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Abstract: We introduce a tensor-product kind bivariate operator of a new generalization of Bernstein-
type rational functions and its GBS (generalized Boolean sum) operator, and we investigate their
approximation properties by obtaining their rates of convergence. Moreover, we present some
graphical comparisons visualizing the convergence of tensor-product kind bivariate operator and its
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1. Introduction

Bernstein-type rational functions were defined by Balázs in [1] as follows:

Rn( f ; u) =
1

(1 + anu)n

n

∑
k=0

f
(

k
bn

)(
n
k

)
(anu)k, u ≥ 0, n ∈ N, (1)

where an and bn are suitably chosen non-negative real sequences such that bn = nan for
each n ∈ N, and f is a real-valued function on [0, ∞).

In [2], Atakut and İspir introduced the bivariate operator of the Bernstein-type rational
functions defined by (1) as follows:

Rn,m( f ; u, v) =
n

∑
j=0

m

∑
k=0

f
(

j
bn

,
k

bm

)(
n
j

)(
m
k

)
(anu)j(amv)k

(1 + anu)n(1 + amv)m , u, v ≥ 0, n, m ∈ N, (2)

where an, am, bn and bm are suitably chosen non-negative sequences such that bh = hah for
h = n, m ∈ N, and f is a real-valued function on [0, ∞)× [0, ∞). They obtained an estimate
by means of the usual first modulus of continuity and proved an asymptotic approximation
theorem with the classical methods. Moreover, Atakut [3] presented some convergence
results associated with the derivatives of the operator Rn,m defined by (2).

Recently, a new generalization of Bernstein-type rational functions has been defined
in [4] by:

RG
n ( f ; u) =

n

∑
k=0

f
(

k
γn

)(
n
k

)
(αnu)k(βn)n−k

(βn + αnu)n , u ≥ 0, n ∈ N, (3)

where f is a real-valued continuous function on [0, ∞), and (αn), (βn) and (γn) are non-
negative real sequences such that γn = nαn satisfying the following properties:

lim
n→∞

αn = 0, lim
n→∞

βn = 1 and lim
n→∞

γn = ∞. (4)
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The operator RG
n is a linear and positive operator. When βn = 1, αn = an and γn = bn, it is

reduced to the Bernstein-type rational functions given by (1). Therefore, it is a generalization
of the Bernstein-type rational functions. Its Korovkin-type approximation results have been
investigated in [4].

Recently, the approximation properties of lots of bivariate operators have been investi-
gated. Readers can see the following references for details [5–15].

In this study, we introduce a tensor-product kind bivariate operator and its associ-
ated GBS (generalized Boolean sum) operator of the generalized Bernstein-type rational
function RG

n defined by (3), which is a generalization of the bivariate operator Rn,m defined
by (2). Moreover, we investigate their approximation properties on rectangular region
[0, r1]× [0, r2] such that r1, r2 > 0. Lastly, we present an application including illustrative
graphics visualizing the convergence of the tensor-product kind bivariate operator and
its GBS operator, which also compare their convergence with the bivariate operator Rn,m
defined by (2).

2. Construction of Tensor-Product Kind Bivariate Operator

In this part, we introduce a tensor-product kind bivariate operator of the general-
ized Bernstein-type rational function RG

n defined by (3) and investigate its approximation
properties.

Let
(
αn

1
)
, (αm

2 ),
(

βn
1
)
, (βm

2 ),
(
γn

1
)

and (γm
2 ) be non-negative real sequences such that

γh
φ = hαh

φ for (φ, h) = (1, n), (2, m), fulfilling the following conditions:

lim
n,m→∞

αh
φ = 0, lim

n,m→∞
βh

φ = 1 and lim
n,m→∞

γh
φ = ∞. (5)

Let f be a real-valued continuous function on [0, ∞)× [0, ∞). We define the following
tensor-product kind bivariate operator:

RG
n,m( f ; u, v) =

n

∑
j=0

m

∑
k=0

f
(

j
γn

1
,

k
γm

2

)
sn,j(u)sm,k(v),u, v ≥ 0,n, m ∈ N, (6)

where sn,j(u) = (n
j)

(αn
1 u)j(βn

1 )
n−j

(βn
1+αn

1 u)
n , sm,k(v) = (m

k )
(αm

2 v)k(βm
2 )

m−k

(βm
2 +αm

2 v)
m . For any φ, ϕ ∈ R and any

real-valued continuous functions f , h on [0, ∞)× [0, ∞), we have the following relation:

RG
n,m(φ f + ϕh; u, v) = φRG

n,m( f ; u, v) + ϕRG
n,m(h; u, v),

and if f is non-negative, then RG
n,m( f ; .) is non-negative. Therefore, the bivariate operator

RG
n,m is linear and positive. By denoting:

xRG
n ( f (τ, ς); u, ς) :=

n

∑
j=0

f
(

j
γn

1
, ς

)
sn,j(u),

yRG
m( f (τ, ς); τ, v) :=

m

∑
k=0

f
(

τ,
k

γm
2

)
sm,k(v),

the bivariate operator RG
n,m is the tensorial product of xRG

n and yRG
m such that:

RG
n,m =x RG

n ◦y RG
m =y RG

m ◦x RG
n .

Indeed, by denoting g(τ, v) :=y RG
m( f (τ, ς); τ, v), we obtain:
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xRG
n

(
yRG

m( f (τ, ς); τ, v); u, v
)

= xRG
n (g(τ, v); u, v)

=
n

∑
j=0

g
(

j
γn

1
, v
)

sn,j(u)

=
n

∑
j=0

(
m

∑
k=0

f
(

j
γn

1
,

k
γm

2

)
sm,k(v)

)
sn,j(u)

=
n

∑
j=0

m

∑
k=0

f
(

j
γn

1
,

k
γm

2

)
sn,j(u)sm,k(v)

= RG
n,m( f (τ, ς); u, v).

Similarly, we have the following relation:

yRG
m

(
xRG

n ( f (τ, ς); u, ς); u, v
)
= RG

n,m( f (τ, ς); u, v).

If αh
φ = ah, γh

φ = bh and βh
φ = 1 for (φ, h) = (1, n), (2, m), then the tensor-product kind

operator RG
n,m is reduced to the bivariate operator Rn,m defined by (2). Therefore, the

tensor-product kind operator RG
n,m is a generalization of the bivariate operator Rn,m defined

by (2)
Now, we give some auxilary results:

Lemma 1. Let RG
n,m be the operator defined by (6) and ψi,j(τ, ς) = τiςj, i, j = 0, 1, 2, be the

bivariate test functions. Then, we have the following equalities:

RG
n,m(ψ0,0; u, v) = 1,

RG
n,m(ψ1,0; u, v) =

u
βn

1 + αn
1 u

,

RG
n,m(ψ0,1; u, v) =

v
βm

2 + αm
2 v

,

RG
n,m(ψ2,0; u, v) =

(
1− 1

n

)
u2(

βn
1 + αn

1 u
)2 +

u
γn

1
(

βn
1 + αn

1 u
) ,

RG
n,m(ψ0,2; u, v) =

(
1− 1

m

)
v2(

βm
2 + αm

2 v
)2 +

v
γm

2
(

βm
2 + αm

2 v
) .

Proof. By the proof of Lemma 1 of [4], we can write:

RG
n,m(ψ0,0; u, v) =

n

∑
j=0

m

∑
k=0

1.sn,j(u)sm,k(v) = 1

RG
n,m(ψ1,0; u, v) =

n

∑
j=1

j
γn

1
sn,j(u)

m

∑
k=0

sm,k(v)

=
u

βn
1 + αn

1 u

n−1

∑
j=0

sn−1,j(u)
m

∑
k=0

sm,k(v)

=
u

βn
1 + αn

1 u
,
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RG
n,m(ψ2,0; u, v) =

n

∑
j=0

m

∑
k=0

(
j

γn
1

)2
sn,j(u)sm,k(v)

=
n

∑
j=0

(
j

γn
1

)2
sn,j(u)

m

∑
k=0

sm,k(v)

=

(
1− 1

n

)
u2(

βn
1 + αn

1 u
)2

n−2

∑
j=0

sn−2,j(u)
m

∑
k=0

sm,k(v)

+
u

γn
1
(

βn
1 + αn

1 u
) n−1

∑
j=0

sn−1,j(u)
m

∑
k=0

sm,k(v)

=

(
1− 1

n

)
u2(

βn
1 + αn

1 u
)2 +

u
γn

1
(

βn
1 + αn

1 u
) .

