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Abstract: As convexity plays an important role in many aspects of mathematical programming,
e.g., for obtaining sufficient optimality conditions and in duality theorems, and one of the most
important inequalities for convex functions is the Hermite–Hadamard inequality, the importance
of this paper lies in providing some new improvements for convex functions and new directions in
studying new variants of the Hermite–Hadamard inequality. The first part of the article includes
some known concepts regarding convex functions and related inequalities. In the second part of
the study, a derivation of the Hermite–Hadamard inequality for convex functions of higher order is
given, emphasizing the purpose and importance of some quadrature formulas. In the third section,
the applications of the main results are presented by obtaining Hermite–Hadamard-type estimates
for various classical quadrature formulas such as the Gauss–Legendre two-point quadrature formula
and the Gauss–Chebyshev two-point quadrature formulas of the first and second kind.

Keywords: Hermite–Hadamard inequalities; weighted two-point formula; higher-order convex
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1. Introduction

The well-known Jensen inequality [1] states that if f : X → R is a convex mapping
defined on the linear space X and xi ∈ X, pi ≥ 0, i = 1, . . . , n, P = ∑n

i=1 pi > 0, then

f

(
1
P

n

∑
i=1

pixi

)
≤ 1

P

n

∑
i=1

pi f (xi).

The Hermite–Hadamard inequality gives us an estimate of the (integral) mean value
of a continuous convex function as follows.

If f : [a, b]→ R is a convex function, then

f
(

a + b
2

)
≤ 1

b− a

b∫
a

f (x) dx ≤ 1
2

f (a) +
1
2

f (b). (1)

If f is concave, then above inequalities are reversed.
Over the last decades, these inequalities have been investigated in many papers and

monographs, since they are very useful in approximation theory, optimization theory,
information theory and numerical analysis (see [2] and the references cited therein).

Combining a special case of the integral Jensen inequality and a special case of the
integral Lah–Ribarič inequality, the following weighted Hermite–Hadamard inequality is
established (see [1], p. 145).
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Theorem 1. Let p : [a, b]→ R be a non-negative function. If f is a convex function given on an
interval I, then we have

f (λ) ≤ 1
P(b)

b∫
a

p(x) f (x) dx ≤ b− λ

b− a
f (a) +

λ− a
b− a

f (b)

or

P(b) f (λ) ≤
b∫

a

p(x) f (x) dx ≤ P(b)
[

b− λ

b− a
f (a) +

λ− a
b− a

f (b)
]

,

where

P(t) =
t∫

a

p(x) dx and λ =
1

P(b)

b∫
a

p(x)x dx.

In [3,4], the authors proved some weighted versions of the general integral identities
using harmonic sequences of polynomials and w-harmonic sequences of functions. In order
to introduce one of these identities, we consider the subdivision σ = {a = x0 < x1 <
. . . < xm = b} of the segment [a, b], m ∈ N. If w : [a, b] → R is an arbitrary integrable
function, then for each segment [xk−1, xk], k = 1, . . . , m, we define w-harmonic sequences
of functions {wkj}j=1,...,n by

w′k1(t) = w(t), t ∈ [xk−1, xk], (2)

w′kj(t) = wk,j−1(t), t ∈ [xk−1, xk], j = 2, 3, . . . , n

and the function Wn,w by

Wn,w(t, σ) =


w1n(t), t ∈ [a, x1],
w2n(t), t ∈ (x1, x2],
. . .
wmn(t), t ∈ (xm−1, b].

(3)

An approximation of an integral
b∫
a

w(t)g(t) dt via w-harmonic sequences of functions

is given in the general integral identity proved in the following theorem (see [3]).

Theorem 2. If g : [a, b]→ R is such that g(n) is piecewise continuous on [a, b], then the following
identity holds:

b∫
a

w(t)g(t) dt =
n

∑
j=1

(−1)j−1
[
wmj(b)g(j−1)(b)

+
m−1

∑
k=1

[
wkj(xk)− wk+1,j(xk)

]
g(j−1)(xk)− w1j(a)g(j−1)(a)

]
(4)

+(−1)n
b∫

a

Wn,w(t, σ)g(n)(t) dt.

The following Hermite–Hadamard-type inequality is obtained in [5] using identity (4).

Theorem 3. Suppose w : [a, b]→ R is an arbitrary integrable function, and w-harmonic sequences of
functions {wkj}j=1,...,n are defined by (2). Let the function Wn,w, defined by (3), be non-negative. Then,
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(a) if g : [a, b]→ R is an (n + 2)-convex function, the following inequalities hold

(−1)n · P(b) · g(n)(λ) (5)

≤
b∫

a

w(t)g(t) dt−
n

∑
j=1

(−1)j−1
[
wmj(b)g(j−1)(b)

+
m−1

∑
k=1

[
wkj(xk)− wk+1,j(xk)

]
g(j−1)(xk)− w1j(a)g(j−1)(a)

]

≤ (−1)n · P(b) ·
[

b− λ

b− a
g(n)(a) +

λ− a
b− a

g(n)(b)
]

,

where

P(b) = (−1)n

 1
n!

b∫
a

w(t) · tn dt−
n

∑
j=1

(−1)j−1

(n− j + 1)!

·
(

wmj(b)bn−j+1 +
m−1

∑
k=1

(
wkj(xk)− wk+1,j(xk)

)
xn−j+1

k − w1j(a)an−j+1

)]
(6)

and

λ = (−1)n

 1
(n + 1)!P(b)

b∫
a

w(t) · tn+1 dt− 1
P(b)

n

∑
j=1

(−1)j−1

(n− j + 2)!

