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Abstract: In this study, new asymptotic properties of positive solutions of the even-order neutral
delay differential equation with the noncanonical operator are established. The new properties
are of an iterative nature, which allows it to be applied several times. Using these properties, we
obtain new criteria to exclude a class from the positive solutions of the studied equation, using the
comparison principles.
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1. Introduction

Differential equations (DE) are crucial for understanding real-life problems and phe-
nomena, or at the very least for knowing the characteristics of the solutions to the equations
resulting from modeling these phenomena. However, DEs, such as the ones presented, that
are utilized to address real-world issues may not be explicitly solvable, i.e., may not have
closed-form solutions. Only equations with simple forms accept the solutions supplied
by explicit formulae. In recent decades, different models of DEs have been established
in various fields, which have led to stimulate research in the qualitative theory of DEs.
Qualitative properties of differential equations have received a lot of attention, such as
existence, oscillation, periodicity, boundedness, stability; see for example [1,2].

Neutral differential equations (NDE) are a type of functional differential equation in
which the highest derivative of the unknown function appears with and without delay. The
qualitative analysis of such equations has a lot of practical use in addition to its theoretical
value. This is due to the fact that NDEs appear in a variety of situations, such as problems
involving lossless transmission lines in electric networks (as in high-speed computers,
where such lines are used to interconnect switching circuits), the study of vibrating masses
attached to an elastic bar, and the solution of variational problems with time delays; see
Hale [2].

The essence of oscillation theory is to establish conditions for the existence of oscillatory
(non-oscillatory) solutions and/or convergence to zero, studying the laws of distribution
of the zeros, obtaining lower limits for the separation between successive zeros, and
considering the number of zeros of each given span, as well as looking at the relationship
between the oscillatory properties of solutions and corresponding oscillatory processes in a
system. The oscillation theory has become a significant numerical mathematical tool for
many disciplines and high technologies. The subject of finding oscillation criteria for certain
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functional DEs has been a highly active study area in recent decades, and the monographs
by Agarwal et al. [3,4] and Győri and Ladas [5] contain many references and descriptions
of known results.

Let us denote the composition of two functions f and g by g ◦ f , that is,
(g ◦ f )(t) = g( f (t)). Consider the NDE of the form(

a · (x + p · (x ◦ τ))(n−1)
)′

+ q · (x ◦ ζ) = 0, k ≥ k0, (1)

where n ≥ 4 is an even natural number, a, p, τ and ζ in C1([k0, ∞)), q in C([k0, ∞)),
a(k) > 0, a′(k) ≥ 0, 0 ≤ p(k) < 1, q(k) ≥ 0, τ(k) ≤ k, ζ(k) ≤ k, ζ ′(k) ≥ 0, and
limk→∞ τ(k) = ∞ = limk→∞ ζ(k). By a proper solution of (1), we mean a real-valued
function x in Cn−1([k0, ∞)) with

a · (x + p(x ◦ τ))(n−1) ∈ C1([k0, ∞)), sup{|x(k)| : k ≥ k∗} > 0, for k∗ ≥ k0,

and x satisfies (1) on [k0, ∞). In this paper, we study the asymptotic and oscillatory behavior
of solutions of (1) in the non-canonical case, that is∫ ∞

k0

a−1(η)dη < ∞.

Jacob Robert Emden (1862–1940), a Swiss astrophysicist, and Sir Ralph Howard Fowler
(1889–1944), an English astronomer, are the namesakes of the famous Emden–Fowler
equation. Fowler investigated the equation to explain many fluid mechanics phenomena [6].
Since then, there has been a surge of interest in generalizing this equation and using it
to explain a variety of physical processes [7,8]. Equation (1) is a generalization of the
Emden–Fowler equation in the higher-order and the neutral case.

Studying the qualitative behavior of solutions to differential equations is of great
importance, especially in the case of an inability to find a solution to differential equations.
On the other hand, numerical studies are important in understanding, analyzing and
interpreting different phenomena (see, for example, [9,10]).