Similarly, RG
n,m(ψ0,1; u, v) and RG

n,m(ψ0,2; u, v) can be easily calculated by interchanging
the roles of the components j, n and u of sn,j(u) with k, m and v and the components k, m
and v of sm,k(v) with j, n and u, respectively.

Remark 1. From Lemma 1, we obtain:

RG
n,m(τ − u; u, v) =

(
1− βn

1
)
u

βn
1 + αn

1 u
−

αn
1 u2

βn
1 + αn

1 u
,

RG
n,m(ς− v; u, v) =

(1− βm
2 )v

βm
2 + αm

2 v
−

αm
2 v2

βm
2 + αm

2 v
,

RG
n,m((τ − u)2; u, v) =

βn
1u

γn
1
(

βn
1 + αn

1 u
)2 +

(
αn

1 +
(

βn
1 − 1

)2 − 1
n

)
u2(

βn
1 + αn

1 u
)2

+
2αn

1
(

βn
1 − 1

)
u3(

βn
1 + αn

1 u
)2 +

αn
1 u4(

βn
1 + αn

1 u
)2 ,

RG
n,m((ς− y)2; u, v) =

βm
2 v

γm
2
(

βm
2 + αm

2 v
)2 +

(
αm

2 + (βm
2 − 1)2 − 1

m

)
v2(

βm
2 + αm

2 v
)2

+
2αm

2 (βm
2 − 1)v3(

βm
2 + αm

2 v
)2 +

αm
2 v4(

βm
2 + αm

2 v
)2 .

3. Approximation Results

In this part, we firstly present a Volkov-type result for the tensor-product kind bivariate
operator RG

n,m.
Let A ⊂ [0, ∞)× [0, ∞) be a compact set of R2, and C(A) be the space of all real-valued

continuous functions f on A with the supremum norm ‖ f ‖ = sup{| f (u, v)| : (u, v) ∈ A}.

Theorem 1. Let RG
n,m, n, m ∈ N, be the tensor-product kind bivariate operator defined by (6) and(

αn
1
)
, (αm

2 ),
(

βn
1
)
, (βm

2 ),
(
γn

1
)

and (γm
2 ) be real sequences fulfilling the condition (5). Then, for all

f ∈ C([0, r1]× [0, r2]), r1, r2 > 0, RG
n,m( f ) converges uniformly to f on [0, r1]× [0, r2].

Proof. By Lemma 1, the theorem can be proved by considering Volkov’s theorem in [16]
with similar methods to the proof of Theorem 1 of [4]; therefore, we omit its proof.
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Now, we obtain inequalities estimating the error of the approximation by the tensor-
product kind bivariate operator RG

n,m defined by (6).
The complete modulus of continuity for bivariate functions f ∈ C(A) is defined as follows:

ω( f ; µ1, µ2) = sup{| f (τ, ς)− f (u, v)| : |τ − u| ≤ µ1, |ς− v| ≤ µ2, (τ, ς), (u, v) ∈ A, }

where µ1, µ2 > 0.
Moreover, the partial modulus of continuity according to x and y are defined by:

ω(1)( f ; µ1) = sup{| f (τ, v)− f (u, v)| : |τ − u| ≤ µ1, (τ, v), (u, v) ∈ A},
ω(2)( f ; µ2) = sup{| f (u, ς)− f (u, v)| : |ς− v| ≤ µ2, (u, ς), (u, v) ∈ A},

which fulfill the properties of the classical modulus of continuity. The details of the modulus
of continuity for the bivariate functions can be found in [17].

Secondly, we estimate the rate of convergence of the tensor-product kind bivariate
operator RG

n,m defined in (6) by using the complete modulus of continuity.

Theorem 2. Let f ∈ C([0, r1]× [0, r2]), r1, r2 > 0. Then, the following inequality holds:∣∣∣RG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ 4ω( f ; µu
n, µv

m),

where µu
n :=

(
RG

n,m((τ − u)2; u, v)
)1/2

and µv
m :=

(
RG

n,m((ς− v)2; u, v)
)1/2

.

