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Abstract: The mutual feedback mechanism between system structure and system function is the ’hot
spot’ of a complex network. In this paper, we propose an opinions–edges co-evolution model on a
weighted signed network. By incorporating different social factors, five evolutionary scenarios were
simulated to investigate the feedback effects. The scenarios included the variations of edges and
signed weights and the variations of the proportions of positive and negative opinions. The level of
balance achieved depends on the connection weight and the distribution of negative edges/opinions
on the signed graph. This paper sheds light on the analysis of constraints and opportunities of social
and cognitive processes, helping us understand the real-world opinions polarization process in depth.
For example, the results serve as a confirmation of the imperfect balance theory, i.e., even if the system
evolves to a stable state, the signed network still cannot achieve perfect structural balance.

Keywords: structural balance; feedback mechanism; opinions polarization

MSC: 91Cxx; 91Dxx; 91Exx

1. Introduction

Nodes in social networks represent individuals or organizations, and edges among
nodes represent the interaction [1–6]. The signed network is a topology with positive and
negative signs on the edges. The signed edge has abundant connotations in many real
complex systems. For example, a negative edge usually means disagreement, hostility,
opposition, and distrust; correspondingly, a positive edge represents agreement, friendship,
support, and trust [7,8]. The investigations on the signed network can effectively improve
our knowledge on signed complex systems, such as international relation [9], promoting
and inhibiting neurons [1], trust prediction on social networks [10], consensus and polar-
ization of online community [11], information diffusion [12], opinion dynamics [13,14].

The most basic theory in the field of the signed network is a structural balance the-
ory [8], which was first put forward by Heider in 1946. This theory originated from the
balanced model of the node’s attitude towards things [15]. Cartright and Harry [16] ex-
tended the theory by combining the graph theory. Later, scholars made great extensions, for
example, Kunegis et al. [17] suggested that the network structural balance is measured by
counting the proportion of balanced triads in the whole signed network, Fachetti et al. [18]
proposed an energy function definition to calculate the structural balance. Real-world
signed networks rarely attain a perfectly balanced state. To quantify exactly how balanced
they are, Aref et al. [19] formalized the concept of a measure of partial balance. Kirkley
et al. [20] proposed two measures of structural balance based on hypothesized notions of
“weak” and “strong” balance.
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Indeed, since the seminal work of Heider, many fundamental concepts and significant
theories have been proposed for the development of the social balance theory. The extension
of the classic structure balance theory can be divided into four categories. They are the
balance of nodes, the balance of triangles, the balance of complete networks, and the balance
of arbitrary networks. See [21] for a comprehensive review of the variations, extensions,
and calculating methods related to the classic social balance theory.

Although the structural balance theory in signed networks describes a stable signed
system state, the system from imbalance to balance is a dynamic process [22,23]. For
example, the formation of friend or enemy groups, the constantly changing international
relation. In order to investigate the dynamics of structural balance, Wu et al. [24] set up a
co-evolution model in the acyclic network and cycle network. Marvel et al. [25] proposed a
continuous-time model of structural balance. He et al. [26] developed a new simulation
model to study the impact of structural balance on the evolution of cooperation in signed
networks. However, currently, the research of dynamic networks is mostly limited to
non-signed nodes or signed networks without weights. The co-evolution models of nodes
and edges based on weighted signed networks have not been deeply investigated because
of their complexity.

2. Related Works

Social influence network and opinion change models, such as the French-DeGroot model [27],
Friedkin–Johnsen model [28], formally entail the interpersonal influence on the formation of
interpersonal agreements and polarization. Social influence and its induced homogeneous
effect, however, do not fully interpret the global network structure, for example, the
mounting two-polarization phenomenon in US political ecology that insulates democrats
and republicans from opposing opinions about current events [29]. Social network influence
theory entails the interpersonal influence on the formation of interpersonal agreements and
polarization. From a complex network perspective, this influence process is the feedback
effect of the network structure on network functions.

In the real world, most of the signed graphs are temporal, the nodes and edges vary
over time, which makes the changing of the network structure, including the clustering and
the structural balance of the network. Many researchers are interested in the dynamic pro-
cesses over signed networks, i.e., the co-evolution between the signed edges and the nodes,
such as the agreement and disagreement evolving over random dynamic networks [30–33].
However, most of these models lack the social mechanisms of opinion formation, evolution,
and dissemination.