·
(

wmj(b)bn−j+2 +
m−1

∑
k=1

(
wkj(xk)− wk+1,j(xk)

)
xn−j+2

k − w1j(a)an−j+2

)]
, (7)

(b) if g is an (n + 2)-concave function, then (5) holds with the sign of inequalities reversed.

If w-harmonic sequences of functions {wkj}j=1,...,n are expanded by wk,n+1, such that
w′k,n+1(t) = wk,n(t) for t ∈ [xk−1, xk], the function Wn+1,w becomes

Wn+1,w(t, σ) =



w1,n+1(t), t ∈ [a, x1],
w2,n+1(t), t ∈ (x1, x2],
.
.
.
wm,n+1(t), t ∈ (xm−1, b]

(8)

and the following result is obtained ([5]).

Theorem 4. Assume g : [a, b]→ R is an (n + 2)-convex function. Suppose w : [a, b]→ R is an
arbitrary integrable function and {wkj}j=1,...,n+1 are w-harmonic sequences of functions. Let the
function Wn+1,w, defined by (8), be non-negative. Then, inequality (5) is valid for

P(b) = wm,n+1(b) +
m−1

∑
k=1

[wk,n+1(xk)− wk+1,n+1(xk)]− w1,n+1(a)

and
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λ =
1

P(b)

[
bwm,n+1(b)− aw1,n+1(a) +

m−1

∑
k=1

(xkwk,n+1(xk)− xk · wk+1,n+1(xk))

−wm,n+2(b)−
m−1

∑
k=1

(wk,n+2(xk)− wk+1,n+2(xk)) + w1,n+2(a)

]
.

If Wn,w(t, σ) ≤ 0 or g is an (n + 2)-concave function, then (5) holds with the sign of
inequalities reversed.

2. Two-Point Formula

Now, we use the weighted version of the integral identity given in Theorem 2 and the
inequalities from Theorems 3 and 4 to establish Hermite–Hadamard-type inequalities for
the weighted two-point formula.

We observe the function g : [a, b] → R, the integrable function w : [a, b] → R and
the w-harmonic sequences of functions {wkj}j=0,1,...,n on [xk−1, xk], where k = 1, 2, 3. We
consider the subdivision σ = {a = x0 < x1 = x < x2 = a + b− x < x3 = b} of the segment
[a, b], and we assume w1j(a) = 0 and w3j(b) = 0, for j = 1, . . . , n. In [4,6] the authors
proved the following theorem.

Theorem 5. Let w : [a, b]→ R be an integrable function and x ∈ [a, a+b
2 ], and let

{
Qj,x

}
j∈N be

a sequence of polynomials such that deg Qj,x ≤ j− 1, Q′j,x(t) = Qj−1,x(t), j ∈ N and Q0,x ≡ 0.
Suppose {wkj}j=1,...,n are w-harmonic sequences of functions on [xk−1, xk], for k = 1, 2, 3 and some
n ∈ N, defined by the following relations:

w1j(t) =
1

(j− 1)!

t∫
a

(t− s)j−1w(s) ds, t ∈ [a, x],

w2j(t) =
1

(j− 1)!

t∫
x

(t− s)j−1w(s) ds + Qj,x(t), t ∈ (x, a + b− x],

w3j(t) = −
1

(j− 1)!

b∫
t

(t− s)j−1w(s) ds, t ∈ (a + b− x, b],

for j = 1, . . . , n. If g : [a, b]→ R is such that g(n) is piecewise continuous on [a, b], then we have

b∫
a

w(t)g(t) dt =
n

∑
j=1

[
Aj(x)g(j−1)(x) + Bj(x)g(j−1)(a + b− x)

]

+(−1)n
b∫

a

Wn,w(t, x)g(n)(t) dt, (9)

where for j = 1, . . . , n

Aj(x) = (−1)j−1

 1
(j− 1)!

x∫
a

(x− s)j−1w(s) ds−Qj,x(x)

 (10)

and

Bj(x) = (−1)j−1

 1
(j− 1)!

b∫
x

(a + b− x− s)j−1w(s) ds + Qj,x(a + b− x)

, (11)



Mathematics 2022, 10, 1432 5 of 18

such that

Wn,w(t, x) =


w1n(t), t ∈ [a, x]
w2n(t), t ∈ (x, a + b− x]
w3n(t), t ∈ (a + b− x, b].

(12)

Remark 1. The polynomials Qj,x satisfy

Qj,x(t) =
j−1

∑
k=0

Qj−k,x(x)
(t− x)k

k!
,

and hence the polynomial Qj,x is uniquely determined by the values Qk,x(x), for k = 0, 1, . . . , j.

From Theorems 1 and 3, the properties of n-convex functions and the properties of w-
harmonic sequences of functions, we now obtain new Hermite–Hadamard-type inequalities
for the weighted two-point quadrature Formula (9).

