 1)Ey[log Yl] - (V—;OCZ - 1>Ey[log Yz]

0 roo > (%) Bo%ye \
_/() /O fY(Y)log{zg)k!(l’z”‘l)zkl((”z”‘z)k<4(1_;2)22>

0 vta 2 ay VA w 2
% Fl,l (1. 1 +k ﬁp_y;2)>1:1’1 (2. 2 1k 'Bp_ypzz))}dyld]/Z

H(Y) = —log

(Ey[Y1] + Ey[Y2])

2'7 2 2(1

Assuming in the pdf (6) that its sum converges at k = 0 (first term), the differential
entropy of Y can be approximated by

B v 152 2\ —v/2
5 (1—-p7)
H(Y) ~ —log <22ﬁ(v?])r<v?z) T ép2) (Ey[Ya] + Ev[Y2))
. (V —;061 — 1) EY[log Yl] — (V —;(Xz — 1>Ey[log Yz] (A15)

—Ey —Ey

v vtag Bo*Yy m vtay s
log{Fn(z 5 2(1—p2))} log{F“(Z 2 2(1—PZ)>H'

Considering n = 2 in Remark 1, we obtain

we vtae Pty (%) [ Bowe -
F“<2 2 2(1—p2)> 1+(v+k>(( 2>>, k=12,

Therefore, using Remark 2, the expected values of (A15) can be approximated by

a v+ PtY o (Fn Bo* _
Ey log{Fll<2 5 2(1_p2))} N(ngh(z(l_pz))EY[Yk], k=12 (A16)

This concludes the proof. [
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