Real-world cases call for these two threads of research, opinion dynamics and struc-
tural balance dynamics, to be combined. Holme and Newman [34] presented a simple
model of this combination without any theoretical analysis. Wang et al. [35], in the latest
relevant research, proposed co-evolution models for both dynamics of opinions (people’s
views on a particular topic) and dynamics of social appraisals (the approval or disap-
proval towards each other). In their model, the system evolves as opinions and edge
weights are updated over time by two rules: opinion dynamics, and appraisal dynamics.
Both opinion and appraisal dynamics are governed by the evolution of the time-varying
matrix of a dynamic system. The social–psychological mechanisms of the co-evolution
model in [35] involve the structure balance theory and social influence network theory, i.e.,
the Friedkin–Johnsen model. Similar to [35], Kang and Li [36] proposed a co-evolution
model of discrete-time opinion evolution vectors and appraisal signed networks. Social–
psychological mechanisms of the co-evolution model in [36] involve structure balance and
the social distancing theory. This paper, inspired by these works, provides a ruled-based
node–edge co-evolution model. However, different from a dynamic system time-varying
matrix method [35,36], our model is rule-based and similar to the agent-based modeling
approach. In our model, the global structure balance index is used as judgment conditions
for a simulation algorithm termination. Our model’s social–psychological mechanisms
involve the structure balance theory and bounded confidence model of opinion dynam-
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ics [37], since the bounded confidence model is more suitable for paired interactions in
large groups for agent-based modeling.

Some empirical investigations show that the unbalanced triangles will evolve into
balanced ones to make the network more stable [38], and that the global level of balance of
very large online singed networks is indeed extremely balanced [18,20]. Related investiga-
tions show that the structural balance of signed networks in the real world is an increasing
function of evolution time. The evidence of over-represented balanced triads is well above
random expectations in the vast majority of real networks, such as the statistic observation
in references [18,20,38,39].

These empirical conclusions confirm the validity of the classic Heider structure balance
theory. However, we still find that the complete perfect balanced structure is rarely ob-
served in the real-world signed networks [20]; there is almost no perfect intra-/inter-group
structure balance.

Relevant reference analyses urge researchers to promote this kind of research in-depth.
This paper is devoted toward investigating the dynamic structural balance of groups and
the emerging macro polarization patterns of signed networks. However, the data sets on
related opinions and signed edges are not easy to obtain, this is why we shifted to the
model simulation approach. In order to explain real-world ubiquitous opinion polarization
and limited structure balance, different influence parameter values are used to explore the
influences of different social factors on structural balance and polarization.

3. Our Contribution

In this paper, based on structural balance and a co-evolution model, considering the
dynamic mechanics of both opinions and relationships, we employed two evolution rules:
opinion renewal and edge adjustment. In addition, we defined an influence matrix and
two new neutral dyadic/triadic motifs. A new co-evolutionary mutual feedback algorithm
is provided to simulate our proposed model under five evolutionary scenarios.

Our findings can explain the lack of the perfect Heider balance in many real-world
systems. This work verifies that signed social networks are indeed limited-balanced, but
the level of balance achieved depends on the connectivity of the graph, the percentage of
positive edges, and the percentage of positive opinions, most of all, on the distributions of
these negative edges/opinions on the signed graph.

Our computational analysis of balance in signed networks serves as a confirmation of
the balance theory. Meanwhile, our simulation results suggest that the signed network in
the real world is a dynamic equilibrium process, which cannot reach a perfect equilibrium
state. The comprehensive numerical results suggest that values of balance at the micro-and
macro-levels may match up to some extent, especially as the macro dynamic pattern of the
signed network is closely related to its micro-structural balance.

Compared with the current investigations on opinion dynamics on static networks,
the proposed co-evolution model in this paper characterizes the polarization of opinions in
reality and predicts the existence of imperfect balance in the social context. Our model may
also help predict the potential division of social groups and public opinion dynamics.

This paper sheds light on the analysis of constraints and opportunities of social and
cognitive processes, helping us to understand the real-world opinion polarization process,
in depth.

4. Structural Balance in Signed Network

The social network influence theory entails interpersonal influence on the formation
of interpersonal agreements and polarization. From a complex network perspective, this
influence process is the feedback effect of the network structure on network functions. In
this section, based on the dynamic social influence network theory, we code the dynamic
weight social influence matrix, and propose two new neutral dyadic, triadic motifs, as
preparation for our co-evolution model.
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4.1. Binary Structural Balance

In this investigation, we introduce an edge named neutral edge (“0”), which is a
neutral status between positive and negative edges. It refers to a kind of edge without a
clear position, which means that the connection between nodes is not clear or neutral. After
introducing the neutral edge, we propose a binary motif in a signed network, firstly. Three
types of the binary motif are shown in Figure 1. Specifically, two nodes share the same
attitude; at the same time, the signed edge between the two nodes is positive; then, we
say the binary motif is balanced. If two nodes share an opposite attitude, and the signed
edge between i and j is positive, then the binary structure is unbalanced. Based on the
above analysis, a binary group includes two parameters, one is the nodes’ opinion and the
other is the edge sign between the two nodes. A neutral edge (“0”) means that there is
no clear connection between two nodes. However, in the dynamic evolution process, the
neutral edge has the opportunity to evolve into negative or positive, due to the constraints
of structural balance.