Proof. Using the linearity and the positivity of the operator RG
n,m and taking properties of

the complete modulus of continuity into account, we can write:∣∣∣RG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ RG
n,m(| f (τ, ς)− f (u, v)|; u, v)

≤ ω( f ; µ1, µ2)

[
1 +

1
µ1

RG
n,m(|τ − u|; u, v)

+
1

µ2
RG

n,m(|ς− v|; u, v)

+
1

µ1µ2
RG

n,m(|τ − x||ς− v|; u, v)
]

. (7)

Applying the Cauchy–Schwarz inequality to (7), we obtain:∣∣∣RG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ ω( f ; µ1, µ2)

[
1 +

1
µ1

(
RG

n,m

(
(τ − u)2; u, v

))1/2

+
1

µ2

(
RG

n,m

(
(ς− v)2; u, v

))1/2

+
1

µ1µ2

(
RG

n,m

(
(τ − u)2(ς− v)2; u, v

))1/2
]

. (8)

In (8), by considering Lemma 1 and choosing µ1 =: µu
n :=

(
RG

n,m((τ − u)2; u, v)
)1/2

and

µ2 =: µv
m :=

(
RG

n,m((ς− v)2; u, v)
)1/2

, we complete the proof of the theorem.

We present in the following theorem the estimation of the rate of the convergence
by the tensor-product kind bivariate operator RG

n,mdefined in (6) by means of the partial
modulus of continuities.
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Theorem 3. Let f ∈ C([0, r1]× [0, r2]), r1, r2 > 0. Then, the following inequality is valid:∣∣∣RG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ 2
[
ω(1)( f ; µu

n) + ω(2)( f ; µv
m)
]
.

Proof. Considering the definition of the partial modulus of continuity and using the
Cauchy–Schwarz inequality, we can write:∣∣∣RG

n,m( f ; u, v)− f (u, v)
∣∣∣ ≤ RG

n,m(| f (τ, ς)− f (u, v)|; u, v)

≤ RG
n,m(| f (τ, ς)− f (u, ς)|; u, v) + RG

n,m(| f (u, ς)− f (u, v)|; u, v)

≤ ω(1)( f ; µ1)

[
1 +

1
µ1

RG
n,m(|τ − u|; u, v)

]
+ω(2)( f ; µ2)

[
1 +

1
µ2

RG
n,m(|ς− v|; u, v)

]
≤ ω(1)( f ; µ1)

[
1 +

1
µ1

(
RG

n,m((τ − u)2; u, v)
)1/2

]
+ω(2)( f ; µ2)

[
1 +

1
µ2

(
RG

n,m((ς− v)2; u, v)
)1/2

]
.

Choosing µ1 =: µu
n :=

(
RG

n,m((τ − u)2; u, v)
)1/2

and µ2 =: µv
m :=

(
RG

n,m((ς− v)2; u, v)
)1/2

,
we complete the proof.

Now, we investigate the rate of convergence of the operator RG
n,mdefined in (6) with

the help of functions of the Lipschitz type.
Any function f ∈ C(A) is called a function of Lipschitz type and denoted by f ∈ LipM(a, b)

if there exists an M > 0 such that:

| f (τ, ς)− f (u, v)| ≤ M|τ − u|a|ς− v|b,

where (τ, ς), (u, v) ∈ A are arbitrary and 0 < a, b ≤ 1.

Theorem 4. Let f ∈ LipM(a, b). Then, there exists an M > 0 such that:∣∣∣RG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ M(µu
n)

a(µv
m)

b,

for all (x, y) ∈ [0, r1]× [0, r2], where µu
n :=

(
RG

n,m((τ − u)2; u, v)
)1/2

and µv
m :=

(
RG

n,m((ς− v)2;

u, v))1/2.

Proof. By the hypothesis of the theorem, we can write:∣∣∣RG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ RG
n,m(| f (τ, ς)− f (u, v)|; u, v)

≤ MRG
n,m(|τ − u|a|ς− v|b; u, v)

= MRG
n,m(|τ − u|a; x, y)× RG

n,m(|ς− v|b; u, v).

Respectively, applying the Hölder’s inequality to the last inequality for p1 = 2
a , q1 = 2

2−a ,
p2 = 2

b and q2 = 2
2−b such that 1

pi
+ 1

qi
= 1, i = 1, 2, we obtain:

∣∣∣RG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ M
(

RG
n,m((τ − u)2; u, v)

)a/2(
RG

n,m(1; u, v)
)(2−a)/2

×
(

RG
n,m((ς− v)2; u, v)

)b/2(
RG

n,m(1; u, v)
)(2−b)/2

= M(µu
n)

a(µv
m)

b,
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which completes the proof of the theorem.