Theorem 6. Let w : [a, b] → R be an integrable function and x ∈ [a, a+b
2 ] be fixed. Suppose

{wkj}j=1,...,n are w-harmonic sequences of functions on [xk−1, xk], for k = 1, 2, 3 and n ∈ N, as
defined in Theorem 5. Let the function Wn,w, defined by (12), be non-negative. If g : [a, b]→ R is
an (n + 2)-convex function, then

(−1)n · P(b) · g(n)(λ) (13)

≤
b∫

a

w(t)g(t) dt−
n

∑
j=1

[
Aj(x)g(j−1)(x) + Bj(x)g(j−1)(a + b− x)

]
≤ (−1)n · P(b) ·

[
b− λ

b− a
g(n)(a) +

λ− a
b− a

g(n)(b)
]

,

where

P(b) = (−1)n

 1
n!

b∫
a

w(t) · tn dt

−
n

∑
j=1

[
xn−j+1

(n− j + 1)!
· Aj(x) +

(a + b− x)n−j+1

(n− j + 1)!
· Bj(x)

]]
,

λ =
(−1)n

P(b)

 1
(n + 1)!

b∫
a

w(t) · tn+1 dt

−
n

∑
j=1

[
xn−j+2

(n− j + 2)!
· Aj(x) +

(a + b− x)n−j+2

(n− j + 2)!
· Bj(x)

]]

and Aj and Bj are defined as in Theorem 5. If Wn,w(t, σ) ≤ 0 or g is (n + 2)-concave, then (13)
holds with the sign of inequalities reversed.

Proof. As g is an (n + 2)−convex function, then g(n) is convex and inequalities (13) follow
directly from Theorem 1, replacing the non-negative function p with the non-negative
function Wn,w and the convex function f with the convex function g(n), and then applying

the identity (9) on (−1)n
b∫
a

Wn,w(t, x)g(n)(t) dt. Further, using identity (6) from Theorem 3

for m = 2, x1 = x and x1 = a + b− x, we obtain
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P(b) = (−1)n

 1
n!

b∫
a

w(t)tn dt−
n

∑
j=1

(−1)j−1

(n− j + 1)!

·
(

w3j(b)bn−j+1 + w1j(x) · xn−j+1 − w2j(x) · xn−j+1

+w2j(a + b− x) · (a + b− x)n−j+1 − w3j(a + b− x) · (a + b− x)n−j+1

−w1j(a)an−j+1
)]

.

Since, w1j(a) = 0 and w3j(b) = 0, for j = 1, . . . , n, we obtain

P(b) = (−1)n

 1
n!

b∫
a

w(t)tn dt−
n

∑
j=1

(
(−1)j−1

(n− j + 1)!
·
(
w1j(x)− w2j(x)

)
· xn−j+1

+
(−1)j−1

(n− j + 1)!
·
(
w2j(a + b− x)− w3j(a + b− x)

)
· (a + b− x)n−j+1

)]
.

Applying the definitions of {wkj} from Theorem 5, we derive

w1j(x)− w2j(x) =
1

(j− 1)!

x∫
a

(x− s)j−1w(s) ds−Qj,x(x),

and

w2j(a + b− x)− w3j(a + b− x) =
1

(j− 1)!

b∫
x

(a + b− x− s)j−1w(s) ds + Qj,x(a + b− x).

Now, according to the definitions of Aj and Bj given by (10) and (11), respectively,
we obtain

P(b) = (−1)n

 1
n!

b∫
a

w(t) · tn dt

−
n

∑
j=1

[
xn−j+1

(n− j + 1)!
· Aj(x) +

(a + b− x)n−j+1

(n− j + 1)!
· Bj(x)

]]
.

Similarly, using identity (7) from Theorem 3 for m = 2, x1 = x and x1 = a + b− x, the
definitions of {wkj} from Theorem 5 and the definitions of Aj and Bj given by (10) and (11),
we can calculate λ.

λ =
(−1)n

P(b)

 1
(n + 1)!

b∫
a

w(t) · tn+1 dt−
n

∑
j=1

(−1)j−1

(n− j + 2)!

·
(

w3j(b)bn−j+2 + w1j(x) · xn−j+2 − w2j(x) · xn−j+2

+w2j(a + b− x) · (a + b− x)n−j+2 − w3j(a + b− x) · (a + b− x)n−j+2

−w1j(a)an−j+2
)]

=
(−1)n

P(b)

 1
(n + 1)!

b∫
a

w(t) · tn+1 dt

−
n

∑
j=1

(
xn−j+2

(n− j + 2)!
· Aj(x) +

(a + b− x)n−j+2

(n− j + 2)!
· Bj(x)

)]
.
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We continue now by expanding the w-harmonic sequences of functions {wkj}j=1,...,n
with wk,n+1, such that w′k,n+1(t) = wk,n(t) for t ∈ [xk−1, xk], so that function Wn+1,w is
equal to

Wn+1,w(t, x) =


w1,n+1(t), t ∈ [a, x],
w2,n+1(t), t ∈ (x, a + b− x],
w3,n+1(t), t ∈ (a + b− x, b].

(14)

For the new subdivision σ = {a = x0 < x1 = x < x2 = a + b− x < x3 = b} of the
segment [a, b] and the values w1j(a) = 0 and w3j(b) = 0, for j = 1, . . . , n + 2, we obtain the
following results.

Theorem 7. Suppose w : [a, b]→ R is an integrable function and x ∈ [a, a+b
2 ] is fixed. Suppose

{wkj}j=1,...,n+1 are w-harmonic sequences of functions on [xk−1, xk], k = 1, 2, 3 and n ∈ N. Let the
function Wn+1,w, defined by (14), be non-negative. If g : [a, b]→ R is an (n + 2)-convex function,
then inequalities (13) are valid for

P(b) = w1,n+1(x)− w2,n+1(x) + w2,n+1(a + b− x)− w3,n+1(a + b− x)

= (−1)n An+1(x) + (−1)nBn+1(x)

and

λ =
1

P(b)
[x(w1,n+1(x)− w2,n+1(x))

+(a + b− x)(w2,n+1(a + b− x)− w3,n+1(a + b− x))
−w1,n+2(x) + w2,n+2(x)− w2,n+2(a + b− x) + w3,n+2(a + b− x)]

=
1

P(b)
[(−1)n(xAn+1(x) + (a + b− x)Bn+1(x))

+(−1)n+1(An+2(x) + Bn+2(x))
]
.

