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Abstract: As convexity plays an important role in many aspects of mathematical programming,
e.g., for obtaining sufficient optimality conditions and in duality theorems, and one of the most
important inequalities for convex functions is the Hermite-Hadamard inequality, the importance
of this paper lies in providing some new improvements for convex functions and new directions in
studying new variants of the Hermite-Hadamard inequality. The first part of the article includes
some known concepts regarding convex functions and related inequalities. In the second part of
the study, a derivation of the Hermite-Hadamard inequality for convex functions of higher order is
given, emphasizing the purpose and importance of some quadrature formulas. In the third section,
the applications of the main results are presented by obtaining Hermite-Hadamard-type estimates
for various classical quadrature formulas such as the Gauss-Legendre two-point quadrature formula
and the Gauss-Chebyshev two-point quadrature formulas of the first and second kind.

Keywords: Hermite-Hadamard inequalities; weighted two-point formula; higher-order convex
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1. Introduction

The well-known Jensen inequality [1] states that if f : X — R is a convex mapping
defined on the linear space X and x; € X, p; > 0,i=1,...,n, P =Y ; pi > 0, then

1& 1&
f ﬁzpixi < ﬁzpif(xi)-
i i

The Hermite-Hadamard inequality gives us an estimate of the (integral) mean value
of a continuous convex function as follows.
If £ : [a,b] — R is a convex function, then

b
() < o | F s 1+ 700 <1>

If f is concave, then above inequalities are reversed.

Over the last decades, these inequalities have been investigated in many papers and
monographs, since they are very useful in approximation theory, optimization theory,
information theory and numerical analysis (see [2] and the references cited therein).

Combining a special case of the integral Jensen inequality and a special case of the
integral Lah—Ribari¢ inequality, the following weighted Hermite-Hadamard inequality is
established (see [1], p. 145).
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Theorem 1. Let p : [a,b] — R be a non-negative function. If f is a convex function given on an
interval I, then we have

b
P(lb/ dx<z:;\f(a)+/b\:gf(b)
or '
’ b—A A—a
)= [P dx < P(6) =550 + 5 f )],
where

b
P(t) = /p(x) dx and A= P(lb)/p(x)x dx.

In [3,4], the authors proved some weighted versions of the general integral identities
using harmonic sequences of polynomials and w-harmonic sequences of functions. In order
to introduce one of these identities, we consider the subdivision ¢ = {a = xp < x1 <

. < xm = b} of the segment [a,b], m € N. If w : [a,b] — R is an arbitrary integrable
function, then for each segment [x;_1,x¢], k = 1,...,m, we define w-harmonic sequences
of functions {wk/ }]':1,._,;1 by

wy(t) = w(t), t€ [ 1xl ()
wii(t) = wija(t), tE€[x-1,x,j=23,...,n

and the function W, ;, by
win(t), t€[a,x)],

wo,(t), t€ (x1,x),

Wy w(t,0) = 3)

Wmn(t), t€ (xy_1,b].

b
An approximation of an integral [ w(t)g(t) dt via w-harmonic sequences of functions

a
is given in the general integral identity proved in the following theorem (see [3]).

Theorem 2. If g : [a,b] — R is such that g is piecewise continuous on [a, b], then the following
identity holds:

b . | |
futtzra = S0 [ 000
2 [wk] Xk wk+1,j(xk)]g(jfl)(xk) - wlj(a)g(jil)(ﬂ) (4)

1)y / W (t,0)g™ (1) dt
a

The following Hermite-Hadamard-type inequality is obtained in [5] using identity (4).

Theorem 3. Suppose w : [a,b] — R is an arbitrary integrable function, and w-harmonic sequences of
functions {wkj} j=1,...,n are defined by (2). Let the function Wy,q, defined by (3), be non-negative. Then,
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(a) ifg:[a,b] = Risan (n+ 2)-convex function, the following inequalities hold

(~1)" - P(b) -8 (1) ©)
b n
< [wvg(t) de = Y (<1 [wny () 1)
2 =1
m—1 . .
+) [wkj(xk) - wk+l,j(xk)]g(]7l)(xk) - w1j(a)8(]l)(ﬂ)]
k=1
< (1 PO) - | Foas @) + 3 os )],