In 2011, Zhang et al. [11] presented conditions that ensure the convergence of non-
oscillatory solutions to zero of the equation(

a ·
(

x(n−1)
)α)′

+ q ·
(

xβ ◦ ζ
)
= 0, (2)

where α and β are ratios of odd positive integers. Zhang et al. [12] provided criteria
for oscillation of all solutions of (2). Using the comparison technique, Baculíková [13]
investigated the oscillation of the solutions of the equation(

a ·
(

x(n−1)
)α)′

+ q · ( f ◦ x ◦ ζ) = 0, (3)

where f ′(x) ≥ 0 and − f (−xy) ≥ f (xy) ≥ f (x) f (y), for xy > 0. Moaaz and Muhib [14]
studied the oscillation of (2) and presented improved results in [12,13].

On the other hand, the study of the oscillatory behavior of solutions of second-order
delay differential equations was recently developed. To track this development, see [15–19].
Baculíková [15] established the monotonic properties of nonoscillatory solutions of the
linear equation (

a · x′
)′
+ q · (x ◦ ζ) = 0,

in the delay and advanced cases. He provided criteria for oscillation, which improved the
results in [16]. For the NDE(

a ·
(
(x + p · (x ◦ τ))′

)α)′
+ q · (xα ◦ ζ) = 0, (4)
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Bohner et al. [18] and Moaaz et al. [19] verified the oscillatory behavior of this equation
in the non-canonical case.

On the other hand, the study of the asymptotic behavior of delay differential equations
in the non-canonical case differs greatly from the canonical case. The possibilities of signs
of derivatives of positive solutions are more in the non-canonical case, and this opens the
way for the use of different approaches and methods to exclude positive solutions. Anis
and Moaaz [20] presented oscillation criteria for the equation(

(x + p · (x ◦ τ))(n−1)
)′

+ q · (x ◦ ζ) = 0,

and Moaaz et al. [21] verified the oscillatory behavior of (4) in the canonical case.
The main objective of this study is to find the new monotonic properties of a class

of positive solutions of (1) in the non-canonical case. Then, we improve these properties
by establishing them in an iterative nature. By using these properties, we can obtain
an iterative criterion that ensures that there are no solutions in the class of the positive
solutions under study. The results in this paper extend the approach used in [15] for the
higher order as well as the neutral equations. Finally, we test the effect of this improvement
on a special case of (1).

Lemma 1. Lemma 2.2.3 of [3]. If g is in Cr([k0, ∞), (0, ∞)) with derivatives up to order r− 1 of
constant sign, g(κ−1)(k)g(κ)(k) ≤ 0 for k ≥ k1 ≥ k0, and limk→∞ g(k) 6= 0, then there is a kµ ≥ k1
such that

g(k) ≥ µ

(r− 1)!
kr−1

∣∣∣g(r−1)(k)
∣∣∣,

for all k ≥ kµ and µ ∈ (0, 1).

2. Main Results

Naturally, the qualitative study of the solutions of the NDDs begins with the classifica-
tion of the signs of the derivatives of the function

υ
def
= x + p · (x ◦ τ). (5)

Assume that x is a positive solution to Equation (1). Since limk→∞ τ(k) = ∞ and
limk→∞ ζ(k) = ∞, there is a k1 > k0 such that x ◦ τ and x ◦ ζ are positive for all k ≥ k1. Thus,

υ(k) > 0 and
(

a(k)υ(n−1)(k)
)′
≤ 0. Taking into account Lemma 2.2.3 in [3], the following

are the possible cases, eventually:

P1 : υ(r)(k) > 0 for r = 0, 1, n− 1 and υ(n)(k) < 0;
P2 : υ(r)(k) > 0 for r = 0, 1, n− 2 and υ(n−1)(k) < 0;
P3 : (−1)rυ(r)(k) > 0 for r = 0, 1, . . . , n− 1.

