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Abstract: This article considers an inverse problem of time fractional parabolic partial differen-
tial equations with the nonlocal boundary condition. Dirichlet-measured output data are used to
distinguish the unknown coefficient. A finite difference scheme is constructed and a numerical ap-
proximation is made. Examples and numerical experiments, such as man-made noise, are provided
to show the stability and efficiency of this numerical method.
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1. Introduction

Numerous authors from the scientific, engineering, and mathematics fields have, in
recent years, dealt with the dynamical systems described by fractional partial differential
equations. This area has markedly grown worldwide.

Fractional-order partial-differential equations are the generalization of known classical-
order partial-differential equations. Various methods have been formulated to solve frac-
tional differential equations, such as the Laplace transform method, the Fourier transform
method, the iteration method and the operational method. Generally speaking, nonlinear
fractional differential equations do not have precise analytical solutions, which is why
approximate and numerical techniques have been used. An equation in a specific region
with a specific piece of data is known as a “direct problem”. In contrast, determining an
unknown coefficient, an unknown source function or unknown boundary condition using
measured output data is termed an “inverse problem”. According to unknown input, an
inverse problem can be termed an inverse problem of coefficient identification, an inverse
problem of source identification or an inverse problem of boundary value identification.
Generally, inverse problems are ill-posed problems, since they are very sensitive to errors
in measured input.

Nonlocal boundary conditions have recently received more attention in the mathemati-
cal formulation and numerical solution to inverse coefficient problems. There are physical
applications in which nonlocal boundary conditions are encountered, such as chemical
diffusion and heat-conduction biological processes. Inverse problems for time-fractional
parabolic equations with nonlocal boundary conditions in their initial stages require explo-
ration, as not many articles have been written on this. Furthermore, the numerical solution
to these problems has still not been studied. An inverse coefficient, time-fractional parabolic
partial-differential equation is studied in this paper, in the case of nonlocal boundary condi-
tions. An analytical solution is obtained using eigenfunction expansions. An analysis of the
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time-dependent inverse coefficient problem is provided, with an additional measurement of
the output data of Dirichlet type at the boundary point for the fractional diffusion equation,
and the distinguishability of the mapping is investigated. The measured output data, the
explicit form of input–output mapping, are additionally constructed. The fact that the distin-
guishability of input–output mapping implies the injectivity of the mapping is proved. The
Fourier method is used to find a unique solution to the problem. Noisy Dirichlet measured
output data are used to introduce the input–output mapping, consequently procuring an
analytical representation of the mapping. Finally, a numerical approximation of the problem
is constructed using the finite difference method. This paper is related to the modeling of
diffusion problems, known as diffusion equation as given in (1):

Dα
t u(x, t) = uxx(x, t)− p(t)u(x, t) + F(x, t) 0 < α ≤ 1, (x, t) ∈ ΩT (1)

u(x, 0) = g(x) (2)

ux(0, t) = ux(1, t), u(0, t) = Ψ1(t) (3)

where ΩT = (x, t) ∈ R2 : 0 < x < 1, 0 < t ≤ T and the fractional derivative Dα
t u(x, t) is

defined in Caputo sense Dα
t u(x, t) = (I1−αu′)(t), 0 < α ≤ 1, Iα being the Riemann–

Liouville fractional integral,

(Iα f )(t) =

{
1

Γ(α)

∫ t
0 (t− τ)α−1 · f (τ)dτ 0 < α ≤ 1

f (t) α = 0
(4)

Equations (1)–(3) indicate an inverse problem with respect to the unknown function
p(t). F(x, t) is a source function.

The left boundary value function Ψ1(t) belongs to C[0, T]. This function g(x) satisfies
the following consistency conditions:

(C1) g(0) = Ψ1(0)

(C2) g
′
(1) = ux(0, 0)

(5)

Under (C1) and (C2), the initial boundary value problem (1)–(3) has the unique solution
u(x, t), which is defined in the domain Ω̄T = {(x, t) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} and
belongs to the space

C(Ω̄T) ∩W1
t (0, T) ∩ C2

x(0, 1) (6)

where the solution u is continuous with respect to x and t and t, ut is in L1, ux and uxx
is continuous.

2. An Analysis of the Inverse Coefficient Problem with Measured Data
H(T) = U(1, T)

Consider the inverse problem with measured output data h(t) at x = 1. To formulate
the solution for the parabolic problem (1)–(3) by using the Fourier method of separation of
variables, we first introduce an auxiliary function v(x, t) as follows:

v(x, t) = u(x, t)−Ψ1(t)(1− x), x ∈ [0, 1] (7)

by which we transform problem (1)–(3) into a problem with homogeneous boundary
conditions. Therefore, the initial boundary value problem (1)–(3) can be rewritten in terms
of v(x, t) in the given form:

Dα
t v(x, t)− vxx(x, t) = Dα

t Ψ1(t)(1− x)− p(t)v(x, t)

− p(t)Ψ1(t)(1− x) + F(x, t)
(8)

v(x, 0) = g(x)−Ψ1(0)(1− x) (9)
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vx(0, t)− vx(1, t) = 0 (10)

v(0, t) = 0 (11)