= (n—j+1)

a

1 u 1)1
P(b) = (~1)" [n, [owy-rra-y Vo

) m—1 . .
: (wmj(b)bn]Jrl +) (wkj(xk) - wk+1,j(xk)>x1fi]+1 - wlj(“)a”]+l>] (6)
k=1

and

b .
1 1)1

n 1 2 (_
(1 +1)1P(b) /w(t) = s ]; n—j+2)

a

A=(-1)"

) m—1 . .
: (wmj(b)bn_]+2 +) (wkj(xk) - wk+1,j(xk))xZ7]+2 - wlj(”)an_]+2> 1 , ()
=1

(b) if gisan (n + 2)-concave function, then (5) holds with the sign of inequalities reversed.

If w-harmonic sequences of functions {wkj} j=1,..,n are expanded by wy ,, 11, such that
Wy 1 (1) = wy () for t € [xx_1, xi], the function W1, becomes

wl,n+1(t)r te [ﬂ, xl]r
Wy ni1(t), tE€ (x1,x0,

Wn+l,w(tr o) = ‘ ®)

Win,n+1 (t)/ te (xmfl/ b]
and the following result is obtained ([5]).

Theorem 4. Assume g : [a,b] — Ris an (n + 2)-convex function. Suppose w : [a,b] — R is an
arbitrary integrable function and {wkj} j=1,...n+1 are w-harmonic sequences of functions. Let the
function Wy, 11 4, defined by (8), be non-negative. Then, inequality (5) is valid for

m—1

P(b> = wm,nJrl(b) + kZ: [wk,nJrl (xk) - wk+l,n+1<xk>] - wl,n+1<a)
=1

and
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1 m—1

A= 0] bWy i1 (b) — awy py1 (@) + Y (Xt g1 (k) — Xk - W1 g1 (X))
k=1
m—1
_wm,n+2(b) - 2 (wk,n+2(xk) - wk+1,n+2(xk)) + wl,n+2(a) .
k=1

If Wyw(t,o) < 0or gis an (n+ 2)-concave function, then (5) holds with the sign of
inequalities reversed.

2. Two-Point Formula

Now, we use the weighted version of the integral identity given in Theorem 2 and the
inequalities from Theorems 3 and 4 to establish Hermite-Hadamard-type inequalities for
the weighted two-point formula.

We observe the function g : [4,b] — R, the integrable function w : [2,b] — R and
the w-harmonic sequences of functions {wy;}i=01,..» On [xx_1, x;], where k = 1,2,3. We
consider the subdivision o = {a = xp < x; = x < xp =a+b—x < x3 = b} of the segment
[a,b], and we assume wy;(a) = 0 and w;3;(b) = 0, for j = 1,...,n. In [4,6] the authors
proved the following theorem.

Theorem 5. Let w : [a,b] — R be an integrable function and x € [a, 5], and let {Q; « }jeN be
a sequence of polynomials such that deg Q;, <j—1, Q],',x(t) = Qj-1(t), j € Nand Qo = 0.
Suppose {wy;}j—1,...,.n are w-harmonic sequences of functions on [xy_1, xi], for k = 1,2,3 and some
n € N, defined by the following relations:

t
/t—s ws )ds, t€]ax],

wl] !
1 -
wyi(t) = (j_l)!/(t—s)]_lw(s) ds+Qu(t), te(va+b—x
X
b
w3]( '/ t—s s)ds, te (a+b—x,b],
t

forj=1,...,n.Ifg : [a,b] — Ris such that g\ is piecewise continuous on [a, b), then we have

b n
[wg®yde = Y[Ax) (@) + Bi(x)gUVa+b )]

j=1
b
1) / Wit x)g" (8) dt, )

whereforj=1,...,n

auwﬂ—w1[.1./w—@ <>%—gx>] (10)

and

b
Bj(x) = (-1 [(].11)! /(a +b—x—s) " w(s) ds + Qjx(a+b— x)] , (1)
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such that
wiy(t), t€[ax]
Wn,w(t/x) = WQn(t), t e (x,a—i—b—x] (12)
w3, (t), te€ (a+b—x,Db].