Here, we define the class = as the set of all positive solutions of (1) with υ satisfying
P2. Further, we define the functions Bm and Q by

B0(k)
def
=
∫ ∞

k
a−1(η)dη, Bm(k)

def
=
∫ ∞

k
Bm−1(η)dη, for m = 1, 2, . . . , n− 2,

and
Q(k)

def
= q(k)(1− p(ζ(k))).
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Lemma 2. Assuming that x belongs to =, we obtain the following cases, eventually:
(r1,1) x(k) > (1− p(k))υ(k);
(r1,2) υ(k) ≥ ((n− 2)!)−1µ0k

n−2υ(n−2)(k) for all µ0 ∈ (0, 1);

(r1,3)
(

a(k)υ(n−1)(k)
)′
≤ −Q(k)υ(ζ(k));

(r1,4) υ(n−2)(k) ≥− B0(k)a(k)υ(n−1)(k);
(r1,5) υ(n−2)(k)/B0(k) is increasing.

Proof. As a result of the facts that x ∈ = and τ(k) ≤ k, we get that υ′(k) > 0 and
x(τ(k)) ≤ υ(τ(k)) ≤ υ(k). Thus, it follows from (5) that x(k) > (1− p(k))υ(k) and therefore,
(r1.1) is proved.

Using Lemma 1 with r = n− 1 and g = υ, we obtain (r1,2) for all µ0 ∈ (0, 1). Next,
Equation (1), with (r1,1) becomes(

a(k)υ(n−1)(k)
)′

= −q(k)x((ζ(k)))

≤ −q(k)(1− p(ζ(k)))υ(ζ(k))
= Q(k)υ(ζ(k)).

Moreover, we have∫ ∞

k
υ(n−1)(s)ds =

∫ ∞

k

1
a(s)

a(s)υ(n−1)(s)ds ≤ B0(k)a(k)υ(n−1)(k). (6)

Since υ(n−2) is a positive decreasing function, we conclude that υ(n−2) converges to a
non-negative constant, and this with (6) gives

υ(n−2)(k) ≥ −B0(k)a(k)υ(n−1)(k).

This also confirms the positivity of the numerator of the derivative of υ(n−2)/B0,
or otherwise,

d
dk

υ(n−2)

B0
=

B0υ(n−1) + a−1υ(n−2)

B2
0

≥ 0.

This completes the proof.

Lemma 3. Assuming that x belongs to = and
(c1) there are δ ∈ (0, 1) and k1 ≥ k0 such that

a(k)B2
0(k)ζ

n−2(k)Q(k) ≥ (n− 2)!δ,

we obtain, for k ≥ k1,
(r2,1) υ(n−2)(k) converges to zero;
(r2,2) υ(n−2)(k)/By0

0 (k) is decreasing;
(r2,3) υ(n−2)(k)/By0

0 (k) converges to zero;
(r2,4) υ(n−2)(k)/B1−y0

0 (k) is increasing;
where y0 = µ0δ, µ0 ∈ (0, 1).

Proof. First of all, since x belongs to =, we can say that (r1,1) − (r1,5) in Lemma 2 are
satisfied for all k ≥ k1, with k1 large enough. Now, since υ(n−2) is a positive decreasing
function, we conclude that υ(n−2) converges to a non-negative constant, let us say l.

If we assume that l > 0, then there is a k2 ≥ k1 with υ(n−2)(k) ≥ l for k ≥ k2, which
with (r1,2) gives

υ(k) ≥ µ0l
(n− 2)!

kn−2,
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for all µ0 ∈ (0, 1). Thus, from (r1,3), we get(
a(k)υ(n−1)(k)

)′
≤ − µ0l

(n− 2)!
ζn−2(k)Q(k),

which with (c1) gives (
a(k)υ(n−1)(k)

)′
≤ −y0l

1
a(k)B2

0(k)
.