4. GBS Operator

In this part, we construct the GBS operator associated with the tensor-product kind
bivariate operator RG

n,m.
We recall some basic notations given by Bögel. The details of which can be found in

references [18–20].
Let A be a compact subset of R2. A real-valued function on A is called Bögel-

continuous function at (τ, ς) ∈ A if:

∆(u,v) f [τ, ς; u, v] = 0,

where ∆(u,v) f [τ, ς; u, v] denotes the mixed difference defined by:

∆(u,v) f [τ, ς; u, v] = f (u, v)− f (u, ς)− f (τ, v) + f (τ, ς).

Let A be a subset of R2. A real-valued function on A is Bögel-bounded function if
there exists an M > 0 such that: ∣∣∣∆(u,v) f [τ, ς; u, v]

∣∣∣ ≤ M,

for all (τ, ς), (u, v) ∈ A.
Let A be a compact subset of R2. Then, each Bögel-continuous function is a Bögel-

bounded function. Let CB(A) denote the space of all the real-valued Bögel-continuous
functions defined on A endowed with the following norm:

‖ f ‖B = sup
{∣∣∣∆(u,v) f [τ, ς; u, v]

∣∣∣ : (u, v), (τ, ς) ∈ A
}

.

It is obvious that C(A) ⊂ CB(A).
For f ∈ C([0, r1]× [0, r2]), r1, r2 > 0, we introduce the GBS (generalized Boolean sum)

operator associated with the operator RG
n,m by:

BG
n,m( f (τ, ς); u, v) = RG

n,m( f (u, ς) + f (τ, v)− f (τ, ς); u, v), (9)

for all (τ, ς), (u, v) ∈ [0, r1]× [0, r2] and n, m ∈ N. We can definitely write:

BG
n,m( f (τ, ς); u, v) =

n

∑
j=0

m

∑
k=0

sn,j(u)sm,k(v)

×
[

f
(

u,
k

γm
2

)
+ f

(
j

γn
1

, v
)
− f

(
j

γn
1

,
k

γm
2

)]
(10)

where sn,j(u) = (n
j)

(αn
1 u)j(βn

1 )
n−j

(βn
1+αn

1 u)
n , sm,k(v) = (m

k )
(αm

2 v)k(βm
2 )

m−k

(βm
2 +αm

2 v)
m and

(
αn

1
)
,(αm

2 ),
(

βn
1
)
, (βm

2 ),
(
γn

1
)

and (γm
2 ) are non-negative real sequences such that γh

φ = hαh
φ for (φ, h) = (1, n), (2, m)

fulfilling the condition of (5).
It is clear that BG

n,m maps CB([0, r1]× [0, r2]) into itself, and it is linear and positive.
The mixed modulus of smoothness of f ∈ CB(A) is defined in [21] by:

ωmixed( f ; u, v) = sup{
∣∣∣∆(u,v) f [τ, ς; u, v]

∣∣∣ : |τ − u| < µ1, |ς− v| < µ2, (τ, ς), (u, v) ∈ A}. (11)

Theorem 5. For any f ∈ CB([0, r1]× [0, r2]), the following inequality is valid:∣∣∣BG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ 4ωmixed( f ; µu
n, µv

m)

where µu
n :=

(
RG

n,m((τ − u)2; u, v)
)1/2

and µv
m :=

(
RG

n,m((ς− v)2; u, v)
)1/2

.
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Proof. By (11) and for λ1, λ2 > 0, the mixed modulus of smoothness ωmixed possesses the
following property:

ωmixed( f ; λ1µ1, λ2µ2) ≤ (1 + λ1)(1 + λ2)ωmixed( f ; µ1, µ2),

by which for all (τ, ς), (u, v) ∈ [0, r1]× [0, r2], we obtain:∣∣∣∆(u,v) f [τ, ς; u, v]
∣∣∣ ≤ | f (u, v)− f (u, ς)− f (τ, v) + f (τ, ς)|

≤ ωmixed( f ; |τ − u|, |ς− v|)

≤
(

1 +
|τ − u|

µ1

)(
1 +
|ς− v|

µ2

)
ωmixed( f ; µ1, µ2). (12)

By (9), we can write:

f (u, ς) + f (τ, v)− f (τ, ς) = f (u, v)− ∆(u,v) f [τ, ς; u, v].