Remark 1. The polynomials Q; , satisfy

— )k
Q]x ZQ] kx (t .X) ’

and hence the polynomial Q; . is uniquely determined by the values Q ,(x), fork =0,1,...,j.

From Theorems 1 and 3, the properties of n-convex functions and the properties of w-

harmonic sequences of functions, we now obtain new Hermite—-Hadamard-type inequalities
for the weighted two-point quadrature Formula (9).
Theorem 6. Let w : [a,b] — R be an integrable function and x € [a, w] be fixed. Suppose
{wij}j=1,..,n are w-harmonic sequences of functions on [xy_1, x|, for k = 1,2,3 and n € N, as
defined in Theorem 5. Let the function Wy, 4, defined by (12), be non-negative. If g : [a,b] — R is
an (n + 2)-convex function, then

(1) () g (1) 13)
b n
< [z = 4050w + By e+ )

< (-1)"-P(b)- [Z Ag<"><a>+b_ag“”(b)],

where

n n—j+1 (a+b—x)” j+1
_] j(n—jﬂ) i) (n—j+1) i >H
A= (_1)” 1 / ¢ tn+1 dt
Py |/ O
n xh—j+2 (aijix)n—j-&-z
_j_l[(rz—jJrZ)!'Af(xH CETES T X)H

and Aj and B; are defined as in Theorem 5. If Wy 1 (t,0) < 0 or g is (n + 2)-concave, then (13)
holds with the sign of inequalities reversed.

Proof. As g isan (1 + 2)—convex function, then g(") is convex and inequalities (13) follow
directly from Theorem 1, replacing the non-negative function p with the non-negative

function Wy, , and the convex function f with the convex function g("), and then applying
the identity (9) on ( f Wo,w(t, x)g™ (t) dt. Further, using identity (6) from Theorem 3

form:2,x1:xandx1—a—|—b—x we obtain
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b .
= | fera-y U
P(b) = (-1) [,/ =¥

(w3 (B)" T+ - a0yj(x) - XTI — g (x) - 2"

)" —wsi(a+b—x) - (a+b—x)" T

+wyi(a+b—x)-(a+b—
—wlj(a)a”_ﬁ“l)}.

Since, wlj(a) =0and ZU3j(b) =0,forj=1,...,n, we obtain

b n _1\j—1
PO) - (—1>”[,j! [ an= 3 (S ) — ) x

j=1

n—j+1

a

" m (gl + b=~ wya+ b)) (a+0 -0 )|,

Applying the definitions of {wy;} from Theorem 5, we derive

wy () — () = =y [ =5)/ () ds — Q)

and
b

wyj(a+b—x)—wzj(a+b—x)= (jll)!/(a—i—b—x—s)jlw(s) ds+ Qjx(a+b—x).

Now, according to the definitions of A; and B; given by (10) and (11), respectively,

we obtain
b
P() = (1)”[;/w(t)-t”dt

=i+ (a—i—b—x)”*j*l
~E e A+ S H

Similarly, using identity (7) from Theorem 3 for m = 2, x; = x and x; = a + b — x, the
definitions of {wy;} from Theorem 5 and the definitions of A; and B; given by (10) and (11),

we can calculate A.

b .
_ (= 1 n Lo (=t
P(b) (n+1)!/w(t)"f+l dt_]; (n—j+2)

<w3 (b)bn j+2 +ZU1 ( ) xn—j+2 . w2j(x) . xn—j+2

)" —wsi(a+b—x) - (a+b—x)"TT?

+wyj(a+b—x)-(a+b—x
_wlj(a)an—j-&-Z)}

b
_ (71)71 1 n
E0) {(nnLl)! /w(t)'t t

a

n xh—j+2 (a Lbh— x)nf]'JrZ
_Z<(n—j+2)!'Aj(x)Jr (n—j+2)! 'Bf(x>>]'
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We continue now by expanding the w-harmonic sequences of functions {wkj} =1,
with wy .41, such that wy , ,(t) = wy,(t) for t € [xx_1,x¢], so that function W11 is
equal to

w1 p+1(t), t€[ax],
Wis1,w(t, X) = § wany1(t), t€ (x,a+b—x, (14)
w3 n+1(t), t€ (a+b—xb.

