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Abstract: When the lifetime of an electronic component does not reach the required level, it can be
enhanced by means of the paralleling current sharing backup system or the redundant backup system.
The lifetime of the redundant backup system is the sum of lifetimes of all electronic components,
which is the maximum of all the electronic components’ lifetimes, compared with the lifetime of the
parallel current sharing backup system. For the purpose of enhancing products’ reliability, electronic
goods are usually designed with spare electronic components. If it is assumed that there are m− 1
redundant backup components for each electronic product, then the lifetime of the electronic product
will be distributed as a Gamma distribution with two parameters—m and λ, where λ is the mean for
each lifetime of each electronic component. According to numerous studies, the sample size is not
large, as it takes a long time to test the lifetime of an electronic product, and enterprises consider cost
and timeliness. This paper concerns the performance index of the lifetime of the electronic product.
Therefore, based on the confidence interval, this paper aims to develop a fuzzy testing model. As this
model can integrate past data and expert experience, the testing accuracy can be retained despite
small-sized samples. In fact, through adopting the testing model proposed by this paper, companies
can make precise and intelligent decisions instantly with the use of small-sized samples to grasp the
opportunities for improvement.

Keywords: lifetime of the electronic product; redundant backup components; fuzzy testing method;
gamma distribution; confidence interval

MSC: 62C05; 62C86

1. Introduction

According to some studies, electronic products are usually designed with spare elec-
tronic components to increase the product reliability [1–5]. When an electronic product
has only one electronic component without any spare electronic components, improving
the lifetime of the electronic component can help prolong the lifetime of the electronic
product. If the lifetime of the electronic component cannot be leveled up to the required
level in a short time, the parallel current-sharing backup system or redundant backup
system can be used to increase the lifetime of the electronic product. Based on the re-
search of Chen et al. [6], the concept of the parallel current sharing system is that all the
backup batteries run together until the maximum battery lifetime fails and stops working.
Such products include high-power battery pack testers and digital parallel high-efficiency
water-cooled power supplies. The redundant backup system is activated when the primary
electronic component fails, and then the product will immediately switch the primary
electronic component to a spare. Such products include the time synchronization system
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and the channel analog multiplexer (high electrostatic discharge protection multiplexer).
Moreover, Chen et al. [6] indicated that during the failure of the primary component, the
redundant backup system will be activated instantaneously, and the system will automati-
cally switch to the spare component. Assume that for each electronic product, there are
m electronic components; then, the lifetime of the electronic product is Tm=∑m

j=1 Tj for
the redundancy backup system, where Tj represents the lifetime of the j− th electronic
component, j = 1, 2, .., m. The lifetime of the j− th electronic component (Tj) follows an
exponential distribution with mean λ [7,8]. Chen et al. [6] noted that the characteristic
function of Tj is φTj(τ) = (1− iλτ)−1, and the characteristic function of Tm is (1− iλτ)−m.
Therefore, Tm is distributed as a Gamma distribution with two parameters—m and λ,
denoted by Tm~G(m, λ). The probability density function of Tm is

fTm(t) =
1

Γ(m)λm tm−1e
−t
λ , t > 0. (1)

Obviously, the lifetime of the electronic product belongs to the larger-the-best quality
characteristic [9–11]. According to this condition, Chen et al. [6] proposed a lifetime
performance index of the electronic product below:

CLm = 1− L
mλ

, (2)

where L represents the warranty period and mλ is the expected value of Tm. When the
average lifetime of electronic products is mλ ≥ L, the lifetime performance index is CLm ≥ 0;
the larger the average lifetime value mλ, the greater the value of the lifetime performance
index CLm. As the value of the lifetime performance index CLm approaches infinity, the
electronic component lifetime performance index CLm also approaches 1 and CLm < 1. In
addition, the product reliability pR is

pR = p{Tm > L} = exp{−m(1− CLm)} ×
m−1

∑
j=0

(
mj(1− CLm)

j

j!