If Wn,w(t, σ) ≤ 0 or g is (n + 2)-concave, then (13) holds with the sign of inequalities reversed.

Proof. Applying Theorem 4 for m = 3, x1 = x, x2 = a + b− x, w1j(a) = 0 and w3j(b) = 0,
for j = 1, . . . , n + 2, and the definitions of {wkj} from Theorem 5, we obtain values of P(b)
and λ.

Using the integral mean value theorem for
b∫
a

W2n,w(t, x)g(2n)(t) dt, where g : [a, b]→ R

is such that g(2n) is a continuous function, the authors in [3] proved that there exists an
η ∈ (a, b) such that

b∫
a

w(t)g(t) dt−
2n

∑
j=1

(
Aj(x)g(j−1)(x) + Bj(x)g(j−1)(a + b− x)

)
(15)

= (A2n+1(x) + B2n+1(x))g(2n)(η).

Applying this integral identity to our result in inequalities (13), we obtain the follow-
ing theorem.

Theorem 8. Assume {wkj} satisfies the conditions of Theorem 7 for j = 1, . . . , 2n + 1. Let Aj and
Bj be defined as in (10) and (11). Let w : [a, b]→ [0, ∞) be a continuous function on (a, b), and let

Q2n,x(t) ≥ −
1

(2n− 1)!

t∫
x

(t− s)2n−1 · w(s) ds, ∀t ∈ [x, a + b− x]
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for some n ∈ N. If g : [a, b]→ R is such that g(2n) is a continuous function, then there exists an
η ∈ (a, b) such that

P(b) · g(2n)(λ) ≤ g(2n)(η)

(2n)!

 x∫
a

(x− s)2n · w(s) ds−Q2n,x(x) (16)

+

b∫
x

(a + b− x− s)2n · w(s) ds + Q2n,x(a + b− x)


≤ P(b) ·

[
b− λ

b− a
g(2n)(a) +

λ− a
b− a

g(2n)(b)
]

,

where

P(b) =
1

(2n)!

b∫
a

w(t) · t2n dt

−
2n

∑
j=1

(
x2n−j+1

(2n− j + 1)!
· Aj(x) +

(a + b− x)2n−j+1

(2n− j + 1)!
· Bj(x)

)

and

λ =
1

P(b)

 1
(2n + 1)!

b∫
a

w(t) · t2n+1 dt

−
2n

∑
j=1

(
x2n−j+2

(2n− j + 2)!
· Aj(x) +

(a + b− x)2n−j+2

(2n− j + 2)!
· Bj(x)

)]
.

Proof. Inequality (16) follows directly from (13), replacing its middle term by

(A2n+1(x) + B2n+1(x)) · g(2n)(η),

according to the integral identity (15), and then applying (10) and (11) to A2n+1 and B2n+1,
respectively.

The coefficients Aj(x) and Bj(x) defined with (10) and (11) are not symmetric. If we
assume w(s) = w(a + b− s), for s ∈ [a, b], and

(−1)jQj,x(x)−Qj,x(a + b− x) =
1

(j− 1)!

a+b−x∫
x

(s− x)j−1 · w(s) ds, (17)

then we obtain Aj(x) = (−1)j−1Bj(x).
To obtain the maximum degree of exactness of the quadrature formula in Equation (9)

for fixed x ∈
[

a, a+b
2

]
, we choose the sequence of polynomials {Qj,x}j=0,1,...,n which is,

according to Remark 1, uniquely determined by the formula

Q1,x(x) =
1

2x− a− b

 x∫
a

(x− s)w(s) ds +
b∫

x

(a + b− x− s)w(s) ds

,

Qj,x(x) =
1

(j− 1)!

x∫
a

(x− s)j−1w(s) ds, j = 2, 3, 4, (18)

Qj,x(x) = 0, f or j ≥ 5.

Hence, we have A1(x) = B1(x) = 1
2

b∫
a

w(s) ds and Aj(x) = Bj(x) = 0, for j = 2, 3, 4.
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Finally, from identity (9) for x ∈
[

a, a+b
2

]
, we obtain the following two-point weighted

integral formula:
b∫

a

w(t)g(t) dt = A1(x)[g(x) + g(a + b− x)] + Tn,w(x)

+(−1)n
b∫

a

Wn,w(t, x)g(n)(t) dt, (19)

where

Tn,w(x) =
n

∑
j=5

[
Aj(x)g(j−1)(x) + Bj(x)g(j−1)(a + b− x)

]
.

Now, applying the results from Theorems 6 and 7 to identity (19), we obtain the
following corollaries.

Corollary 1. Let w : [a, b]→ R be an integrable function such that w(t) = w(a + b− t) for each
t ∈ [a, b], and let equality (17) hold. Suppose {wkj}j=1,...,n are w-harmonic sequences of functions
on [xk−1, xk], for k = 1, 2, 3 and n ∈ N, as defined in Theorem 5, and let Qj,x(t) be defined by (18) .
Let the function Wn,w, defined by (12), be non-negative and let x ∈ [a, a+b

2 ]. If g : [a, b]→ R is an
(n + 2)-convex function, then

(−1)n · P(b) · g(n)(λ)

≤
b∫

a

w(t)g(t) dt− A1(x)[g(x) + g(a + b− x)]− Tn,w(x)

≤ (−1)n · P(b) ·
[

b− λ

b− a
g(n)(a) +

λ− a
b− a

g(n)(b)
]

,

where

P(b) = (−1)n

 1
n!

b∫
a

w(t) · tn dt− A1(x)
(

xn + (a + b− x)n

n!