For the new subdivisionc = {a = xp < xy = x < xp =a+b—x < x3 = b} of the

segment [a, b] and the values wy;(a) = 0 and w3j(b) =0, for j =1,...,n + 2, we obtain the
following results.
Theorem 7. Suppose w : [a,b] — R is an integrable function and x € [a, “5°] is fixed. Suppose
{wj}j=1,..,ns1 are w-harmonic sequences of functions on [xy_q, xi], k = 1,2,3 and n € N. Let the
function Wy, 11 4, defined by (14), be non-negative. If ¢ : [a,b] — R is an (n + 2)-convex function,
then inequalities (13) are valid for

P(b) = W1,n+1 (x) — W3, n4+1 (x) + w2,n+1(‘1 +b—x)— W3,n+1 (a+b—-x)
(1) At (0 + (1) By (1)

and
A = P<1b)[x(wLn+1(x)—w2,n+l(x)>

+(@a+b—x)(wypr1(a+b—x) —wsup1(a+b—x))

— W1 n42(X) + Wong2(x) —wopyo(a+b—x) +ws,io(a+b—x)]
1

= %[(—1)”(3&4”“(36) + (a+b—x)By41(x))

+(=1)" (A2 (x) + Buya(x))]
IfWiw(t,0) < 0orgis (n+ 2)-concave, then (13) holds with the sign of inequalities reversed.

Proof. Applying Theorem 4 for m =3, x; = x, xp = a+b — x, wyj(a) = 0 and ws3;(b) =0,
forj=1,...,n+2,and the definitions of {wy;} from Theorem 5, we obtain values of P(b)
and A. 0O

b
Using the integral mean value theorem for [ Way, ,(t, x)g") (t) dt, where g : [a,b] — R
a
is such that g(2") is a continuous function, the authors in [3] proved that there exists an

7 € (a,b) such that

b 2n
/w(t)g(t) dt — Z (Aj(x)g(];l) (x)+ B]-(x)g(j*1>(a +b— x)) (15)
a j=1

= (A2n+l (x) + B2n+1 (x))g(Zn)(U).

Applying this integral identity to our result in inequalities (13), we obtain the follow-
ing theorem.

Theorem 8. Assume {wy;} satisfies the conditions of Theorem 7 forj = 1,...,2n+ 1. Let Aj and
B be defined as in (10) and (11). Let w : [a, b] — [0, 00) be a continuous function on (a,b), and let

t
Qon(t) > _(anl)' /(t —s)*" . w(s)ds, Vtel[x,a+b—x]

X



Mathematics 2022, 10, 1432 8 of 18

for somen € N. If g : [a,b] — Ris such that g?") is a continuous function, then there exists an
n € (a,b) such that

P(b)-g*(V) < gf;lﬁ? { / (x =)™ - w(s) ds — Qanx(x) (16)
b
+/(a+b—x—s>2”.w(s)ds+Q2n,x(u+b—x)]
< Pe)- [jgs @ + 5],
where
1 b
PO) = G /w(t).tZ" dt
2n x2n—j+1 (a+b _ x>2n7j+l
e R e T = )
and

b
1 1 "
' m[wa/w““z“df
2n x2n—j+2 (a+b—x)2”*f+2
(@7 40+ 'Bf")]'

j=1
Proof. Inequality (16) follows directly from (13), replacing its middle term by
(Azn1 (%) + Bous1 (x)) - g2V (),

according to the integral identity (15), and then applying (10) and (11) to Ap,+1 and Byj41,
respectively. [

The coefficients A;(x) and B;(x) defined with (10) and (11) are not symmetric. If we
assume w(s) = w(a+b—s), fors € [a,b], and
a+b—x
/ (s —x) 1 w(s) ds, (17)

X

1
(-1

(_1)ij,x(x) - Qj,x(u +b— x) =

then we obtain A;(x) = (fl)f_lBj(x).
To obtain the maximum degree of exactness of the quadrature formula in Equation (9)

for fixed x € [a, #} , we choose the sequence of polynomials {Q]-,x } j=0,1,...,n which is,

according to Remark 1, uniquely determined by the formula

a

X b
Qur(x) = bc—lﬁ (/(x —s)w(s) ds + /(aer— x —s)w(s) ds),

Qix(x) = (]_11)' /(x - s)jflw(s) ds, j=2,3,4, (18)

a

Qjx(x) = 0, forj>5.