Considering the definition of RG
n,m and BG

n,m, we obtain:

BG
n,m( f (τ, ς); u, v) = RG

n,m( f (u, ς) + f (τ, v)− f (τ, ς); u, v)

= f (u, v)RG
n,m(ψ0,0; u, v)− RG

n,m

(
∆(u,v) f [τ, ς; u, v]; u, v

)
.

By (12) and taking the Cauchy–Schwarz inequality into account, we obtain:∣∣∣BG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ [RG
n,m(1; u, v) +

1
µ1

(RG
n,m((τ − u)2; u, v))1/2

+
1

µ2
(RG

n,m((ς− v)2; u, v))1/2

+
1

µ1µ2
(RG

n,m((τ − u)2; u, v)RG
n,m((ς− v)2; u, v))1/2]

×ωmixed( f ; µ1, µ2).

Choosing µu
n :=

(
RG

n,m((τ − u)2; u, v)
)1/2

and µv
m :=

(
RG

n,m((ς− v)2; u, v)
)1/2

, we obtain
the desired result.

Now, we recall the Bögel-continuous functions of Lipschitz type. For f ∈ CB(A),
(τ, ς), (u, v) ∈ A and 0 < a, b ≤ 1, if there exists an M > 0 such that:∣∣∣∆(u,v) f [τ, ς; u, v]

∣∣∣ ≤ M|τ − u|a|ς− v|b,

then f is called a Bögel-continuous function of Lipschitz type and denoted by LipBM(a, b).

Theorem 6. Let f ∈ LipBM(a, b). Then, for all (u, v) ∈ [0, r1]× [0, r2], we have the following
inequality: ∣∣∣BG

n,m( f ; u, v)− f (u, v)
∣∣∣ ≤ M(µu

n)
a(µv

m)
b, M > 0,

where µu
n :=

(
RG

n,m((τ − u)2; u, v)
)1/2

and µv
m :=

(
RG

n,m((ς− v)2; u, v)
)1/2

.
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Proof. Since:

BG
n,m( f ; u, v) = RG

n,m( f (u, ς) + f (τ, v)− f (τ, ς); u, v)

= RG
n,m

(
f (u, v)− ∆(u,v) f [τ, ς; u, v]; u, v

)
= f (u, v)RG

n,m(ψ0,0; u, v)− RG
n,m

(
∆(u,v) f [τ, ς; u, v]; u, v

)
,

we can write:∣∣∣BG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ RG
n,m

(∣∣∣∆(u,v) f [τ, ς; u, v]
∣∣∣; u, v

)
≤ MRG

n,m(|τ − u|a|ς− v|b; u, v)

= MRG
n,m(|τ − u|a; u, v)× RG

n,m(|ς− v|b; u, v).

Applying the Hölder’s inequality to the last inequality by choosing p1 = 2
a , q1 = 2

2−a ,
p2 = 2

b and q2 = 2
2−b such that 1

pi
+ 1

qi
= 1, i = 1, 2, we obtain:

∣∣∣BG
n,m( f ; u, v)− f (u, v)

∣∣∣ ≤ M
(

RG
n,m((τ − u)2; u, v)

)a/2(
RG

n,m(1; u, v)
)(2−a)/2

×
(

RG
n,m((ς− v)2; u, v)

)b/2(
RG

n,m(1; u, v)
)(2−b)/2

= M(µu
n)

a(µv
m)

b,

which is the desired result.

5. Graphical Comparisons

Let ϕ(u, v) = (u− v)2 such that (u, v) ∈ [0, 3]× [0, 3].
1. Let us choose n = m, αh

φ = n−1/2, γh
φ = n1/2 and βh

φ = 1 − 5n−1 such that
(φ, h) = (1, n), (2, m), n, m = 1, 2, ...

Figure 1 compares the approximation of RG
5,5(ϕ; u, v) (red), RG

25,25(ϕ; u, v) (yellow)
and RG

75,75(ϕ; u, v) (green) to ϕ(u, v) (blue) on [0, 3]× [0, 3]. For increasing value of n, the
approximation of RG

n,n(ϕ; u, v) to ϕ(u, v) becomes better.
Figure 2 compares the approximation of BG

5,5(ϕ; u, v) (red), BG
25,25(ϕ; u, v) (yellow) and

BG
75,75(ϕ; u, v) (green) to ϕ(u, v) (blue) on [0, 3]× [0, 3]. Similarly, for increasing value of n,

the approximation of BG
n,n(ϕ; u, v) to ϕ(u, v) becomes better.