If we integrate the previous inequality from k2 to k, then we obtain

a(k)υ(n−1)(k) ≤ a(k2)υ
(n−1)(k2)− y0l

∫ k

k2

1
a(s)B2

0(s)
ds

≤ y0l
(

1
B0(k2)

− 1
B0(k)

)
. (7)

Since B−1
0 (k)→ ∞ as k→ ∞, there is a k3 ≥ k2 such that B−1

0 (k)− B−1
0 (k2) ≥ εB−1

0 (k)
for all ε ∈ (0, 1). Hence, (7) becomes

υ(n−1)(k) ≤ − y0lε
a(k)B0(k)

,

for all k ≥ k3. By integrating the above inequality from k3 to k, we obtain

υ(n−2)(k) ≤ υ(n−2)(k3)− y0lε
∫ k

k3

1
a(s)B0(s)

ds

≤ υ(n−2)(k3)− y0lε ln
B0(k3)

B0(k)
,

and therefore limk→∞ υ(n−2)(k) = −∞, which is a contradiction. Then, l = 0.
Next, from (c1), (r1,2) and (r1,3), we have(

a(k)υ(n−1)(k)
)′
≤ − µ0

(n− 2)!
ζn−2(k)Q(k)υ(n−2)(ζ(k))

≤ − y0

a(k)B2
0(k)

υ(n−2)(ζ(k)).

By integrating this inequality from k1 to k and using the fact that υ(n−1)(k) < 0,
we obtain

a(k)υ(n−1)(k) ≤ a(k1)υ
(n−1)(k1)−

∫ k

k1

y0

a(s)B2
0(s)

υ(n−2)(ζ(s))ds

≤ a(k1)υ
(n−1)(k1)− y0υ(n−2)(k)

∫ k

k1

1
a(s)B2

0(s)
ds

≤ a(k1)υ
(n−1)(k1) +

y0

B0(k1)
υ(n−2)(k)− y0

B0(k)
υ(n−2)(k). (8)

As a result of υ(n−2)(k)→ 0 as k→ ∞, there is a k2 ≥ k1 such that

a(k1)υ
(n−1)(k1) +

y0

B0(k1)
υ(n−2)(k) ≤ 0,

for k ≥ k2. Therefore, we have

a(k)υ(n−1)(k)B0(k) + y0υ(n−2)(k) ≤ 0, (9)
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and then (
υ(n−2)(k)

By0
0 (k)

)′
=

1

B2y0
0 (k)

(
By0

0 (k)υ(n−1)(k)− y0
By0−1

0 (k)

−a(k)
υ(n−2)(k)

)

=
1

By0+1
0 (k)

(
B0(k)υ

(n−1)(k) +
y0

a(k)
υ(n−2)(k)

)
≤ 0.

Now, we have that υ(n−2)/By0
0 is a positive decreasing function. Then, υ(n−2)/By0

0
converges to a non-negative constant, let us say k.
Suppose that k > 0. Hence,

υ(n−2)(k)

By0
0 (k)

≥ k, (10)

for k ≥ k3, where k3 ≥ k2 and is large enough.
From (r1,4), we see that the function

υ(n−2)(k) + a(k)υ(n−1)(k)B0(k)

By0
0 (k)

(11)

is positive. Moreover,(
υ(n−2)(k) + a(k)υ(n−1)(k)B0(k)

By0
0 (k)

)′

=
υ(n−1)(k) +

(
a(k)υ(n−1)(k)

)′
B0(k) + a(k)υ(n−1)(k)B′0(k)

By0
0 (k)

+y0
υ(n−2)(k) + a(k)υ(n−1)(k)B0(k)

a(k)By0+1
0 (k)

=

(
a(k)υ(n−1)(k)

)′
By0−1

0 (k)
+ y0

υ(n−2)(k)

a(k)By0+1
0 (k)

+ y0
υ(n−1)(k)

By0
0 (k)

. (12)

From (r1,3), (r1,4) and (c1), we get(
a(k)υ(n−1)(k)

)′
≤ − µ0

(n− 2)!
Q(k)ζn−2(k)υ(n−2)(ζ(k))

≤ −y0
1

a(k)B2
0(k)

υ(n−2)(ζ(k)), (13)

which with (12) gives(
υ(n−2)(k) + a(k)υ(n−1)(k)B0(k)

By0
0 (k)

)′
≤ −y0

υ(n−2)(ζ(k))

a(k)By0+1
0 (k)

+ y0
υ(n−2)(k)

a(k)By0+1
0 (k)

+ y0
υ(n−1)(k)

By0
0 (k)