b
Hence, we have A;(x) = By(x) = } [w(s) ds and Aj(x) = Bj(x) =0, forj=2,3,4.
a
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Finally, from identity (9) for x € {a, #} , we obtain the following two-point weighted

integral formula:

b
/W(f)g(t) dt = M)[g(x) +8(a+b—x)]+ Tnw(x)

b
+(-1)" / W (t, )¢ (¢) dt, (19)

where

Tpw(x) = é[Aj(x)g(j—l)(x) + Bj(x)g(j—l)(a +b— x)]
j=

Now, applying the results from Theorems 6 and 7 to identity (19), we obtain the
following corollaries.

Corollary 1. Let w : [a,b] — R be an integrable function such that w(t) = w(a + b — t) for each
t € [a,b], and let equality (17) hold. Suppose {wg;}j1,...n are w-harmonic sequences of functions
on [xy_1,x), fork =1,2,3 and n € N, as defined in Theorem 5, and let Q; ,(t) be defined by (18) .
Let the function Wh,q, defined by (12), be non-negative and let x € [a, “t]. If g : [a,b] — Risan
(n + 2)-convex function, then
(=1)"-P(b) - g™ (A)
b

< [w(t)g(t) dt = A41(x)[3(x) +8(a + b= 3)] = Tu(x)

<1 P) - |58 + 5 ag )],
where
b
P() = (-1)" i!/w(t).t”dt—fh(x)(x +(”:!b_x) )
%, _x”’”l—l—(—l)f’l(a—i—b—x)”’f+1
];Af(x) = +1)! ]
and

_1\" b " )
Lo D [(nj_l)!/w(t)-t”“dt—z‘h(x)(er +((;jif)! : +)

a

B n ) xnfj+2+(_1)j71(a+b_x)nfj+2
;“W ) i—j+2) ]

and Aj is defined as in Theorem 5. If Wy (t,0) < 0 or g is (n + 2)-concave, then (13) holds with
the sign of inequalities reversed.

Proof. The proof follows from Theorem 6 for the special choice of the polynomials Q; . [

Corollary 2. Let w : [a,b] — R be an integrable function such that w(t) = w(a + b — t) for each

-----

on [xg_1,x¢), fork =1,2,3 and n > 2, as defined in Theorem 5, and let Q; (t) be defined by (18) .
Let the function Way 11 4, defined by (14), be non-negative and let x € [a, “t]. If g : [a,b] — Riis
a (2n + 2)-convex function, then
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P(b) -g““( 5 ) (20)

where

Pb) — (2271), H/(x—s)znw(s)ds.

If g is a (2n + 2)-concave function, then (20) holds with the sign of inequalities reversed.
Proof. The proof follows from Theorem 7 for the special choice of the polynomials Q; . U

3. Applications

Considering some special cases of the function w, we here obtain new bounds for the
Gauss-Legendre two-point quadrature formula and for the Gauss—-Chebyshev two-point
quadrature formulas of the first and second kind.

3.1. Gauss—Legendre Two-Point Quadrature Formula

Suppose that w(t) =1,t € [a,b] and x € {a, ”*b} Now, from Theorem 5, we calculate

wln(t) = T s e [ﬂ, X]
WES(tx) = L wan(t) = S 4 Qu(t), te (x,a+b—2] (21)
way (1) = (t;l;)n, te(a+b—x,b],
and forj >1 ( )j
G 1| (x—a
AFS (z) = (~1)71 [] - Q]-,x<x>]
and

(a+bj!— 2x) (a ;!x) +Q]x(a+b—x)]

BLO(x) = (—1)!

In order to provide the non-negativity of W.$, we will replace 7, in the definition of
WiS, by 2
n,w’s y 1.