)

−
n

∑
j=5

Aj(x) · xn−j+1 + (−1)j−1(a + b− x)n−j+1

(n− j + 1)!

]
,

and

λ =
(−1)n

P(b)

 1
(n + 1)!

b∫
a

w(t) · tn+1 dt− A1(x)
(

xn+1 + (a + b− x)n+1

(n + 1)!

)

−
n

∑
j=5

Aj(x) · xn−j+2 + (−1)j−1(a + b− x)n−j+2

(n− j + 2)!

]
.

and Aj is defined as in Theorem 5. If Wn,w(t, σ) ≤ 0 or g is (n + 2)-concave, then (13) holds with
the sign of inequalities reversed.

Proof. The proof follows from Theorem 6 for the special choice of the polynomials Qj,x.

Corollary 2. Let w : [a, b]→ R be an integrable function such that w(t) = w(a + b− t) for each
t ∈ [a, b], and let equality (17) hold. Suppose {wkj}j=1,...,2n are w-harmonic sequences of functions
on [xk−1, xk], for k = 1, 2, 3 and n ≥ 2, as defined in Theorem 5, and let Qj,x(t) be defined by (18) .
Let the function W2n+1,w, defined by (14), be non-negative and let x ∈ [a, a+b

2 ]. If g : [a, b]→ R is
a (2n + 2)-convex function, then
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P(b) · g(n)
(

a + b
2

)
(20)

≤
b∫

a

w(t)g(t) dt− A1(x)[g(x) + g(a + b− x)]− T2n,w(x)

≤ P(b) ·
[

1
2

g(2n)(a) +
1
2

g(2n)(b)
]

,

where

P(b) =
2

(2n)!

x∫
a

(x− s)2nw(s) ds.

If g is a (2n + 2)-concave function, then (20) holds with the sign of inequalities reversed.

Proof. The proof follows from Theorem 7 for the special choice of the polynomials Qj,x.

3. Applications

Considering some special cases of the function w, we here obtain new bounds for the
Gauss–Legendre two-point quadrature formula and for the Gauss–Chebyshev two-point
quadrature formulas of the first and second kind.

3.1. Gauss–Legendre Two-Point Quadrature Formula

Suppose that w(t) = 1, t ∈ [a, b] and x ∈
[

a, a+b
2

]
. Now, from Theorem 5, we calculate

WLG
n,w(t, x) =


w1n(t) =

(t−a)n

n! , t ∈ [a, x]
w2n(t) =

(t−x)n

n! + Qn,x(t), t ∈ (x, a + b− x]
w3n(t) =

(t−b)n

n! , t ∈ (a + b− x, b],

(21)

and for j ≥ 1
ALG

j (x) = (−1)j−1

[
(x− a)j

j!
−Qj,x(x)

]
and

BLG
j (x) = (−1)j−1

[
(a + b− 2x)j

j!
− (a− x)j

j!
+ Qj,x(a + b− x)

]
.

In order to provide the non-negativity of WLG
n,w, we will replace n, in the definition of

WLG
n,w, by 2n.

Corollary 3. Let

Q2n,x(t) ≥ −
(t− x)2n

(2n)!
, ∀t ∈ (x, a + b− x],

for n ∈ N. If g : [a, b]→ R is a (2n + 2)-convex function, then

P(b) · g(2n)(λ) (22)

≤
b∫

a

g(t) dt−
2n

∑
j=1

[
ALG

j (x) · g(j−1)(x) + BLG
j (x) · g(j−1)(a + b− x)

]
≤ P(b) ·

[
b− λ

b− a
g(2n)(a) +

λ− a
b− a

g(2n)(b)
]

,

where
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P(b) =

[
b2n+1 − a2n+1

(2n + 1)!
−

2n

∑
j=1

(
x2n−j+1

(2n− j + 1)!
· ALG

j (x)

+
(a + b− x)2n−j+1

(2n− j + 1)!
· BLG

j (x)
)]

and

λ =
1

P(b)

[
b2n+2 − a2n+2

(2n + 2)!
−

2n

∑
j=1

(
x2n−j+2

(2n− j + 2)!
· ALG

j (x)

+
(a + b− x)2n−j+2

(2n− j + 2)!
· BLG

j (x)

)]
.

If g is (2n + 2)-concave, then (22) holds with the sign of inequalities reversed.

Proof. Inequality (22) follows from Theorem 6 if w(t) = 1 and WLG
2n,w is the non-negative

function given in (21).

Corollary 4. Let

Q2n,x(t) ≥ −
(t− x)2n

(2n)!
, ∀t ∈ (x, a + b− x],

for n ∈ N. If g : [a, b]→ R is a (2n + 2)-convex function, then inequalities (22) hold for

P(b) = ALG
2n+1(x) + BLG

2n+1(x)

and
λ =

1
P(b)

[
xALG

2n+1(x) + (a + b− x)BLG
2n+1(x)− ALG

2n+2(x)− BLG
2n+2(x)

]
.

If g is (2n + 2)-concave, then (22) holds with the sign of inequalities reversed.

Proof. The obtained results follow from Theorem 7 if w(t) = 1 and WLG
2n,w is the non-

negative function defined in (21).