= y0
υ(n−2)(k)− υ(n−2)(ζ(k))

a(k)By0+1
0 (k)

+ y0
υ(n−1)(k)

By0
0 (k)

. (14)

Since υ(n−1)(k) ≤ 0 and ζ(k) ≤ k, we obtain υ(n−2)(ζ(k)) ≥ υ(n−2)(k), and then (14)
becomes (

υ(n−2)(k) + a(k)υ(n−1)(k)B0(k)

By0
0 (k)

)′
≤ y0

υ(n−1)(k)

By0
0 (k)

.
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Using (9) and (10), we conclude that(
υ(n−2)(k) + a(k)υ(n−1)(k)B0(k)

By0
0 (k)

)′
≤ −

y2
0k

a(k)B0(k)
< 0.

Then, the function defined in (11) is a positive decreasing function that converges to a
non-negative constant. Furthermore, if we integrate the last inequality from k3 to ∞, then
we obtain

−υ(n−2)(k3) + a(k3)υ
(n−1)(k3)B0(k3)

By0
0 (k3)

≤ −y2
0k lim

k→∞

(
ln

B0(k3)

B0(k)

)
→ ∞,

which is a contradiction. This implies that k = 0.
Finally, we have(

a(k)υ(n−1)(k)B0(k) + υ(n−2)(k)
)′

=
(

a(k)υ(n−1)(k)
)′

B0(k)− a(k)υ(n−1)(k)a−1(k) + υ(n−1)(k)

=
(

a(k)υ(n−1)(k)
)′

B0(k),

which with (13) gives(
a(k)υ(n−1)(k)B0(k) + υ(n−2)(k)

)′
≤ −y0

1
a(k)B0(k)

υ(n−2)(ζ(k)). (15)

By integrating this inequality from k to ∞ and using (r1,5), we obtain

−a(k)υ(n−1)(k)B0(k)− υ(n−2)(k) ≤ −y0

∫ ∞

k

1
a(s)B0(s)

υ(n−2)(ζ(s))ds

≤ −y0

∫ ∞

k

1
a(s)

υ(n−2)(s)
B0(s)

ds

≤ −y0
υ(n−2)(k)

B0(k)

∫ ∞

k

1
a(s)

ds

= −y0υ(n−2)(k).

Then(
υ(n−2)(k)

B1−y0
0 (k)

)′
=

1

B2−2y0
0 (k)

(
B1−y0

0 (k)υ(n−1)(k)− (1− y0)
B−y0

0 (k)

−a(k)
υ(n−2)(k)

)

=
1

B2−y0
0 (k)

(
B0(k)υ

(n−1)(k) + (1− y0)
1

a(k)
υ(n−2)(k)

)
≥ 0.

which means that υ(n−2)(k)/B1−y0
0 (k) is increasing. This completes the proof.

If y0 ≤ 1/2, we can improve the properties in Lemma 3, as stated in the following result.

Lemma 4. Assume that x belongs to = and (c1) holds. If

(c2) : lim inf
k→∞

B0(ζ(k))

B0(k)
:= κ < ∞,

and there exists an increasing sequence {yr}m
r=0 defined by

yr := y0
κyr−1

1− yr−1
,



Mathematics 2022, 10, 1470 8 of 13

with y0 = µ0δ, ym−1 ≤ 1/2 and ym, µ0 ∈ (0, 1), then, eventually,
(r3,1) υ(n−2)(k)/Bym

0 (k) is decreasing;
(r3,2) υ(n−2)(k)/Bym

0 (k) converges to zero;
(r3,3) υ(n−2)(k)/B1−ym

0 (k) is increasing;

Proof. First of all, since x belongs to =, we can say that (r1,1) − (r1,5) in Lemma 2 are
satisfied for all k ≥ k1, with k1 being large enough. Furthermore, from Lemma 3, we have
that (r2,1)− (r2,4) hold.

Now, assume that y0 ≤ 1/2, and

y1 = y0
κy0

1− y0
.