)
. (3)

Obviously, the product reliability pR is a function of index CLm. The partial differentia-
tion of pR by CLm is bigger than zero as follows:

∂pR
∂CLm

= e−m(1−CLm) mm

(m− 1)!
(1− CLm)

m−1. (4)

Therefore, pR is an increasing function of CLm. The higher the value of the lifetime
performance index CLm, the higher the product reliability pR. It is clearly seen that the
electronic product lifetime performance index CLm can reflect product reliability, which is
an excellent index for evaluating the lifetime performance of electronic products. Moreover,
Chen et al. [6] discovered the uniformly minimum variance unbiased estimator (UMVUE)
and the uniformly most powerful (UMP) test for index CLm. As the data collection time of
the electronic product lifetime is relatively long, some scholars have shortened the time
of collecting sample data by means of accelerating tests. However, the shortcoming is
that the lifetime data are not complete. In addition, according to various studies, the
Internet of Things and big data analysis technologies have gradually matured, so fast,
precise, and intelligent decision-making can help businesses grasp the opportunities for
improvement [12–15]. To solve the above-mentioned problems, this paper proposes a fuzzy
testing model built on the confidence interval of lifetime performance index CLm. The
advantages of this fuzzy test proposed in this paper are as follows:

(1) The sample data obtained from this model are more complete than the sample data
received from the accelerated tests.

(2) Obtaining the lifetime sample data through the tests is easier than receiving the trian-
gular fuzzy number data. Then, the fuzzy membership function is constructed with
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the confidence interval, and the fuzzy evaluation rules are established by calculating
easy simple ratios, convenient for the industry to apply.

(3) The fuzzy testing based on the confidence interval can reduce the risk of misjudg-
ment [16,17].

(4) This model can integrate past data and expert experience. Despite small-sized samples,
the testing accuracy can still be maintained [18].

The remainder of this paper is organized as follows: In Section 2, we derive the
100(1 − α)% confidence interval of index CLm. Next, we propose a confidence-interval-
based fuzzy testing method to evaluate the electronic product lifetime performance and
determine whether the performance needs to improve. Section 4 shows a numerical
example, demonstrating the applicability of the approach proposed by this paper. Finally,
Section 5 presents the conclusions.

2. Confidence Interval of Index CLm

Assuming that Tm,1, . . . , Tm,j, . . . , Tm,n is a random sample of Tm with sample size n,
the uniformly minimum variance unbiased estimator of CLm can be shown below [6]:

C∗Lm = 1− (n−m−1)L
TSUM

, (5)

where TSUM = ∑n
j=1 Tm,j. Assuming that the characteristic function of TSUM is (1− iλt)−mn,

TSUM is distributed as G(mn, λ).
Furthermore, let

W =
TSUM

λ
= (mn− 1)

1− CLm
1− C∗Lm

, (6)

then W is distributed as Gamma(mn, 1) and

1− α
= p{GAMINV(α/2, mn) ≤W ≤ GAMINV(1− α/2, mn)}
= p

{
GAMINV(α/2, mn) ≤ (mn− 1) 1−CLm

1−C∗Lm
≤ GAMINV(1− α/2, mn)

}
= p

{
1− GAMINV(1−α/2,mn)

mn−1
(
1− C∗Lm

)
≤ CLm ≤ 1− GAMINV(α/2,mn)

mn−1
(
1− C∗Lm

)}
,

where GAMINV(a, mn) represents the lower quantile of G(mn, 1), a = α/2, or a = 1− α/2.
Thus, the (1− α)100% confidence interval of CLm is [LCLm, UCLm], which can be displayed
as follows:

LCLm = 1− GAMINV(1− α/2, mn)
mn− 1

(1− C∗Lm); (7)

UCLm = 1− GAMINV(α/2, mn)
mn− 1

(1− C∗Lm). (8)

Let (t1, . . . , tj, . . . , tn) be the observed values of Tm,1, . . . , Tm,j, . . . , Tm,n, then the ob-
served value of C∗Lm is

C∗Lm0 = 1− (n−m−1)L
tSUM

, (9)

where tSUM = ∑n
j=1 tj. Thus, the observed values of the lower confidence limit and upper

confidence limit can be presented as follows:

LcLm = 1− GAMINV(1− α/2, mn)
mn− 1

(1− C∗Lm0); (10)

UcLm = 1− GAMINV(α/2, mn)
mn− 1

(1− C∗Lm0). (11)
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3. Fuzzy Testing Method

As mentioned earlier, the fuzzy testing based on the confidence interval can still main-
tain the testing accuracy in the case of small samples. Therefore, based on the confidence
interval of the lifetime performance index CLm derived in Section 2, a fuzzy testing method
is proposed to evaluate whether the lifetime performance of electronic products reaches
the required level. If the lifetime performance index CLm of electronic products is required
to be at least k, then

H0 : CLm ≥ k (The lifetime performance of electronic products reaches the
required level.)