If the polynomials Qj,x(t) are as follows:

Q1,x(x) = x− a− b− a
2

,

Qj,x(x) =
(x− a)j

(j)!
, for j = 2, 3, 4,

Qj,x(x) = 0, for j ≥ 5,

we have ALG
1 (x) = BLG

1 (x) = b−a
2 and ALG

j (x) = BLG
j (x) = 0, for j = 2, 3, 4, and hence

we obtain the non-weighted two-point quadrature formulas with a maximum degree
of exactness

b∫
a

g(t) dt =
b− a

2
[g(x) + g(a + b− x)] + TLG

n,w(x)

+(−1)n
b∫

a

WLG
n,w(t, x)g(n)(t) dt,

where

TLG
n,w(x) =

n

∑
j=5

[
ALG

j (x)g(j−1)(x) + BLG
j (x)g(j−1)(a + b− x)

]
.
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Specifically, for x = a+b
2 −

b−a
2
√

3
, the generalization of the Legendre–Gauss two-point

formula follows. Now, we derive Hermite–Hadamard-type estimates for this generalization
of the Legendre–Gauss two-point formula.

If the assumptions of Corollary (1) hold, for w(t) = 1 and t ∈ [a, b] and if g : [a, b]→ R
is a (2n + 2)-convex function, we derive

PLG
n

(
a + b

2
− b− a

2
√

3

)
· g(2n)

(
λLG

(
a + b

2
− b− a

2
√

3

))

≤
b∫

a

g(t) dt− b− a
2

[
g
(

a + b
2
− b− a

2
√

3

)
+ g
(

a + b
2

+
b− a
2
√

3

)]

−TLG
2n,w

(
a + b

2
− b− a

2
√

3

)

≤ PLG
n

(
a + b

2
− b− a

2
√

3

)
·

 b− λLG
(

a+b
2 −

b−a
2
√

3

)
b− a

g(2n)(a)

+
λLG

(
a+b

2 −
b−a
2
√

3

)
− a

b− a
g(2n)(b)

,

where

PLG
n (x) =

b2n+1 − a2n+1

(2n + 1)!
− b− a

2

(
x2n + (a + b− x)2n

(2n)!

)
−

2n

∑
j=5

(x− a)j

j!

[
(−1)j−1x2n−j+1 + (a + b− x)2n−j+1

(2n− j + 1)!

]
,

λLG(x) =
1

PLG
n (x)

[
b2n+2 − a2n+2

(2n + 2)!
− b− a

2

(
x2n+1 + (a + b− x)2n+1

(2n + 1)!

)
−

2n

∑
j=5

(x− a)j

j!

[
(−1)j−1x2n−j+2 + (a + b− x)2n−j+2

(2n− j + 2)!

]]
.

In the special case of n = 2, we obtain

(b− a)5

4320
· g(4)

(
a + b

2

)

≤
b∫

a

g(t) dt− b− a
2

[
g
(

a + b
2
− b− a

2
√

3

)
+ g
(

a + b
2

+
b− a
2
√

3

)]

≤ (b− a)5

4320
·
[

1
2

g(4(a) +
1
2

g(4)(b)
]

.

If the assumptions of Corollary (2) hold, for w(t) = 1 and t ∈ [a, b] and if g is a
(2n + 2)-convex function for n ≥ 2, we obtain
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6−2n(3−
√

3)(b− a)2n+1

(6n + 3)(2n)!
· g(2n)

(
a + b

2

)

≤
b∫

a

g(t) dt− b− a
2

[
g
(

a + b
2
− b− a

2
√

3

)
+ g
(

a + b
2

+
b− a
2
√

3

)]

−TLG
n,w

(
a + b

2
− b− a

2
√

3

)
≤ 6−2n(3−

√
3)(b− a)2n+1

(6n + 3)(2n)!
·
[

1
2

g(2n)(a) +
1
2

g(2n)(b)
]

.

In the special case of n = 2, we obtain

(3−
√

3)5(b− a)5

466560
· g(4)

(
a + b

2

)

≤
b∫

a

g(t) dt− b− a
2

[
g
(

a + b
2
− b− a

2
√

3

)
+ g
(

a + b
2

+
b− a
2
√

3

)]

≤ (3−
√

3)5(b− a)5

466560
·
[

1
2

g(4(a) +
1
2

g(4)(b)
]

.

3.2. Gauss–Chebyshev Two-Point Quadrature Formula of the First Kind

Suppose that w(t) = 1√
1−t2 , t ∈ [−1, 1] and x ∈ [−1, 0]. Now, from Theorem 5, we

calculate

WGC1
n,w (t, x) =



w1n(t) = 1
(n−1)!

t∫
−1

(t−s)n−1
√

1−s2 ds, t ∈ [−1, x],

w2n(t) = 1
(n−1)!

t∫
x

(t−s)n−1
√

1−s2 ds + Qn,x(t), t ∈ (x,−x],

w3n(t) = − 1
(n−1)!

1∫
t

(t−s)n−1
√

1−s2 ds, t ∈ (−x, 1],

(23)

AGC1
j (x) = (−1)j−1

[
2j−1/2(x + 1)j−1/2

(2j− 1)!!
F
(

1
2

,
1
2

,
1
2
+ j,

x + 1
2

)
−Qj,x(x)

]
and

BGC1
j (x) = (−1)j−1

 1
(j− 1)!

1∫
x

(−x− s)j−1
√

1− s2
ds + Qj,x(−x)

.