Next, we will prove (r3,1), (r3,2) and (r3,3) for m = 1. As in the proof of Lemma 3, we
arrive at (13). Integrating (13) from k1 to k and using (r2,2) and (c2), we obtain

a(k)υ(n−1)(k) ≤ a(k1)υ
(n−1)(k1)− y0

∫ k

k1

1
a(s)B2

0(s)
υ(n−2)(ζ(s))ds

≤ a(k1)υ
(n−1)(k1)− y0

∫ k

k1

1
a(s)B2

0(s)
By0

0 (ζ(s))
υ(n−2)(s)

By0
0 (s)

ds

≤ a(k1)υ
(n−1)(k1)− y0

υ(n−2)(k)

By0
0 (k)

∫ k

k1

By0−2
0 (s)
a(s)

By0
0 (ζ(s))
By0

0 (s)
ds

≤ a(k1)υ
(n−1)(k1)− y0κy0

υ(n−2)(k)

By0
0 (k)

∫ k

k1

By0−2
0 (s)
a(s)

ds

≤ a(k1)υ
(n−1)(k1) +

y0κy0

1− y0

υ(n−2)(k)

By0
0 (k)

By0−1
0 (k1)−

y0κy0

1− y0

υ(n−2)(k)

B0(k)
. (16)

Using (r2,3), we have that

a(k1)υ
(n−1)(k1) +

y0κy0

1− y0

υ(n−2)(k)

By0
0 (k)

By0−1
0 (k1) ≤ 0,

which, with (16), results in

a(k)υ(n−1)(k) ≤ −y1
υ(n−2)(k)

B0(k)
.

Then
(

υ(n−2)(k)/By1
0 (k)

)′
≤ 0. Proceeding exactly as in the proof of (r2,3) and (r2,4),

we can verify that (r3,2) and (r3,3) hold.
Next, if y1 ≤ 1/2, then we define

y2 = y0
κy1

1− y1
.

As in the proof of the case for m = 1, we can prove (r3,1), (r3,2) and (r3,3) for m = 2,
and so on. The proof is complete.

Theorem 1. Assume that (c1) and (c2) hold. If there exists a positive integer m such that ym > 1/2
for some µ0 ∈ (0, 1), then the class = is empty, where ym is defined as in Lemma 4.

Proof. Assume the contrary, that x belongs to=. From Lemma 4, we have that the functions
υ(n−2)/Bym

0 and υ(n−2)/B1−ym
0 are decreasing and increasing for k ≥ k1, respectively. Then,

ym ≤ 1/2, which is a contradiction. The proof is complete.
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Example 1. Consider the NDE(
k4(x(k) + p0x(τ0k))

′′′
)′

+ q0x(ζ0k) = 0, (17)

where k > 0, p0 ∈ [0, 1), τ0, ζ0 ∈ (0, 1) and q0 > 0. By comparing (1) and (17), we note that
n = 4, a(k) = k4, p(k) = p0, τ(k) = τ0k, q(k) = q0, and ζ(k) = ζ0k. It is easy to verify that

B0(k) =
1

3k3 , B1(k) =
1

6k2 , B2(k) =
1
6k

,

and
Q(k) = q0(1− p0).

For (c1), we set

δ :=
1

18
ζ2

0q0(1− p0),

with
ζ2

0q0(1− p0) < 18. (18)

For (c2), we have

κ =
1
ζ3

0
.

Now, we define the sequence {yr}m
r=0 as

yr =
y0

1− yr−1

(
1
ζ0

)3yr−1

,

with
y0 =

1
18

µ0ζ2
0q0(1− p0).

where µ0 ∈ (0, 1).

Special case 1: Consider the NDE(
k4
(

x(k) +
1
2

x(τ0k)

)′′′)′
+ 18x(ζ0k) = 0. (19)

We note that (18) holds. If we set µ0 = 0.9, then y0 = 9
20 ζ2

0 and

yr =
9
20

(ζ0)
2−3yr−1

1− yr−1
,

(see Figure 1). We note that y0 < 1/2 for all ζ0 ∈ (0, 1), while y1 > 1/2 for all ζ0 ∈ (0.805, 1).
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Figure 1. The iterations yr, for r = 0, 1, . . . , 6 in the special case 1.