(a) (b) (c)

Figure 1. (a) Balanced binary groups, (b) neutral binary groups, (c) unbalanced binary groups.

4.2. Triad Structural Balance

Holland and Leinhardt [40] proposed the three basic binary motifs, reciprocity, asym-
metric, and non-edge or null edge. It is worth noting that the null edge plays the same role
as our proposed neutral edge (“0”). Since structural balance is defined on a triadic motif,
which is constructed based on three basic binary motifs; binary balance is equal to triadic
balance.

Figure 2a,b denote a balanced triadic structure, Figure 2c,d denote an unbalanced
triadic structure [2]. If the product of signed edges in each cycle is positive, the signed
graph is balanced [16]. If each triad in a signed complete graph is balanced, then the signed
graph is balanced. Here, since we consider the chance of a tried with edge = 0, a “neutral
triadic motif” is introduced, for the case, the product of three sides in a triad is 0.

Figure 2. Triad structure in structural balance theory.

4.3. Global Structural Balance Index

Here, we use the global structural balance definition as formulated in Equation (1) [18],
where Jij = +1 denotes a positive edge between i and j, Jij = −1, there is a negative edge
between i and j, and Jij = 0 implies a neutral edge between i and j. In the real world, a
neutral edge might be considered a i and j have no influence on each other, or the two nodes
remain neutral on an issue. si is a continuous real value, representing node i’s opinion, and
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the range of si is (−1,1); 1 > si > 0 means node i holds a supportive attitude, −1 < si < 0
means node i holds a negative attitude, and si = 0 means node i hold an neutral attitude. It
is worth noting that a triad-based structural balance is consistent with the global structural
balance definition. A smaller value of hs means a more balanced social structure.

hs = ∑
(i,j)

(1− Jijsisj)/2 (1)

4.4. Social Influence Matrix

The social influence network is a formal theory that forms attitudes and perspectives.
It describes the influence processes of individuals on group attitudes in interpersonal
networks. It allows the analysis of how the network structures of groups affect the formation
of individual attitudes and group structures [41]. Based on this theory, we propose a social
influence matrix, which provides a sociological perspective for the process of signed
edge transformation. The type of edge will evolve according to the weight of the social
influence matrix.

Friedkin and Johnsen’s [41] social influence network theory is regarded as the corner-
stone reference for social influence matrix consensus or polarization, as the important and
regular group opinions dynamic pattern is generally observed in a group discussion and
barging process. Friedkin and Johnsen’s social influence network theory emphasizes that
the interpersonal influence social structure, i.e., the social influence matrix is the underlying
precondition for group consensus or opinion convergence [42]. In that model, the initial
social influence structure of a group of actors is assumed to be fixed during the entire
process of opinion formation. However, with the evolution of timestamps, considering
both stubborn and susceptible effects, the interpersonal influence structure can be regarded
as a dynamic recursive process. For this reason, the interpersonal influence structure in
their model is also dynamic. Based on the dynamic social influence network theory, here
we code the dynamic weight social influence matrix in Equation (2). In Equation (2), we set
different influence weights to map to signed edges −1, +1, 0. To meet the needs of model
simulation calculation, we set different weight ranges corresponding to different social
influence intensities.

Within the framework of the social influence network theory, we set up three types of
social influence, namely positive, negative, and neutral influence. Positive influence means
that two individuals/nodes have homogeneous influence and a positive edge. Negative
influence means that two individuals/nodes have opposite influence and a negative edge.
Neutral influence means that two individuals/nodes do not influence each other. In this
study, based on the adjacent matrix of the signed network, a social weighted influence
matrix is randomly assigned to edges. With the assumption of strength difference—of
mutual influence among individuals—we set three kinds of weights, wij, as shown in
Figure 3 and Equation (2).

Jij(t) =


−1, if 0 < wij ≤ 1
0, if 1 < wij < 3
+1, if 3 ≤ wij

(2)

Figure 3. Mapping of weights and edges.
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5. Co-Evolution Model of Opinions and Edges

The coupling effect of opinion propagation and network topology dynamics on net-
works leads to complex system behaviors. In order to study the propagation behavior and
influencing factors in dynamic complex networks and the dynamic evolution process of the
systems, we set up a co-evolution model of opinions and edges. In a social group, people
are supposed to be motivated to keep a ’balanced edge’ with others, when two people
have the same attitude; if they have negative edges, they tend to change their edges or
attitudes in order to maintain a balanced structure. The following is the evolution process
introduced in detail.