Corollary 3. Let

B (t _ X)Zn
(2n)! 7
forn e N.If g : [a,b] — Risa (2n + 2)-convex function, then

QZn,x(t) > Vt € (x,a +b— x],

P(b) - g (A ) 22)
b
< / ALG( ) g(ffl)(x> + B]-LG(X) -g(];l)(a +b— x)}
< P(b)- [Z:i‘g(zn)(a) + Hg(zn)(b) ,

where
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p2n+l _ g2n+1 2n x2n—j+1 c
Plb) = 2n+1) 1<(2nj+1)!'Af (%)
(@b g
2n—j+1)! ]
and
1 p2n+2 _ j2n+2 2n x2n—j+2
P L g (2_. i AR ()
®| @+t E\@n -+
(a+b—x)TT2 LG
Yo BW |

If g is (2n + 2)-concave, then (22) holds with the sign of inequalities reversed.

Proof. Inequality (22) follows from Theorem 6 if w(t) = 1 and WZLnGw is the non-negative
function given in (21). O

Corollary 4. Let

B (t _ x)Z'rl
(2n)! 7
forn € N.If g : [a,b] — Ris a (2n + 2)-convex function, then inequalities (22) hold for
P(b) = A%,fﬂ(x) + B%r(t;+1(x)

Qonx(t) > Vte (x,a+b—x],

and 1
A=) [xA%,Sil(x) +(a+b—x)BEC, (x) — AL, (x) — Bg,giz(x)]

If g is (2n + 2)-concave, then (22) holds with the sign of inequalities reversed.

Proof. The obtained results follow from Theorem 7 if w(t) = 1 and WZLnGw is the non-
negative function defined in (21). O

If the polynomials Q; (t) are as follows:

Quel) = x-a-"2",
Qju(x) = (x(])a)fr]—234
Qj,x(x) = 0, forj>5,

we have ALC(x) = BIS(x) = b%“ and AjLG(x) = BjLG(x) =0, for j = 2,3,4, and hence
we obtain the non-weighted two-point quadrature formulas with a maximum degree
of exactness

[swyae = P20t +glatb—x) + TG ()

a

b
(1" [ WES( 0)3) (1) at,

a
where

n .
TS (x) =Y {ALG (x)gU =D (x) + B]LG(x)g(]_l) (a+b— x)} :
j=5
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Specifically, for x = # - 2\7’ the generalization of the Legendre—Gauss two-point

formula follows. Now, we derive Hermite-Hadamard-type estimates for this generalization

of the Legendre-Gauss two-point formula.
If the assumptions of Corollary (1) hold, for w(t) = 1and t € [a,b] and if g : [a,b] — R
is a (2n + 2)-convex function, we derive

b b—a a+b b-—a
PLG<a+ _ ) (2n) <ALG( B >)
1 2 23 8 2 23

) (52

A
m\w
[02+}
=
[
~~
I

_ALG(ath _ b—a
< PLG ﬂ+bib—ﬂ b—A (2 2 3)8_(2;1)(”)
- " 2 23 b—a
ALG (%b _ b;a) _
2\/3 (2n)
+ - g0 |,
where
b2n+1 2n+l b—a x2n+ a+b—x)

LG _ —

Pit(x) = (2n+1 2 < )

7

( 1)] 1y2n— ]+1+(a_|_b_x)2n—j+l}

x—a
_Z [ (2n—j+1)!

1 b2n+2 _ a2n+2 b—a x2n+1 + (a +bh— x)2n+1
P,&G(x)[ 2n+2)! 2 ( (2n+1)! )

o (x—a) {(—1)f1x2"f+2 +(a+b- x)2”f+2H

MG (x) =

oy (2n —j+2)!

=

In the special case of n = 2, we obtain

(b—ﬂ)S. (4) a+b
320 ¢ 2

< Jsoa- St 5) (5 58]

)P
< % [3st@+ 3500

If the assumptions of Corollary (2) hold, for w(t) = 1 and ¢t € [4,b] and if g is a
(2n + 2)-convex function for n > 2, we obtain
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672"(3 —+/3)(b—a)>"tl .\ [a+b
(6n+3)(2n)! 8° )(2>
b

< a/g(t) dt — b;” {g<a;b - l;;;) +g(a;b+ bz\_/g)]
(- 5)
e

In the special case of n = 2, we obtain

(3-V3)°(b —a)® a+b
466560 g (2)

< froa- S22 b5 ()