Special case 2: Consider the delay equation(
k4x′′′(k)

)′
+ q0x

(
1
2
k

)
= 0,

where q0 < 72. If we set µ0 = 0.9, then y0 = 1
80 q0 and

yr =
1

80
q0

1− yr−1
(2)3yr−1 ,

(see Figure 2). We note that if q0 ∈ (40, 72), then y0 > 1/2. Moreover, y1 > 1/2 for q0 ∈ (19, 72).

Figure 2. The iterations yr, for r = 0, 1 in the special case 2.

Theorem 2. Assume that (c1) and (c2) hold. If there exists a positive integer m such that

lim inf
k→∞

∫ k

ζ(k)
ζn−2(s)B0(s)Q(s)ds >

(n− 2)!(1− ym)

e
, (20)

then the class = is empty, where ym is defined as in Lemma 4.

Proof. Assume the contrary, that x belongs to =. From Lemma 4, we have that
(r3,1)− (r3,3) hold.

Now, we define the function

P(k) = a(k)υ(n−1)(k)B0(k) + υ(n−2)(k).
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From (r3,1), we obtain a(k)υ(n−1)(k)B0(k) ≤ −ymυ(n−2)(k). Then, from the definition
of P(k), we arrive at

P(k) ≤ (1− ym)υ
(n−2)(k). (21)

Using Lemma 3, we obtain that (r1,1)− (r1,5) hold. From (r1,2) and (r1,3), we arrive at

P′(k) =
(

a(k)υ(n−1)(k)
)′

B0(k) ≤ −
µ0

(n− 2)!
ζn−2(k)B0(k)Q(k)υ(n−2)(ζ(k)),

which, with (21), gives

P′(k) +
µ0ζn−2(k)B0(k)Q(k)

(n− 2)!(1− ym)
P(ζ(k)) ≤ 0. (22)

It follows from (r1,4) that P(k) > 0 for k ≥ k1. Hence, P is a positive solution of the
differential inequality (22). However, from Theorem 2.1.1 in [22], condition (20) guarantees
that (22) is oscillatory. This contradiction completes the proof.

Example 2. Consider the NDE (17). If (18) and

1
3

ζ2
0q0(1− p0) ln

1
ζ0

>
2(1− ym)

e
, (23)

hold, then, from Theorem 2, the class = is empty.
For the special case (19), condition (23) reduces to

ym > 1− 3e
2

ζ2
0 ln

1
ζ0

:= ζ1.

Remark 1. Consider the NDE (19). We note that, with fewer iterations, condition ym > ζ1 checks
that class = is empty, compared to condition ym > 1/2. For example, if ζ0 = 0.625, then we have
that yi < 1/2 for i = 0, 1, 2, 3 and y4 > 1/2; however, y1 > ζ1 (see Figure 3).

Figure 3. Comparison of the two criteria ym > σ1 and ym > 1/2.

Remark 2. In the non-canonical case, Li and Rogovchenko [23] used the principle of comparison to
obtain criteria for oscillation of all solutions of(

a ·
(
(x + p · (x ◦ τ))′

)α)′
+ q · (xα ◦ ζ) = 0.

Applying the results in [23] to Equation (1), we obtain that = is empty if p(t) ≤ p0,

τ′ ≥ τ∗ > 0 and τ ◦ σ = σ ◦ τ, (24)
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and there exists a $ ∈ C([t0, ∞)) with

ζ(t) ≤ $(t), τ(t) ≤ t < $(t),

such that
τ∗

(n− 2)!(τ∗ + p0)

∫ τ−1($(t))

t
Q(s)ζ(n−2)(s)B0($(s))ds >

1
e

.

Note that in this paper, we have obtained a new criterion without requiring the existence of the
unknown functions $ and without requiring the condition in (24).