5.1. Evolutionary Rule of Opinions

The Deffuant–Weisbuch (DW) model [37] is the most widely used continuous opinion
dynamic model. The rule of this model is that two nodes change their opinions if the degree
of disagreement is less than the threshold ε, i.e., |si(t) − sj(t)| ≤ ε, (i 6= j), the opinion
is carried out as Equations (3) and (4). In this paper, we set the convergence parameter
µ ∈ [0, 0.5], which indicates the strength of mutual influence among nodes.

si(t + 1) = si(t) + µ(sj(t)− si(t)) (3)

sj(t + 1) = sj(t) + µ(si(t)− sj(t)) (4)

The evolutionary rule of opinion follows Equation (5). To approach structural balance,
the evolution of opinions will be based on the type of edge. By adjusting the proportion of
initial positive and negative opinions, we can observe the evolution of group opinion. If i
and j satisfy

Jij
si∗sj
≥ 0, it means these two nodes follow the balanced binary conditions, and

there is no need to change anyone’s attitude. Considering the influence of the neighbor

nodes, the opinion evolution will follow the DW model. On the contrary, if
Jij

si∗sj
< 0, in

the opinion evolution, the nodes will change their attitudes, and the attitudes in the next
round will be opposite.

si(t + 1) =


DW, if

Jij
si∗sj
≥ 0

−si(t), if
Jij

si∗sj
< 0

(5)

5.2. Evolutionary Rule of Edges

According to the different strengths of influence, we introduce three evolutionary
rules of signed edges, respectively.

The rule for the evolution of the negative edge is illustrated in Figure 1, Equation (6),
and Figure 4. When the edge is negative, it will change according to the opinion. If the
attitudes of the two nodes are opposite, to achieve a balanced state, the negative edge
will not change. If two nodes have the same attitude, the negative edge should evolve
to a positive edge. According to the division of weight range, wi,j plus w1 (the strength
of edge = −1 change to edge = +1), and w1 ∈ (0, 1), the negative edge evolves into the
positive edge.

wij(t + 1) =


wij(t), if Jij = −1 and (si ∗ sj) < 0

wij(t) + (w1 + 2), if Jij = −1 and (si ∗ sj) ≥ 0

(6)

The rule for the evolutionary of a positive edge is shown in Equation (7) and Figure 4.
When the attitude of two nodes is the same, and the edge is positive, there is a balanced
structure between them. If the attitudes of two nodes are opposite and the edge is positive,
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in order to make the approach a balanced structure, wij minus w3 (the strength of edge = +1
change to edge = −1), and w3 ∈ (0, 1), the positive edge evolves into negative.

wij(t + 1) =


wij(t), if Jij = +1 and (si ∗ sj) ≥ 0

wij(t)− (w3 + 2), if Jij = +1 and (si ∗ sj) < 0

(7)

Figure 4. Evolutionary rules of edge = +1 and edge = −1.

The rule for the evolution of a neutral edge is formulated in Equation (8) and illustrated
in Figure 5. No matter whether the attitudes of the two nodes are opposite or consistent,
the neutral edge may evolve into a positive edge or a negative edge. When two nodes have
the same attitude, to make the binary motif approach the balanced state, the neutral edge
needs to evolve into a positive edge, which affects wij add w2 (the strength of edge = 0
change to edge = +1). If two node opinions are opposite, in order to make the edge evolve
into a negative edge, concerning the social influence weight wij, subtract w2 (the strength
of edge = 0 change to edge = −1). w2 always falls into the range of (0, 1).

wij(t + 1) =


wij(t) + w2, if Jij = 0 and (si ∗ sj) ≥ 0

wij(t)− w2, if Jij = 0 and (si ∗ sj) < 0

(8)

Figure 5. Evolutionary rules of edge = 0.

5.3. Model Algorithm

In this section, we propose the algorithm realization of the provided model, in detail.
Firstly, to consider the influence of the hub node on the network, we used the BA scale-free
network [4]. We initialized an undirected BA network with 100 nodes, 1539 edges, and a
network density equal to 0.3109. Moreover, the observation is based on the average results
of 1000 realizations. We find that |hs(t + 1)− hs(t)| ≤ 0.01 after 30 rounds. The parameter
assignment is shown in Table 1. The parameter value = 0.5 is used to control whether the
opinion evolves or the edge evolves. The algorithm is defined as Algorithm 1. In each
round, a random number will be generated; when the random number is greater than value,
the opinion evolution will be carried out; when the random number is less than value, the
edge evolution will be carried out.
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Algorithm 1: Model implementation process