_ 5(h _ 4\5
<D= -7 LYoo,

2

3.2. Gauss—Chebyshev Two-Point Quadrature Formula of the First Kind
Suppose that w(t) = ﬁ, t € [-1,1] and x € [—1,0]. Now, from Theorem 5, we

calculate
1 (t=s)" 1
w1, (t) = = fl = ds, te[-1,x],
t —s n—1
WS (62) = S wan(t) = ot [ LT ds 4+ Qualt), e (n—3],  (3)
1 —s n—1
w3y, (t) = _(nE1)1 tf (i/lzT ds, e (—x1],

ac 22412 /111 x4+
A7) = (-1) 1[ 2i—nyn 2zt )~

and

-0 Vi-s

X
In what follows, B denotes the beta function, defined by
1
B(u,v) = /s”_l(l —5)?1ds
0

. 1 ; (—x —s)/~1
B]g;(:l(x) = (-1)i-1 / ds + Qjx(—x)|.

and

/tﬁ’l(l — )P (1 — zt) % dt
0

F(a,B;v;2) = m

is the hypergeometric function with y > g >0,z < 1.



Mathematics 2022, 10, 1432

14 0f 18

Corollary 5. Let wpp,(t) > 0, forall t € [x,—x] and forn € N. Ifg : [-1,1] — Risa
(2n + 2)-convex function, then
P(b) - g (A) (24)
1
g(t) 2 G (j-1) GCl/yy . o(i-1)(_
s{¢hﬂw ;M U7V () + BEC (x) - gD (—x)]
< P(b)- {1;/\‘?(2”)(1) + /\Ilg(z”)(l)},
where
1 1 1 2n 2n—j+1 ccl
P(b) = l@”)!B< ) ]_1<n_j+1)! - AP (x)
(=x)> BEC1(
2n—j+1)! Bj
and

1 2n—j+2 \2n—jt2
= P(b)];<(2;f—j+2)! AT ) - ((an_)j+2)! 'cha(x))-

If g is a (2n + 2)-concave function, then (24) holds with the sign of inequalities reversed.

\/117, € [—1,1] and the

Proof. The obtained results follow from Theorem 6 for w(t) =

non-negative function WZGnculj, defined by (23). O

Corollary 6. Let wy,(t) > 0, forall t € [x,—x] and forn € N. If g : [—
(2n + 2)-convex function, then (24) holds for

1,1] — Risa

P(b) = AGy (x) + B (%)
and .
A= gy [FASEL () = BEEL () — 4G (v — BETa()|.

If g is a (2n + 2)-concave function, then (24) holds with the sign of inequalities reversed.

Proof. These results are a special case of Theorem 7 for w(t) = —-—,t € [~1,1] and the

1-127
non-negative function ngculﬂ defined by (23). O
If we assume that the polynomials Q; (t) are such that
X .

1 " (x —s) ! .
(x) = . ds, forj = 2,3,4,

Qi) o—m% Vi o for

Qjx(x) = 0, forj>5,

we have ASCL(x) = Bl (x) =
we obtain

% and A]Ga(x) = B]-Ga(x) =0, for j = 2,3,4, and hence
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/ gt) 4 _ ~18(x) +g(=)] + TES (x)

b
+(-1)" [ WSt 18 (1) at,

a

where
T (1) = L [ AP (g7 () + B ()™ (=)
=
Specifically, for x = 7%/ we obtain the generalization of the Gauss—Chebyshev

two-point quadrature formula of the first kind. Now, we obtain Hermite-Hadamard-type
estimates for the Gauss—-Chebyshev two-point quadrature formula of the first kind.

Applying Corollary (1) for w(t) = \/1177, t e [-1,1], x = —% and a 6-convex
function g, we obtain
LB
1
8(t) | [(—V2 V2
< _ = _ve Yy
—/ a8 ) el 3
-1
T
< 2|2, (4)
< 153 | 380D+ 3800)
Further, if the assumptions of Corollary (2) hold, for w(t) = 11%2 ,te[-1,1]and a

(2n + 2)-convex function g we obtain

where

_ 2n+1/2 o
P(b)_2(2(41f)1)!! F(ii g“”'z ﬂ)'

In the special case of n = 2, we obtain

P(b) - g*(0)
1
0 2\, (V2
<[ 33 ()]