The unique solution to the initial-boundary value problem can be represented in the
following form [1] :

v(x, t) =
∞

∑
k=1

< ζ(θ), Xk(θ) > Eα,1(λk, tα)Yk(x)+

∞

∑
k=1

( ∫ t

0
sα−1 · Eα,α(−λksα) < ξ(θ, t− s; pj(t)), Xk(θ) > ds

)
Yk(x)

(12)

where
ζ(x) = g(x)−Ψ1(0)(1− x) (13)

ξ(x, t) = −Dα
t Ψ1(t)(1− x)− p(t)v(x, t)− p(t)Ψ1(t)(1− x) + F(x, t) (14)

Moreover, < ζ(θ), Φn(θ) >=
∫ 1

0 Φn(θ)ζ(θ)dθ; Eα,β is the generalized Mittag–Leffler
function, defined by [2]

Eα,β(z) =
∞

∑
n=0

zn

Γ(βn + α)
(15)

Assume that Xk(x) is the solution to the following Sturm–Liouville problem [3].{
−Φxx(x) = λΦ(x) 0 < x < 1
Φ′(1) = Φ′(0) Φ(0) = 0

(16)

Y0(x) = x, Y2k−1(x) = x · cos(2πkx), Y2k(x) = sin(2πkx), k = 1, 2, . . ., X0(x) = 2,
X2k−1(x) = 4 cos(2πkx), X2k(x) = 4(1− x) sin(2πkx), k = 1, 2, . . . . The system of func-
tions Yn’s are biorthonormal bases, that is, << Yi, Xj >>= 0 otherwise << Yi, Xj >>= 1
if i = j. These are also Riesz bases in L2.

The Dirichlet type of the measured output data at the boundary x = 1 in terms of
v(x, t) can be written in the following form [4–15]:

h(t) = u(1, t) = v(1, t) (17)

To simplify (12), define the following:

zk(t) =
∞

∑
k=1

< ζ(θ), Xk(θ) > Eα,1(λktα) (18)

wk(t) =
∞

∑
k=1

( ∫ t

0
sα−1Eα,α(−λksα) < ξ(θ, t− s; pj(t)), Xk(θ) > ds

)
(19)

By using zk(t) and wk(t), we can write the solution as follows:

v(x, t) =
∞

∑
k=1

zk(t)Yk(x) +
∞

∑
k=1

wk(t)Yk(x) (20)

The analytical solution to the problem [16–30] in series form is given in (20). Therefore,
by substituting x = 1,

h(t) = v(1, t) =
∞

∑
k=1

zk(t)Yk(1) +
∞

∑
k=1

wk(t)Yk(1) (21)

is obtained.
As a result, h(t) is analytically determined as a series representation. The right-hand

side of (21) defines the input–output mapping Ψ[p]:
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Ψ[p] :=
∞

∑
k=1

zk(t)Yk(1) +
∞

∑
k=1

wk(t)Yk(1) (22)

The relationship between the functions p1(t), p2(t) ∈ K at x = 1 and the corresponding
outputs hj(t) = u(1, t; pj), j = 1, 2 are given in the following lemma.

Lemma 1. Let v1(x, t) = v(x, t; p1) and v2(x, t) = v(x, t; p2) be the solutions to the direct prob-
lem (8)–(11) corresponding to the admissible coefficients p1(t), p2(t) ∈ K. If hj(t) = u(1, t; pj) j =
1, 2 are the corresponding outputs [31,32] hj(t) j = 1, 2 satisfy the following series identity.

∆h(t) =
∞

∑
k=1

∆wk(t)Yk(1) (23)

for each t ∈ (0, T] where ∆h(t) = h1(t)− h2(t), ∆wk(t) = w1
k(t)− w2

k(t).

Proof. By using identity (21), the measured output data hj(t) = v(1, t) j = 1, 2 can be
written as:

h1(t) =
∞

∑
k=1

z1
k(t)Yk(1) +

∞

∑
k=1

w1
k(t)Yk(1) (24)

h2(t) =
∞

∑
k=1

z2
k(t)Yk(1) +

∞

∑
k=1

z2
k(t)Yk(1) (25)

Respectively, since, z1
k = z2

k(t) from the definition of zk(t). The difference of these formulas
implies the desired result.

The lemma and the definitions enable us to reach the following conclusion.

Corollary 1. Let the conditions of Lemma 1 hold. If, in addition, < ξ(x, t; p1(t))− ξ(x, t; p2(t)),
Xk(x) >= 0 ∀ t ∈ (0, T] hold, then h1(t) = h2(t) ∀t ∈ (0, T].

Since Yk(x) ∀k = 0, 1, 2, . . . forms a basis for the space and Yk(1) 6= 0 ∀k = 0, 1, 2, . . .,
then < ξ1(x, t; p1(t))− ξ2(x, t; p2(t)), Xk(x) > 6= 0, at least for some k ∈ N. Hence, through
the lemma, we can conclude that h1(t) 6= h2(t), which leads us to the following consequence:
Ψ[p1] 6= Ψ[p2] implies that p1(t) 6= p2(t).