Input: N, Rs + (0), Rs − (0), Rr + (0), Rr − (0), Rr0(0), ε, µ, value.
Output: round, hs(round), Rs + (round), Rs − (round), Rr + (round),

Rr − (round), Rr0(round), tri + (round), tri− (round), tri0(round).
1 Scenario← Selection scenario1, scenario2, scenario3, scenario4, scenario5;
2 Generate a social influence matrix A and a threshold value according to the

scenario;
3 round← 1;
4 Compute hs(0), tri+(0), tri− (0), tri0(0);
5 round← 2;
6 repeat
7 tcounter← 1 ;
8 hs ← 0;
9 According to the social influence matrix A, the signed matrix J is solved;

10 for each node i from the node in turn do
11 for each node j from the node in turn do
12 num=random();
13 if num then
14 if Jij(t) == −1 and (si ∗ sj) ≥ 0 then
15 A[i][j]← A[i][j] + (w1 + 2)

16 else if Jij(t) == 0 and (si ∗ sj) < 0 then
17 A[i][j]← A[i][j]− w2

18 else if Jij(t) == 0 and (si ∗ sj) ≥ 0 then
19 A[i][j]← A[i][j] + w2

20 else if Jij(t) == +1 and (si ∗ sj) < 0 then
21 A[i][j]← A[i][j]− (w3 + 2)

22 else if num > value then
23 if |si(t)− sj(t)| ≤ ε and

Jij
(si∗sj)

≥ 0 then

24 si(t + 1)← si(t) + µ(sj(t)− si(t));

25 else if |si(t)− sj(t)| ≤ ε and
Jij

(si∗sj)
< 0 then

26 si(t + 1)← −si(t)

27 hs(round)← hs(round) + (1− Jij ∗ si ∗ sj)/2;
28 tcounter← tcounter+1;
29 round← round + 1;
30 until tcounter=30;

Table 1. Initialization Parameters.

Symbols (Parameters) Description

N Network size
round The number of iterations

ε Difference of opinion
µ Convergence of opinion

value Judgment parameter
Rs− The number of negative opinions
Rs+ The number of positive opinions
Rr+ The number of positive edges
Rr− The number of negative edges
Rr0 The number of neutral edges
tri+ The number of balanced triads
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Table 1. Cont.

Symbols (Parameters) Description

tri− The number of unbalanced triads
tri0 The number of neutral triads

6. Simulation Results

In this section, to explore the influence of different social factors on structural balance,
we will integrate different social factors into the proposed co-evolution model, and simulate
and discuss the simulation results, in detail. The parameters set in different scenarios are
given in Table 2.

Table 2. Simulation scenarios.

Scenario Changed Parameters Changed Parameters

1 ε The influence of parameter ε.
2 Rs− The influence of negative opinions.
3 value The relation between opinion evolution and edge evolution.
4 w1, w2, w3 The influence of various weights.
5 Rr+, Rr−, Rr0 The influence of various edges.

6.1. Scenario 1, the Influence of Parameter ε

In this experiment, we discuss the influence of different ε on the structural balance
weighted signed network. The ratio of edge = +1 is 0.2, the ratio of edge = 0 is 0.5, and the
ratio of edge = −1 is 0.3. Meanwhile, the proportion of positive opinions is 0.7, the rest is
negative. Moreover, convergence parameter µ = 0.3. The same values are set for w1, w2
and w3, i.e., w1 = w2 = w3 = 0.3.

As shown in Figure 6a–c, when ε is large, the weighted signed network has the fast
velocity to approach structural balance, the number of balanced triads and positive edges
in the same round is the largest. The reason is that the larger ε promotes nodes interacting
with others, thus promoting consensus. As shown in Figure 6d, all nodes hold the positive
opinion, as long as ε > 0.1. According to the binary structural balance, because all opinions
are positive, all edges are positive in the end, and the proportion of balanced triads is also
higher. Based on the above analysis, we can conclude that the larger the ε is, the faster the
network approaches the structural balance.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Effect of different ε: (a) hs changes with time, (b) tri+ changes with time, (c) Rr+ changes
with time, (d) Rs+ changes with time.

In conclusion, to accelerate the network to approach the structural balance, we can
improve the tolerance of opinion differences by strengthening trust among nodes. In
psychology, trust is a kind of stable belief, which maintains the common value and the
stability of society.

6.2. Scenario 2, the Influence of Negative Opinions

This experiment discusses the influence of the initial number of negative opinions
on the structural balance. Other parameter settings are the same as that in Scenario 2, the
initial ratio of edge = +1 is 0.2, the ratio of edge = 0 is 0.5, and the ratio of edge = −1 is 0.3.
Convergence parameter µ = 0.3, and ε = 0.3. The conversion strength between various
edges are the same; that is, w1 = w2 = w3 = 0.3. The parameter value equals 0.7. To make
our expression more compact, in the following scenarios, we focus on the change of hs,
since it is a key indicator for the evolution process of the signed networks. As shown in
scenario 1, other indicators can be inferred from hs.