In what follows, B denotes the beta function, defined by

B(u, v) =
1∫

0

su−1(1− s)v−1 ds

and

F(α, β; γ; z) =
1

B(β, γ− β)

1∫
0

tβ−1(1− t)γ−β−1(1− zt)−α dt

is the hypergeometric function with γ > β > 0, z < 1.
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Corollary 5. Let w2,2n(t) ≥ 0, for all t ∈ [x,−x] and for n ∈ N. If g : [−1, 1] → R is a
(2n + 2)-convex function, then

P(b) · g(2n)(λ) (24)

≤
1∫
−1

g(t)√
1− t2

dt−
2n

∑
j=1

[
AGC1

j (x) · g(j−1)(x) + BGC1
j (x) · g(j−1)(−x)

]
≤ P(b) ·

[
1− λ

2
g(2n)(−1) +

λ + 1
2

g(2n)(1)
]

,

where

P(b) =

[
1

(2n)!
B
(

1
2

,
1
2
+ n

)
−

2n

∑
j=1

(
x2n−j+1

(2n− j + 1)!
· AGC1

j (x)

+
(−x)2n−j+1

(2n− j + 1)!
· BGC1

j (x)
)]

and

λ =
1

P(b)

2n

∑
j=1

(
− x2n−j+2

(2n− j + 2)!
· AGC1

j (x)− (−x)2n−j+2

(2n− j + 2)!
· BGC1

j (x)

)
.

If g is a (2n + 2)-concave function, then (24) holds with the sign of inequalities reversed.

Proof. The obtained results follow from Theorem 6 for w(t) = 1√
1−t2 , t ∈ [−1, 1] and the

non-negative function WGC1
2n,w, defined by (23).

Corollary 6. Let w2,2n(t) ≥ 0, for all t ∈ [x,−x] and for n ∈ N. If g : [−1, 1] → R is a
(2n + 2)-convex function, then (24) holds for

P(b) = AGC1
2n+1(x) + BGC1

2n+1(x)

and
λ =

1
P(b)

[
x(AGC1

2n+1(x)− BGC1
2n+1(x))− AGC1

2n+2(x)− BGC1
2n+2(x)

]
.

If g is a (2n + 2)-concave function, then (24) holds with the sign of inequalities reversed.

Proof. These results are a special case of Theorem 7 for w(t) = 1√
1−t2 , t ∈ [−1, 1] and the

non-negative function WGC1
2n,w, defined by (23).

If we assume that the polynomials Qj,x(t) are such that

Qj,x(x) =
1

(j− 1)!

x∫
−1

(x− s)j−1
√

1− s2
ds, for j = 2, 3, 4,

Qj,x(x) = 0, for j ≥ 5,

we have AGC1
1 (x) = BGC1

1 (x) = π
2 and AGC1

j (x) = BGC1
j (x) = 0, for j = 2, 3, 4, and hence

we obtain
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1∫
−1

g(t)√
1− t2

dt =
π

2
[g(x) + g(−x)] + TGC1

n,w (x)

+(−1)n
b∫

a

WGC1
n,w (t, x)g(n)(t) dt,

where

TGC1
n,w (x) =

n

∑
j=5

[
AGC1

j (x)g(j−1)(x) + BGC1
j (x)g(j−1)(−x)

]
.

Specifically, for x = −
√

2
2 , we obtain the generalization of the Gauss–Chebyshev

two-point quadrature formula of the first kind. Now, we obtain Hermite–Hadamard-type
estimates for the Gauss–Chebyshev two-point quadrature formula of the first kind.

Applying Corollary (1) for w(t) = 1√
1−t2 , t ∈ [−1, 1], x = −

√
2

2 and a 6-convex
function g, we obtain

π

192
· g(4)(0)

≤
1∫
−1

g(t)√
1− t2

dt− π

2

[
g

(
−
√

2
2

)
+ g

(√
2

2

)]

≤ π

192
·
[

1
2

g(4)(−1) +
1
2

g(4)(1)
]

.

Further, if the assumptions of Corollary (2) hold, for w(t) = 1√
1−t2 , t ∈ [−1, 1] and a

(2n + 2)-convex function g we obtain

P(b) · g(2n)(0)

≤
1∫
−1

g(t)√
1− t2

dt− π

2

[
g

(
−
√

2
2

)
+ g

(√
2

2

)]
− TGC1

2n,w

(
−
√

2
2

)

≤ P(b) ·
[

1
2

g(2n)(−1) +
1
2

g(2n)(1)
]

,

where

P(b) =
2(2−

√
2)2n+1/2

(4n + 1)!!
F

(
1
2

,
1
2

:
3
2
+ 2n;

2−
√

2
4

)
.

In the special case of n = 2, we obtain

P(b) · g(4)(0)

≤
1∫
−1

g(t)√
1− t2

dt− π

2

[
g

(
−
√

2
2

)
+ g

(√
2

2

)]

≤ P(b) ·
[

1
2

g(4)(−1) +
1
2

g(4)(1)
]

.

where

P(b) =
(−2 +

√
2)4(51π − 160)

√
577 + 480

√
2

4608
≈ 0.00019203.
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3.3. Gauss–Chebyshev Two-Point Quadrature Formula of the Second Kind

Let us assume that w(t) =
√

1− t2, t ∈ [−1, 1] and x ∈ [−1, 0]. Now, from Theorem 5,
we calculate

WGC2
n,w (t, x) =



w1n(t) = 1
(n−1)!

t∫
−1

(t− s)n−1
√

1− s2 ds, t ∈ [−1, x],

w2n(t) = 1
(n−1)!

t∫
x
(t− s)n−1

√
1− s2 ds + Qn,x(t), t ∈ (x,−x],

w3n(t) = − 1
(n−1)!