3. Conclusions

In the non-canonical case, new monotonic properties of the positive solutions of a
class of even-order neutral differential equations were obtained. Using these properties,
we have presented some criteria to guarantee that = = ∅. The new criteria are iterative in
nature, which allows us to apply them more than once. The examples and figures show
the importance of the new properties. It is interesting to extend the technique used in this
work to advanced differential equations.
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5. Győri, I.; Ladas, G. Oscillation Theory of Delay Differential Equations; Oxford Mathematical Monographs; The Clarendon Press,

Oxford University Press: New York, NY, USA, 1991.
6. Fowler, R.H. Further studies of Emden’s and similar differential equations. Q. J. Math. 1931, 2, 259–288. [CrossRef]
7. Wong, J.S.W. On the generalized Emden–Fowler equation. SIAM Rev. 1975, 17, 339–360. [CrossRef]
8. Berkovich, L.M. The generalized Emden–Fowler equation. Sym. Nonlinear Math. Phys. 1997, 1, 155–163.
9. Abbaszadeh, M.; Bayat, M.; Dehghan, M. The local meshless collocation method for numerical simulation of shallow water waves

based on generalized equal width (GEW) equation. Wave Motion 2021, 107, 102805. [CrossRef]
10. Lin, J.; Liu, C.S. Recovering temperature-dependent heat conductivity in 2D and 3D domains with homogenization functions as

the bases. Eng. Comput. 2021, 1–15. [CrossRef]
11. Zhang, C.; Li, T.; Sun, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math.

Lett. 2011, 24, 1618–1621. [CrossRef]

http://doi.org/10.1093/qmath/os-2.1.259
http://dx.doi.org/10.1137/1017036
http://dx.doi.org/10.1016/j.wavemoti.2021.102805
http://dx.doi.org/10.1007/s00366-021-01384-w
http://dx.doi.org/10.1016/j.aml.2011.04.015


Mathematics 2022, 10, 1470 13 of 13

12. Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential
equations. Appl. Math. Lett. 2013, 26, 179–183. [CrossRef]

13. Baculíková, B.; Dzurina, J.; Graef, J.R. On The Oscillation of higher-order delay differential equations. J. Math. Sci. 2012,
187, 387–400. [CrossRef]

14. Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. Appl. Math. Comput.
2020, 377, 125192. [CrossRef]

15. Baculíková, B. Oscillatory behavior of the second order noncanonical differential equations. Electron. J. Qual. Theory Differ. Equ.
2019, 89, 1–11. [CrossRef]

16. Baculíková, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math.
Lett. 2019, 91, 68–75. [CrossRef]

17. Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with
an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [CrossRef]

18. Bohner, M.; Grace, S.R.; Jadlovská, I. Sharp oscillation criteria for second-order neutral delay differential equations. Math. Meth.
Appl. Sci. 2020, 43, 10041–10053. [CrossRef]

19. Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden-Fowler neutral
differential equation. J. Inequal. Appl. 2020, 2020, 69. [CrossRef]

20. Anis, M.; Moaaz, O. New oscillation theorems for a class of even-order neutral delay differential equations. Adv. Differ. Equ. 2021,
258, 1–11.

21. Moaaz, O.; Awrejcewicz, J.; Bazighifan, O. A New Approach in the Study of Oscillation Criteria of Even-Order Neutral Differential
Equations. Mathematics 2020, 8, 197. [CrossRef]

22. Ladde, G.; Lakshmikantham, S.V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker:
New York, NY, USA, 1987.

23. Li, T.; Rogovchenko, Y.V. Asymptotic behavior of higher-order quasilinear neutral differential equations. In Abstract and Applied
Analysis; Hindawi: London, UK, 2014; Volume 395368, pp. 1–11.

http://dx.doi.org/10.1016/j.aml.2012.08.004
http://dx.doi.org/10.1007/s10958-012-1071-1
http://dx.doi.org/10.1016/j.amc.2020.125192
http://dx.doi.org/10.14232/ejqtde.2019.1.89
http://dx.doi.org/10.1016/j.aml.2018.11.021
http://dx.doi.org/10.1186/s13662-020-02626-9
http://dx.doi.org/10.1002/mma.6677
http://dx.doi.org/10.1186/s13660-020-02332-w
http://dx.doi.org/10.3390/math8020197

	Introduction
	Main Results
	Conclusions
	References