The simulation results are shown in Figure 7. When all opinions are positive or
negative, which is in the case of Rs− = 0 and Rs− = 1, the global structural balance index
changes faster, and the network approaches structural balance faster. However, when
the proportion of negative opinions is about 0.5, the global structural balance index does
not change.

In scenario 1, because the positive opinions are in the majority at the beginning, the
network can approach the balanced state under different ε. However, in this scenario, we
set the same ε, when the positive or negative opinions occupy the majority, the network
can approach the balanced state faster. Because the more nodes with the same attitude,
according to the binary structural balance, the negative edge and neutral edge evolve to
the positive edge, so the number of positive edges and balanced triads are the most. It can
be concluded from scenario 2 that when there are many nodes with the same attitude in a
network, the network can quickly approach the structural balance.
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Figure 7. Effect of negative opinions on network.

6.3. Scenario 3, the Relation between Opinion Evolution and Edge Evolution

In this experiment, we discuss the influence of value on the structural balance. The
initial conditions are as follows: negative edges account for 0.3, neutral edges account for
0.5, positive edges account for 0.2, and positive opinions account for 0.7. The conversion
strength between various edges are the same, i.e., w1 = w2 = w3 = 0.3. Moreover, we set
µ = 0.3, ε = 0.4. Four experimental results are discussed as follows.

The first result of this experiment is the global structural balance index. As shown
in Figure 8, the larger the value is, the faster the network approaches structural balance.
When the value is terribly small, the network cannot approach a balanced state. It can be
observed that the network approaches structural balance except for the case of value = 0.2.

Figure 8. Effect of the parameter value on the global structural balance: hs changes with time.

In Figure 9, we plot the impact of the control parameter value on the final network
balanced triad and triad 0 (neutral triads). We observe that when value is larger, the number
of balanced triads increase rapidly in Figure 9a. Moreover, neutral triads decrease rapidly
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in Figure 9b, When value = 0.2, a large number of neutral triads still exist after 30 rounds of
evolution, it shows that the network has not reached structural balance. It can be concluded
that in the process of approaching a balanced structure, it is more difficult to change the
opinion than to change the edge.

(a) (b)

Figure 9. Effect of the parameter value on the number of triads: (a) tri+ changes with time, (b) tri0
changes with time.

6.4. Scenario 4, the Influence of Various Strengths of Conversion

In this simulation, we explored the influence of the various strengths of conversion
between various weighted edges. The strength of conversion represents the conversion
level between different edges. The greater the strength is, the greater the connection
strength between the nodes, and the more difficult the transformation of an edge is. In the
initial network, we set the number of positive edges, negative edges, and neutral edges
as equal, the convergence parameter µ = 0.3, the degree of disagreement threshold was
ε = 0.8, the proportion of negative opinions was 0.3, the edge and node evolution control
threshold parameter value = 0.7.

The first experiment involved observing the strength of the negative edge change to
the positive edge. As seen in Figure 10, the experiment considered two cases, w1 = 0.5
and w1 = 0.7, respectively. When w1 = 0.7, hs reached a stable state quickly. This result
shows that when w1 is larger, i.e., the greater the strength of the negative edge change to
the positive edge in the network, the network can approach a balanced structure more
quickly. The result shows that it is difficult to change the negative edge to the positive.

The second experiment was to observe the transformation of neutral edges into nega-
tive and positive ones. As shown in Figure 11, when w2 = 0.5 and w2 = 0.7, the network
approached a balanced state after 10 rounds. This experiment’s results show that the
strength of the neutral edge has a small influence on the structural balance. Because the
neutral relationship implies that there is no clear relationship between two nodes, it is
easier to convert the neutral edge to a positive edge or negative edge.
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Figure 10. Effect of w1: hs changes with time.

Figure 11. Effect of w2: hs changes with time.

The third experiment was to observe the strength of the positive edge change to the
negative edge. As shown in Figure 12, after 10 rounds, hs approached a stable state in
the case of w3 = 0.7; however, in the case of w3 = 0.5, hs was still evolving toward the
structural balance. The result shows that it is difficult to convert the positive edge into the
negative edge.

In conclusion, the various strengths of conversion have an effect on the final network
structural balance. Increasing the strength of the negative edge and positive edge can
promote the network to approach structural balance. We can conclude that it is easy to
transform a neutral edge into a positive or negative edge; the contrary is difficult.



Mathematics 2022, 10, 1441 14 of 21

Figure 12. Effect of w3: hs changes with time.