1∫
t
(t− s)n−1

√
1− s2 ds, t ∈ (−x, 1],

(25)

AGC2
j (x) = (−1)j−1

[
2j+1/2(x + 1)j+1/2

(2j + 1)!!
F
(
−1

2
,

3
2

;
3
2
+ j;

x + 1
2

)
−Qj,x(x)

]
and

BGC2
j (x) = (−1)j−1

 1
(j− 1)!

1∫
x

(−x− s)j−1
√

1− s2 ds + Qj,x(−x)

.

Corollary 7. Let w2,2n(t) ≥ 0, for all t ∈ [x,−x] and for n ∈ N. If g : [−1, 1] → R is a
(2n + 2)-convex function, then

P(b) · g(2n)(λ) (26)

≤
1∫
−1

g(t)
√

1− t2 dt−
2n

∑
j=1

[
AGC2

j (x) · g(j−1)(x) + BGC2
j (x) · g(j−1)(−x)

]
≤ P(b) ·

[
1− λ

2
g(2n)(−1) +

λ + 1
2

g(2n)(1)
]

,

where

P(b) =

[
1

(2n)!
B
(

3
2

,
1
2
+ n

)
−

2n

∑
j=1

(
x2n−j+1

(2n− j + 1)!
· AGC2

j (x)

+
(−x)2n−j+1

(2n− j + 1)!
· BGC2

j (x)
)]

and

λ =
1

P(b)

2n

∑
j=1

(
− x2n−j+2

(2n− j + 2)!
· AGC2

j (x)− (−x)2n−j+2

(2n− j + 2)!
· BGC2

j (x)

)
.

If g is (2n + 2)-concave, then (26) holds with the sign of inequalities reversed.

Proof. This is a special case of Theorem 6 for w(t) =
√

1− t2, t ∈ [−1, 1] and the non-
negative function WGC2

2n,w, defined by (25).

Corollary 8. Let w2,2n(t) ≥ 0, for all t ∈ [x,−x] and for n ∈ N. If g : [−1, 1] → R is a
(2n + 2)-convex function, then (26) holds for

P(b) = AGC2
2n+1(x) + BGC2

2n+1(x)

and
λ =

1
P(b)

[
x(AGC2

2n+1(x)− BGC2
2n+1(x))− AGC2

2n+2(x)− BGC2
2n+2(x)

]
.

If g is (2n + 2)-concave, then (26) holds with the sign of inequalities reversed.
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Proof. This is a special case of Theorem 7 for w(t) =
√

1− t2, t ∈ [−1, 1] and the non-
negative function WGC2

2n,w, defined by (25).

If we assume that the polynomials Qj,x(t) are such that

Qj,x(x) =
1

(j− 1)!

x∫
−1

(x− s)j−1
√

1− s2 ds, for j = 2, 3, 4,

Qj,x(x) = 0, for j ≥ 5,

we have AGC2
1 (x) = BGC2

1 (x) = π
4 and AGC2

j (x) = BGC2
j (x) = 0, for j = 2, 3, 4, and hence

we obtain

1∫
−1

g(t)
√

1− t2 dt =
π

4
[g(x) + g(−x)] + TGC2

n,w (x)

+(−1)n
b∫

a

WGC2
n,w (t, x)g(n)(t) dt,

where

TGC2
n,w (x) =

n

∑
j=5

[
AGC2

j (x)g(j−1)(x) + BGC2
j (x)g(j−1)(−x)

]
.

Specifically, for x = − 1
2 , the generalization of the Gauss–Chebyshev two-point quadra-

ture formula of the second kind follows. Now, we derive Hermite–Hadamard-type esti-
mates for the Gauss–Chebyshev two-point quadrature formula of the second kind.

If the assumptions of Corollary (2) hold, for w(t) =
√

1− t2, t ∈ [−1, 1] and the
(2n + 2)-convex function g we obtain

P(b) · g(2n)(0)

≤
1∫
−1

g(t)
√

1− t2 dt− π

4

[
g
(
−1

2

)
+ g
(

1
2

)]
− TGC2

2n,w

(
−1

2

)

≤ P(b) ·
[

1
2

g(2n)(−1) +
1
2

g(2n)(1)
]

,

where

P(b) =
2

(4n + 3)!!
F
(
−1

2
,

3
2

,
5
2
+ 2n,

1
4

)
.

In the special case of n = 2, we obtain

P(b) · g(4)(0)

≤
1∫
−1

g(t)
√

1− t2 dt− π

4

[
g
(
−1

2

)
+ g
(

1
2

)]

≤ P(b) ·
[

1
2

g(4)(−1) +
1
2

g(4)(1)
]

.

where

P(b) =
5π − 9

√
3

640
≈ 0.000186728.
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4. Conclusions

The results presented in this paper are an extension of the investigation started in [5],
in which the new method of calculating estimates for some quadrature rules using the
weighted Hermite–Hadamard inequality for higher-order convex functions was introduced.
The obtained results were applied to a weighted two-point formula for numerical inte-
gration to derive new estimates of the definite integral values. The Hermite–Hadamard
inequality is one of the most important inequalities, and several variants and improvements
have been proposed in the literature. However, this paper offers new research directions
that could be useful and could motivate application in different types of convexity ([7,8]).
We suggest this as an open problem for future work.
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