H1 : CLm < k (The lifetime performance of electronic products does not reach the
required level.)

Based on Equations (10) and (11), using Buckley’s approach proposed by Buckley [19],
the α− cuts of the triangular-shaped fuzzy number C̃Lm with [LcLm, UcLm] is

C̃Lm[α] =

{
[CLm1(α), CLm2(α)], 0.01 ≤ α ≤ 1.00

[CLm1(0.01), CLm2(0.01)], 0.00 ≤ α < 0.01
, (12)

where

CLm1(α) = 1− GAMINV(1− α/2, mn)
mn− 1

(1− C∗Lm0); (13)

CLm2(α) = 1− GAMINV(α/2, mn)
mn− 1

(1− C∗Lm0). (14)

Thus, the triangular-shaped fuzzy number is C̃Lm = (CL, CM, CR), where

CL = 1− GAMINV(0.995, mn)
mn− 1

(1− C∗Lm0); (15)

CM = 1− GAMINV(0.5, mn)
mn− 1

(1− C∗Lm0); (16)

CR = 1− GAMINV(0.005, mn)
mn− 1

(1− C∗Lm0). (17)

In addition, the membership function of C̃Lm is

η(x) =


0 i f x ≤ CL

α1 i f CL < x < CM
1 i f x = CM

α2 i f CM < x < CR
0 i f CR ≤ x

, (18)

where α1 and α2 are determined by

x = 1− GAMINV(1− α1/2, mn)
mn− 1

(1− C∗Lm0) (19)

and

x = 1− GAMINV(α2/2, mn)
mn− 1

(1− C∗Lm0). (20)

Before the fuzzy testing method was proposed, the statistical testing rules were first
reviewed and are listed below:

(1) If the upper confidence limit is UcLm ≥ k, then do not reject H0 (CLm ≥ k).
(2) If the upper confidence limit is UcLm < k, then reject H0 and assume that CLm < k.

Next, this paper constructed a fuzzy testing method based on the above-mentioned
statistical testing rules. Figure 1 presents a diagram of membership functions of η(x) with
vertical line x = k.
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Then, let the set AT represent the area sandwiched between the membership function
η(x) and the x-axis as follows:

AT= { (x, α)|CLm1(α) ≤ x ≤ CLm1(α), 0 ≤ α ≤ 1}. (21)

Let aT denote the area of the set AT . Based on Buckley [19], it is difficult to calculate the
area of AT directly via the integration. Therefore, this paper adopted the method of Chen
et al. [20] to cut set AT into 100 approximately trapezoidal blocks, and let set ATl represent
the lth block of AT and l = [100α], l = 1, . . . , 100 for 0 ≤ α ≤ 1, where [100α] represents the
largest integer less than or equal to 100α. Then, α = 0.01× l and l = 1, . . . , 100 cut set AT
into 100 approximately trapezoidal blocks, and the lth block of AT can be shown as follows:

ATl = {(x, l)|CLm1(0.01× l) ≤ x ≤ CLm2(0.01× l), l = 1, . . . , 100}, (22)

where

CLm1(0.01× l) = 1− GAMINV(1− 0.005× l, mn)
mn− 1

(1− C∗Lm0); (23)

CLm2(0.01× l)d0 = d1− GAMINV(0.005× l, mn)
mn− 1

(1− C∗Lm0). (24)

Let dl = CLm2(0.01× l)− CLm1(0.01× l), then

dl =
GAMINV(1− 0.005× l, mn)− GAMINV(0.005× l, mn)

mn− 1
(1− C∗Lm0). (25)

Obviously, we have d0 = d1 based on Equation (12) and d100 = 0 based on Equation (25).
Let aTl denote the area of set ATl , then the approximate area of ATl is

aTl =

(
dl−1 + dl

2

)
× (0.01), l = 1, . . . , 100. (26)

Thus,

aT =
100

∑
l=1

aTl = (0.01)×
100

∑
l=1

(
dl−1 + dl

2

)
=

(
0.5× d1 +

99

∑
l=10

dl

)
× (0.01). (27)

Let AR be the area in the graph of η(x) but to the right of the vertical line x = k, then

AR =
{
(x, α)|k ≤ x ≤ CLm2(α), 0 ≤ α ≤ 0.01× l′

}
, (28)
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where α = 0.01× l′ such that CLm2(0.01× l′) = k. Clearly, α = 0.01× l and l = 1, . . . , l′ cut
set AR into l′ blocks, and the lth block of ARl can be shown as follows:

ARl =
{
(x, l)

∣∣k ≤ x ≤ CLm2(0.01× l), l = 1, . . . , l′
}

, (29)

where k = CLm2(0.01× l′). Let rl = CLm2(0.01× l)− k, then

rl =
GAMINV(0.005× l, mn)− GAMINV(0.005× l′, mn)

mn− 1
(1− C∗Lm0). (30)

Obviously, we have r0 = r1 based on Equation (12) and rl′ = 0 based on Equation (30).
Let the area of AR be aR, then the approximate area of ARl is

aRl =

(
rl−1 + rl

2

)
× (0.01), l = 1, . . . , 100. (31)

Thus,

aR =
100

∑
l=1

aRl = (0.01)×
l′

∑
l=1

(
rl−1 + rl

2

)
=

(
0.5× r1 +

l′

∑
l=10

rl

)
× (0.01). (32)

Based on Equations (27) and (31), we have

aR
aT

=

0.5× r1 +
l′

∑
l=10

rl

0.5× d1 +
99
∑

l=10
dl

. (33)

Note that we let 0 < φ1 < φ2 < 0.5, where the values of φ1 and φ2 can be determined
based on the past accumulated production data or expert experience [21,22]. As noted by
Yu et al. [23] and Buckley [19], we may obtain the following fuzzy testing rules:

1. If aR/aT≤φ1, then reject H0 and assume that CLm<k.
2. If φ1<aR/aT<φ2, then do not make any decision on whether to reject H0 or not.
3. If φ2≤aR/aT , then do not reject H0 and assume that CLm≥k.

4. Numerical Example

A numerical example is presented in this section to illustrate the fuzzy testing method
outlined in Section 3. To determine whether the lifetime performance index value of an
electronic product is bigger than or equal to 0.75, the null hypothesis and alternative
hypothesis can be displayed as follows:

H0: CLm ≥ 0.75;
H1: CLm < 0.75.
In this paper, we suppose that an enterprise adds an electronic component to the redun-

dant backup system to increase the reliability of the electronic product, which means that the
electronic product has a total of two electronic components (m = 2). Let (t1, . . . , tj, . . . , t18)
be the observed values of T2,1, . . . , T2,j, . . . , T2,18, then the observed value of C∗Lm is

C∗Lm0 = 1− (n−m−1)L
tSUM

= 1− (17.5)24
1200

= 0.65.

Thus, the triangular-shaped fuzzy number is C̃Lm = ∆(CL, CM, CR) = ∆(0.467, 0.643, 0.776),
where

CL = 1− GAMINV(0.995, mn)
mn− 1

(1− C∗Lm0) = 1− GAMINV(0.995, 36)
35

(0.35) = 0.467;
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CM = 1− GAMINV(0.5, mn)
mn− 1

(1− C∗Lm0) = 1− GAMINV(0.5, 36)
35

(0.35) = 0.643;

CR = 1− GAMINV(0.005, mn)
mn− 1

(1− C∗Lm0) = 1− GAMINV(0.005, 36)
35

(0.35) = 0.776.

In addition, the membership function of C̃Lm with triangular-shaped fuzzy number
C̃Lm = ∆(0.467, 643, 776) is

η(x) =


0 i f x ≤ 0.467
α1 i f 0.467 < x < 0.643
1 i f x = 0.643
α2 i f 0.643 < x < 0.776
0 i f 0.776 ≤ x

,

where α1 and α2 are determined by

x = 1− GAMINV(1− α1/2, 36)/10

and
x = 1− GAMINV(α2/2, 36)/10.

Figure 2 presents a diagram of membership functions of η(x) with triangular-shaped
fuzzy number C̃Lm = ∆(0.467, 0.643, 0.776) and vertical line x = 0.75.
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When l′ = 5, CLm2(0.01× l′) = CLm2(0.05) = k = 0.75. Based on Equation (31), we have

aR =

(
0.5× r1 +

4

∑
l=1

rl

)
× (0.01) =0.063× 0.01.

According to Equation (27), we have

aT =

(
0.5× d1 +

99

∑
l=1

dl

)
× (0.01) =9.503× 0.01.

Thus,
aR
aT

=
0.063× 0.01
9.503× 0.01

= 0.007.