6.5. Scenario 5, the Influence of Proportion of Positive and Negative Edges

In this experiment, we investigated the effects of different ratios of three types of edges
on structural balance. We set the proportion of negative opinions as 0.3, µ = 0.7, ε = 0.8
and value = 0.7. The strength of conversion between various edges were the same; that is,
w1 = w2 = w3 = 0.3.

The influence of edge = +1 in the network is shown in Figure 13. It can be seen that
the larger the ratio of Rr+, the faster hs drops. By comparing with Figure 2, we can see
that the proportion of positive edges in the balanced triads is 2

3 , and the proportion of the
negative edges is 1

3 . Therefore, we conclude that the larger the number of initial Rr+ is, the
faster the network approaches structural balance.

Figure 13. Effects of different initial ratios of positive edges: hs changes with time.

Figure 14a,b show that positive edges are more likely to appear than negative and
neutral edges. Therefore, the probability of a negative edge evolving into a positive
edge is greater than that of a positive edge evolving into a negative edge within the
framework of structural balance. The probability of structural transformation is illustrated
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in Figure 15, and the probability of structural transformation in Figure 15a is greater than
that of Figure 15b.

(a) (b)

Figure 14. Changes in the number of various edges: (a) edges change in Rr+ = 0.5, Rr− = 0.3,
Rr0 = 0.2; (b) edges change in Rr+ = 0.7, Rr− = 0.2, Rr0 = 0.1.

(a) (b)

Figure 15. Changes of positive edge: (a) the edge between nodes B and C evolves from −1 to +1;
(b) the edge between nodes B and C evolves from +1 to −1.

The influence of edge = −1 is shown in Figure 16. It can be observed that in the case
of a low proportion of Rr− = 0.5, the network approaches structural balance faster. By
analyzing Figure 2, we can see that the proportion of negative edges in the unbalanced
triads is 2

3 , and the proportion of positive edges is 1
3 . Thus, the high proportion of negative

edges will delay the network toward structural balance.
As shown in Figure 17a,b, we can see that the number of negative edges gradually

decreased. The number of neutral edges remained unchanged in four rounds and then
decreased, while the number of positive edges kept increasing until all edges became
positive. Structural transformation is illustrated in Figure 18.

The influence of neutral edges on the final balanced state is shown in Figure 19. In
Figure 19, it can be observed that after 20 rounds of evolution, a high number of neutral
edges favor the network structural balance. The explanation is that the neutral edge may
evolve to a positive edge and negative edge, and contribute to the increment of balanced
triads.
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Figure 16. Effects of different initial ratios of negative edges: hs changes with time.

(a) (b)

Figure 17. Changes in the number of various edges: (a) edges change in Rr− = 0.5, Rr+ = 0.2,
Rr0 = 0.3; (b) edges change in Rr− = 0.7, Rr+ = 0.1, Rr0 = 0.2.

Figure 18. Negative edge changes: the edge between nodes B and C evolves from −1 to +1.



Mathematics 2022, 10, 1441 17 of 21

Figure 19. Effects of different initial ratios of the neutral edge: hs changes with time.

By observing Figure 20a, we can see that both the number of neutral edges and
negative edges decreased gradually before 10 rounds. This dynamic resulted in the gradual
increase of positive edges. By observing Figure 20b, we can see that the number of neutral
edges did not change in the first and second evolution rounds. However, from the third
round, the negative and neutral edges began to decrease. These experimental results show
that the probability of the neutral edge evolving into the positive edge was greater than
that of the negative edge. The probability of structural transformation in Figure 21a is
greater than that of Figure 21b. Since the network is toward a structural balance.

This scenario implies that we can increase the number of positive edges and neutral
edges to make these edges become the main body, and reduce the negative edge to promote
the harmonious development of the group. In a group, if there are more positive edges,
the network will tend to be structurally balanced faster, while negative edges have a
reverse effect.

(a) (b)

Figure 20. Changes in the number of various edges: (a) edges change in Rr0 = 0.5, Rr− = 0.2,
Rr+ = 0.3; (b) edges change in Rr0 = 0.7, Rr− = 0.1, Rr+ = 0.2.
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(a) (b)

Figure 21. Changes of neutral edge: (a) the edge between nodes B and C evolves from 0 to +1; (b) the
edge between nodes B and C evolves from 0 to −1.

7. Discussion

In our simulation, we also tested our proposed model on ER random graphs and
WS small-world network structures. Our simulation suggests that final signed network
evolution results are robust to different structures and sizes. The results only depend on the
connection weight of the networks, the percentage of positive edges, and the percentage of
positive opinions. We observed the same evolution trend on different signed networks.