Theorem 1. Let conditions (C1) and (C2) hold. Assume that Ψ[·] : K −→ C[0, T] is the input–
output mapping defined by ((22)) and corresponding to the measured output h(t) = u(1, t). In this
case, the mapping Ψ[p] has the distinguishability property in the class of admissible parameter K,
i.e., Ψ[p1] 6= Ψ[p2] ∀ p1, p2 ∈ K implies p1(t) 6= p2(t).

Proof. From the above explanation, the proof is clear.

3. Numerical Method

This section considers the inverse problem given by (1)–(3) and (17). We use the finite
difference method to discretize this problem. The domain [0, 1] × [0, T] is divided into
an M× N mesh with the spatial step size k = 1/M in x direction and the time step size
τ = T/N, respectively.

The grid points xi, tn are defined by
xi = ik; i = 0; 1; 2; . . . ; M;
tj = jτ; j = 0; 1; 2; . . . ; N;

in which M and N, are integers. The notations uj
i , Fj

i , pj, gi, ψ
j
1 and hj finite difference

approximations of u(xi, tj), F(xi, tj), p(tj), g(xi), ψ1(tj) and h(tj), respectively.
The finite-difference approximation for discretizing problem (1)–(3) and (17) is:
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1
Γ(1− α)

j+1

∑
m=1

Γ(j−m− α + 1)
(j−m)!

(
um

i − um−1
i

τα

)
=

1
h2

(
uj+1

i+1 − 2uj+1
i + uj+1

i−1

)
− pjuj+1

i + Fj
i

(26)

u0
i = gi (27)

uj
0 = ψ

j
1 (28)

uj
M+1 =

(
uj

M + uj
1 − ψ

j
1

)
, (29)

where 1 ≤ i ≤ M and 0 ≤ j ≤ N.
Now, let us construct the predicting-correcting mechanism. Firstly, if we use the

measured output data-u(1, t) = h(t), we obtain

p(t) =
Dα

t h(t)− uxx(1, t)− F(1, t)
h(t)

. (30)

The finite difference approximation of p(t) is

pj =

[
H j − 1

k2

(
uj+1

M+1 − 2uj+1
M + uj+1

M−1

)
− Fj

M

]
hj , (31)

where H j = Dα
t h(tj), j = 0, 1, . . . , N.

In numerical computation, since the time step is very small, we can take pj(0) = pj−1,
uj(0)

i = uj−1
i , j = 0, 1, 2, . . . , N, i = 1, 2, . . . , M. At each s-th iteration step, we first determine

pj(s) from the formula.

pj(s) =

[
H j − 1

k2

(
uj+1(s)

M+1 − 2uj+1(s)
M + uj+1(s)

M−1

)
− Fj

M

]
hj . (32)

Then, from (26)–(29), we obtain:

1
Γ(1− α)

j+1

∑
m=1

Γ(j−m− α + 1)
(j−m)!

(
um(s+1)

i − um−1(s)
i

τα

)
=

1
h2

(
uj+1(s+1)

i+1 − 2uj+1(s+1)
i + uj+1(s+1)

i−1

)
−pj(s)uj+1(s+1)

i + Fj
i

(33)

uj(s)
0 = ψ

j
1 (34)

uj(s)
M+1 =

(
uj(s)

M + uj(s)
1 − ψ

j
1

)
, (35)

The system of Equations (27) and (33)–(35) can be solved by the Gauss elimination
method and uj+1(s+1)

i is determined. If the difference in values between the two iterations
reaches the prescribed tolerance, the iteration is stopped and we accept the corresponding
values pj(s), uj+1(s+1)

i (i = 1, 2, . . . , Nx) as pj, uj+1
i (i = 1, 2, . . . , Nx), on the (j)-th time step,

respectively. By virtue of this iteration, we can move from level j to level j + 1.

Example 1. Consider the following problem for α = 1/2:
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F(x, t) =
(

16t2

5
√

π

√
t + t5 − t3(2π)2(− sin(2πx) + cos2(2πx)

))
exp(sin(2πx)),

ϕ(x) = 0, Ψ1(t) = t3, and the measured output data is h(t) = t3,

It is easy to check that the exact solution is:

{p(t), u(x, t)} =
{

t2, t3 exp(sin(2πx))
}

.

Let us apply the scheme above for the step sizes k = 0.05, τ = 0.05. Figures 1 and 2
show the exact and the numerical solutions of {p(t), u(x, t)} when T = 1.

We can see from these figures that the agreement between the numerical and exact
solutions for p(t) and u(x, T) is excellent.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

p(
t)

Figure 1. The exact and numerical solutions of p(t). The exact solution is shown with dashes line.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

x

u(
x,

1)

Figure 2. The exact and numerical solutions of u(x, 1). The exact solution is shown with dashes line.
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4. Conclusions

The distinguishability property of the input–output mapping Ψ[·] : K −→ C[0, T]
was investigated using measured output data x = 1. The measured output data h(t)
were obtained analytically as a series representation. This also leads to the input–output
mapping Ψ[·] in an explicit form. In future studies, the authors plan to consider various
fractional inverse coefficients or inverse source problems.
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