2. Let us choose n = m = 75, αh
φ = n−1/2, γh

φ = n1/2 and β1 = βh
φ = 1− 5n−1, β2 =

βh
φ = 1− 10n−1 and β2 = βh

φ = 1− 15n−1 such that (φ, h) = (1, n), (2, m), n, m = 1, 2, . . .
Figure 3 compares the approximation of RG

75,75(ϕ; u, v; β1) (red), RG
75,75(ϕ; u, v; β2) (yel-

low) and RG
75,75(ϕ; u, v; β3) (green) to ϕ(u, v) (blue) on [0, 3]× [0, 3]. One can see that the

approximation of RG
75,75(ϕ; u, v; β3) (green) to ϕ(u, v) (blue) is better than others.

Figure 4 compares the approximation of BG
75,75(ϕ; u, v; β1) (red), BG

75,75(ϕ; u, v; β2) (yel-
low) and BG

75,75(ϕ; u, v; β3) (green) to ϕ(u, v) (blue) on [0, 3]× [0, 3]. One can see that the
approximations of BG

75,75(ϕ; u, v; β1) (red) and BG
75,75(ϕ; u, v; β3) (green) are better in places

of the sub-region of the region than BG
75,75(ϕ; u, v; β2) (yellow).

3. Let us choose n = m, αh
φ = n−1/2, γh

φ = n1/2 and βh
φ = 1 − 5n−1 such that

(φ, h) = (1, n), (2, m), n, m = 1, 2, ...
Figure 5, compares the approximation of the operators R75,75(ϕ; u, v) (green), RG

75,75(ϕ; u, v)
(red) and BG

75,75(ϕ; u, v) (yellow) to ϕ(u, v) (blue) on [0, 3]× [0, 3]. One can see that the ap-
proximation of BG

75,75(ϕ; u, v; β2) (yellow) to ϕ(u, v) (blue) is the best. BG
75,75(ϕ; u, v; β2)

(yellow) is so close to ϕ(u, v) (blue) that it almost coincides.
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Figure 1. Approximation of RG
n,n(ϕ) to ϕ (blue) on [0, 3]× [0, 3] for n = 5 (red), n = 25 (yellow),

n = 75 (green).

Figure 2. Approximation of BG
n,n(ϕ) to ϕ (blue) on [0, 3] × [0, 3] for n = 5 (red), n = 25 (yellow),

n = 75 (green).
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Figure 3. Comparison by Approximation of RG
75,75(ϕ) to ϕ (blue) on [0, 3]× [0, 3] for β1 = 1− 5n−1

(red), β2 = 1− 10n−1 (yellow) and β3 = 1− 15n−1 (green).

Figure 4. Comparison by Approximation of BG
75,75(ϕ) to ϕ (blue) on [0, 3]× [0, 3] for β1 = 1− 5n−1

(red), β2 = 1− 10n−1 (yellow) and β3 = 1− 15n−1 (green).
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Figure 5. Comparison by Approximation of R75,75(ϕ) (green), RG
75,75(ϕ) (red) and BG

75,75(ϕ) (yellow)
to ϕ (blue) on [0, 3]× [0, 3].

6. Conclusions

In this paper, we have introduced the tensor-product kind bivariate operator RG
n,m of

the generalized Bernstein-type rational function RG
n defined in [4] and its GBS (generalized

Boolean sum) operator BG
n,m, and we have investigated their approximation properties

on rectangular region [0, r1]× [0, r2] such that r1, r2 > 0. Moreover, we have given some
graphical comparisons visualizing the convergence of the tensor-product kind bivariate
operator and its GBS operator, which also compare their convergence with the bivariate
operator Rn,m defined in [2].

The results of this paper demonstrate that the GBS operator BG
n,m possesses at least

a better approximation than the tensor-product kind bivariate operator RG
n,m, while the

tensor-product kind bivariate operator RG
n,m has at least a better approximation than the

bivariate operator Rn,m defined in [2].
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7. Başcanbaz-Tunca, G.; Erençin, A.; Olgun, A. Quantitative estimates for bivariate Stancu operators. Math. Methods Appl. Sci. 2019,

42, 5241–5250. [CrossRef]
8. Agrawal, P.N.; Kajla, A.; Kumar, D. Modified ρ -Bernstein operators for functions of two variables. Numer. Funct. Anal. Optim.

2021, 42, 1073–1095. [CrossRef]
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