In summary, five scenarios including variations of edges and signed weights and
variations of the proportion of positive and negative opinions, were investigated to observe
the final signed network stable state. Specifically, we performed extensive simulations to
examine how different initial conditions affected the network evolution, i.e., the balance
level of network structure and the opinion polarization pattern.

We observed that initial conditions, such as a high proportion of positive edges,
positive opinions, and greater signed weights, could promote the signed network towards
balance. Our simulation results suggest that the signed network in the real world is a
dynamic equilibrium process, serving as confirmation of the imperfect balance theory, i.e.,
even if the system evolves to a stable state, the signed network still cannot achieve a perfect
structural balance.

Importantly, the simulation results could explain the imperfect Heider balance of
many real-world signed systems. Meanwhile, our computing model explains that the level
of balance achieved depends on the connecting weight of the network, the percentage of
positive edges, and the percentage of positive opinions, most of all, on the distributions of
these positive edges/opinions and the weight on the signed network. The comprehensive
numerical results suggest that values of balance at the micro-and macro-levels may match
up to some extent; the macro dynamic pattern of the signed network is especially closely
related to its microstructural balance.

Similar to the social influence network model, the proposed co-evolution model can
be used to predict real-world signed network evolution on the final convergence state
(structure balance level v.s. polarization pattern). However, the social influence network
model (Friedkin, N.E. Johnsen, E.C., 1999) [28] and the co-evolution model of opinion
and social tie dynamics (Wang, H.; Luo, F.; Gao J., 2021) [35] are based on rigorous time-
varying matrix mathematical analyses. Our proposed model is a rule-based simulation, its
effectiveness for large-scale signed social networks needs to be verified by an empirical
data set. This is also the direction of our related work in the next step. In a follow-up to this
study, we plan to conduct experiments based on real data sets to evaluate the effectiveness
of the proposed social network evolution modeling. The basic idea is a rule-based model
simulation and comparative analysis of a rule-based model adjustment with real-world
empirical signed networks. Specifically, we will modify and estimate the key evolution
parameters through the empirical process of edge-evolution and node-evolution of a real
signed network G and then modify the rule-based model G∗. On the one hand, we can
verify the effectiveness of our proposed model through the empirical evolution process of
large-scale signed networks. On the other hand, we can refine our proposed model. Our
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ultimate expectation is that the refined model can achieve acceptable prediction accuracy
and could be extended to the prediction and regulation of a real signed social system.

In our model, it is assumed that each node is homogeneous, and there is no special
node, such as an opinion leader; in addition, final signed network evolution results only
depend on different initial conditions, and are robust to different structures and sizes.
Therefore, this model is also applicable to the case of having non-random distributions of
opinions and edges.

8. Conclusions

In this investigation, based on the social influence network theory, we introduced a
neutral binary motif and a triadic motif, and focused on the contributions of interpersonal
influenced to the formation of interpersonal agreements and polarization. Our proposed
edges–opinions co-evolution model entails a cognitive process when it deals with conflict-
ing influential opinions and the signs and strengths of a social structure. This article extends
the implications of the social structure balance theory and assesses the social influence
theory in groups of dyads—triads with neutral relations.

Extensive simulations were performed in five cases. The results are summarized as
follows: (1) the higher the tolerance for the difference of opinions, the faster the network
can approach a balanced state. (2) The more nodes with the same attitude, the faster the
network can reach structural balance. (3) When the edge evolution is faster than the opinion,
the network can approach the balanced state faster. (4) The ’larger’ the strengths of the
positive and negative edges, the faster the network can approach the balanced state, while
the strength of the neutral edge has a trivial effect. (5) The higher the proportion of positive
and neutral edges, the faster the network can approach balance.

In particular, we showed that the persistent fluctuation of opinions is consistent with
the minimal global energy function or a local triadic-signed structural balance emergence.
This work verifies that signed social networks are indeed of limited balanced and could be
used to explain the ubiquitous polarization phenomenon in online social networks. These
results can provide us with a better understanding of the inherent mechanisms and key
properties of signed networks.

Our model, however simple, should find further extensions and applications in social
structures, where conditions of consistence are meaningful. For example, for a real signed
network, in addition to structure and node attributes, the scale of the network will also
change, such as the increase of nodes and the increase or deletion of edges. There may be
other complex social mechanisms for the formation of real signed social networks, such
as social status, social power theories, and combing with sentiment and behavioral data
analysis [43–45]. The co-evolution feedback model we proposed can be further extended to
such a case.

Next, we hope to collect real signed social network data to verify the effectiveness
of several main conclusions obtained in this paper. We also hope to use the model and
relevant conclusions proposed in this paper to empirically study collective action problems,
such as information diffusion, cooperative evolution, and public opinion dissemination on
signed social networks.
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