<P(B) | 58(-1) + 5500

where

(=24 v/2)*(517 — 160)/577 + 480+/2

P(b) = 4608

~ 0.00019203.
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3.3. Gauss—Chebyshev Two-Point Quadrature Formula of the Second Kind

Let us assume that w(t) = V1 —#2,t € [-1,1] and x € [—1,0]. Now, from Theorem 5,
we calculate

t

w1, (1) = (nil)!_fl(t —5)" 11 —s2ds, te[-1,x],
t
W20, = S wa() = by [0 =57 WVI= s+ Qual), 1 (4], (29
1
wsy, (1) = — (n_ll)! tf(t —5)" 11 —s2ds, te (—x,1],

22412 133 x4+
GC2 _ -1 . i
AFC(x) = (1) [ TV F<—2,2,2+], 5 >—Qj,x(x)

and

1

B]»Gcz(x) = (—1)/1 {(]_11)' /(—x —s) 711 —s2ds + Q]-,x(—x)] .
' X

Corollary 7. Let wpp,(t) > 0, forall t € [x,—x] and forn € N. Ifg : [-1,1] — Risa

(2n + 2)-convex function, then

P(b) - g (A) (26)
1 n
< [ s(OVI=Pdt = Y5 [A5x) - g0-(x) + BER(x) - 1) ()]
-1 j=1
<P0)- [T D+ ),
where
1 31 2n x2n—j+1
o = [ (3a) Bl e e
(_x)Zn—j-i-l
50|
and

1 2n x2n—j+2 (7x)2”*f+2

O] ]§<‘<zn—j+z>! AW g -Bf@(x))-

If g is (2n + 2)-concave, then (26) holds with the sign of inequalities reversed.

Proof. This is a special case of Theorem 6 for w(t) = V1 — 12, t € [—1,1] and the non-
negative function WZC;%, defined by (25). O

Corollary 8. Let wpp,(t) > 0, forall t € [x,—x] and forn € N. Ifg : [-1,1] — Risa
(2n + 2)-convex function, then (26) holds for

P(b) = ASH (x) + B (x)

and
1
A= gy [FAST () — BET () — AT () — BET ().

If g is (2n + 2)-concave, then (26) holds with the sign of inequalities reversed.
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Proof. This is a special case of Theorem 7 for w(t) = V1 —12,t € [—1,1] and the non-
negative function W{2, defined by (25). O

2n,w’

If we assume that the polynomials Q; ,(t) are such that

X

1 i )
Qix(x) = G-t /(x —s)/71/1 —s2ds, forj = 2,3,4,
-1

Q]-,x(x) = 0, forj>5,

we have ACC?(x) = B{C?(x) = F and A].Gcz(x) = B].GCZ(x) =0, for j = 2,3,4, and hence
we obtain

1

[evi=ta = Zig(x) +g(-x)] + TSR ()
-1

b
(1) [ WER (0" (1) dt,

where

TGCZ i[AGCZ (j— 1)(x) +B](3C2(x)g(j_1)(—x)}.

Specifically, for x = —5 the generalization of the Gauss—Chebyshev two-point quadra-
ture formula of the second kmd follows. Now, we derive Hermite-Hadamard-type esti-
mates for the Gauss—-Chebyshev two-point quadrature formula of the second kind.

If the assumptions of Corollary (2) hold, for w(t) = V1 —1t%, t € [—1,1] and the
(2n + 2)-convex function g we obtain

where ) 135 .
P(b) = = F| =555 +2n, ;).
) = G ( 22727 ”’4)

In the special case of n = 2, we obtain

where /3
57 —9v3
P(b) = —a0 ~ 0.000186728.
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4. Conclusions

The results presented in this paper are an extension of the investigation started in [5],
in which the new method of calculating estimates for some quadrature rules using the
weighted Hermite-Hadamard inequality for higher-order convex functions was introduced.
The obtained results were applied to a weighted two-point formula for numerical inte-
gration to derive new estimates of the definite integral values. The Hermite-Hadamard
inequality is one of the most important inequalities, and several variants and improvements
have been proposed in the literature. However, this paper offers new research directions
that could be useful and could motivate application in different types of convexity ([7,8]).
We suggest this as an open problem for future work.
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