Chen et al. [21] noted that the value of φ1 that can be obtained from practice is equal to
0.2 and the value of φ2 is 0.4. As aR/aT=0.007<φ1, reject H0 and conclude that CLm < 0.75,
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showing that the lifetime performance of the electronic product does not reach the required
level. Consequently, the operation must be improved.

As C∗Lm0 = 0.65 is smaller than the minimum required value of index CLm = 0.75, it
is obvious that the fuzzy evaluation model of this paper is used so that the opportunity
for improvement will not be missed. The reliability engineer decided to add a spare
electronic component, that is, m = 3. Let (t′1, . . . , t′ j, . . . , t′18) be the observed values of
T3,1, . . . , T3,j, . . . , T3,18, then the observed value of C∗Lm is

C∗Lm0 = 1− (n−m−1)L
tSUM

= 1−
(17 2

3 )24
1800

= 0.76.

Thus,

CL = 1− GAMINV(0.995, mn)
mn− 1

(1− C∗Lm0) = 1− GAMINV(0.995, 54)
53

(0.24) = 0.661;

CM = 1− GAMINV(0.5, mn)
mn− 1

(1− C∗Lm0) = 1− GAMINV(0.5, 54)
53

(0.24) = 0.757;

CR = 1− GAMINV(0.005, mn)
mn− 1

(1− C∗Lm0) = 1− GAMINV(0.005, 54)
53

(0.24) = 0.833.

Then, the triangular-shaped fuzzy number is C̃Lm = ∆(CL, CM, CR) = ∆(0.661, 0.757, 0.833),
and the membership function of C̃Lm is

η(x) =


0 i f x ≤ 0.661
α1 i f 0.467 < x < 0.757
1 i f x = 0.757
α2 i f 0.757 < x < 0.833
0 i f 0.833 ≤ x

,

where α1 and α2 are determined by

x = 1− GAMINV(1− α1/2, 54)× (0.24)/53

and
x = 1− GAMINV(α2/2, 54)× (0.24)/53.

Figure 3 presents a diagram of membership functions of η(x) with triangular-shaped
fuzzy number C̃Lm = ∆(0.661, 0.757, 0.833) and vertical line x = 0.750.
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When l′ = 5, CLm2(0.01× l′) = CLm2(0.05) = k = 0.750. Based on Equation (31), we have

aR =

(
0.5× r1 +

4

∑
l=1

rl

)
× (0.01) =3.048× 0.01.

According to Equation (27), we have

aT =

(
0.5× d1 +

99

∑
l=1

dl

)
× (0.01) =5.106× 0.01.

Thus,
aR
aT

=
3.048× 0.01
5.106× 0.01

= 0.597.

As aR/aT=0.579 >φ2, do not reject H0, and conclude that CLm ≥ 0.750 with m = 3,
showing that the lifetime performance of the electronic product reaches the required level.

5. Conclusions

Several studies have noted that for the purpose of enhancing product reliability, elec-
tronic goods are usually designed with spare electronic components. In consideration of
generality, this paper assumed that there are m electronic components for each electronic
product. According to Chen et al. [6], during the failure of the primary component, the
redundant backup system will be activated instantaneously, and the system will automati-
cally switch to the spare component. Therefore, the lifetime of each electronic component
follows an exponential distribution with mean λ, and the lifetime of the electronic products
is distributed as G(m, λ). Based on the above, this paper derived the 100(1− α) confidence
interval of an electronic product lifetime performance index. Next, this paper proposed a
confidence-interval-based fuzzy testing method to evaluate whether the reliability of the
electronic product reaches the required level. This fuzzy evaluation method is based on
the confidence interval of the index and thus can reduce the probability of misjudgment
due to sampling error. In addition, according to many studies, this model can incorporate
the past accumulated data or expert experience, so that the testing accuracy can still be
maintained despite small-sized samples. Finally, a numerical example was provided to
demonstrate the application of the fuzzy testing model proposed in this paper in order
to help enterprises apply this fuzzy testing model to make fast, accurate, and intelligent
decisions in the case of small samples, as well as grasp opportunities for improvement.

In fact, using the past accumulated data experience or expert experience to evaluate
the data of small samples can meet companies’ expectations of rapid response, as well as
maintain the accuracy of the evaluation. However, the limitation of the study is that this
paper did not explore the reliability of data experience or expert experience verified by
scientific methods, so a future research direction can focus on exploring the reliability of
the verified data experience or expert experience. Meanwhile, when the lifetime is neither
an exponent nor a Gamma distribution, it is also an important issue worth discussing in
the future.
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