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Abstract: A novel enriched finite element method (EFEM) was employed to analyze the transient
wave propagation problems. In the present method, the traditional finite element approximation was
enriched by employing the appropriate interpolation covers. We mathematically and numerically
showed that the present EFEM possessed the important monotonic convergence property with the de-
crease of the used time steps for transient wave propagation problems when the unconditional stable
Newmark time integration scheme was used for time integration. This attractive property markedly
distinguishes the present EFEM from the traditional FEM for transient wave propagation problems.
Two typical numerical examples were given to demonstrate the capabilities of the present method.
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1. Introduction

As is known to all, the transient wave propagation problems are usually encountered
in many engineering application fields, such as aerospace and automotive industries,
mechanical engineering, civil engineering and so on. During the past few decades, many
numerical techniques have been developed that can be used to solve the wave propagation
problems, such as the finite element method (FEM) [1], boundary element or boundary-
type numerical techniques [2–12], finite difference method [13–15], smoothed FEM [16–19],
collocation techniques [20–22] and various meshless methods [23–34]. Among them, the
classical FEM is one of the most powerful and widely used numerical approaches for
transient wave propagation analysis due to its rigorous mathematical background and
good numerical stability [1].

However, the conventional FE solutions for transient wave propagation problems
always suffer from the numerical dispersion issue induced by the spatial discretization
and temporal discretization [35–39]. The former is related to the spatial interpolation and
the used mesh, and the latter is mainly dominated by the used temporal discretization
scheme. As a result, the obtained numerical waves are always dispersive and inaccu-
rate. Another important point is that the quality of the FE solutions for transient wave
propagation analysis cannot be improved constantly by using the decreasing temporal
discretization steps for a fixed mesh pattern [40–43]. In other words, the time step for
temporal discretization should be carefully determined according to the used mesh and the
considered wave speed. Note that many different wave components with different speeds
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are always involved in transient wave propagation problems; so in general, these different
wave components cannot be solved simultaneously with good computation accuracy. To
address the drawbacks of the standard FEM in solving the transient wave propagation
problems, the relatively new numerical techniques have still received quite considerable
research efforts in the computational mechanics field. This is also the main motivation of
the present work.

In this paper, we mainly focus on employing a novel enriched finite element method
(EFEM) to analyze the transient wave propagation problems. In the present EFEM, the con-
structed interpolation covers are used to enrich the original FE approximation to improve
the performance of the standard FEM in transient wave propagation analysis. We show in
detail that the monotonic convergence property with the decrescent temporal discretiza-
tion steps can be achieved for transient wave propagation problems. In consequence, all
different types of waves with different propagation speeds can be simulated accurately as
long as the temporal discretization steps for time integration are small enough. We provide
two typical numerical examples to examine and investigate the capacities of the present
EFEM in a transient wave propagation analysis.

The main structure of the present paper is as follows: Section 2.1 gives the problem
statement of this work. In Section 2.2, the formulation of the EFEM for the transient wave
propagation problem is given. A complete dispersion analysis is performed for the EFEM in
Section 2.3. In the following section, the performance of the EFEM in solving the transient
wave propagation problem is evaluated by the typical numerical examples. Section 4 gives
our conclusions.

2. Formulation of the Present EFEM
2.1. Problem Statement

Consider a deformable elastic body occupying a bounded domain V. Assume that
this elastic body is made of a homogeneous isotropic media and is subjected to a stress
tensor τ(x, t) and body force vector fb(x, t). Based on the small displacement assumption,
the strong from of this problem can be obtained as follows [1]

ρ
..
u(x, t) = fb(x, t) + τ(x, t)n, (1)

in which u stands for the displacement, and ρ represents the mass density of the linear
elastic media;

..
u signifies two time derivatives.

By multiplying Equation (1) with a virtual displacement vector
¯
u and integrating by

parts over the entire domain, we can obtain the following standard weak form of Equation (1)

∫
V
εTτdV +

∫
V

ρ
¯
u

T ..
udV =

∫
s f

¯
u

T
fs f dS +

∫
V

¯
u

T
fbdV, (2)

in which ε denotes the virtual strain, and fs f = τ ·n is the imposed boundary traction vector.
Using the standard finite element formulation, we can obtain the following matrix

form of Equation (2)
M

..
u(t) + C

.
u(t) + Ku(t) = F(t), (3)

in which F(t) is the applied force vector, K is the stiffness matrix, M is the mass matrix and
C is a matrix corresponding to the damping effects.

2.2. Formulation of the EFEM

In the enriched finite element model, the standard finite element interpolation for the
considered field variable u at node i is enriched by the following expression [37,41]

Eq
i [u] = L

[
ui ai1 ai2 ai3 · · ·

]T , (4)
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in which
[

ai1 ai2 ai3 · · ·
]T denotes the additional unknown coefficients, and ui stands

for the conventional nodal displacement corresponding to node i; L denotes the local
interpolation basis functions.

For the two-dimensional problems, which are discretized into regular mesh with
average nodal space h, the following linear polynomials and trigonometric functions are
always used as the local interpolation basis functions [35]

L =



1, xi, yi, xiyi

cos
(

2πxi
λx

)
, sin

(
2πxi
λx

)
, cos

(
2πyi
λy

)
, sin

(
2πyi
λy

)
,

cos
(

2πxi
λx

+
2πyi
λy

)
, sin

(
2πxi
λx

+
2πyi
λy

)
, cos

(
2πxi
λx
− 2πyi

λy

)
, sin

(
2πxi
λx
− 2πyi

λy

)
,

· · · ,
cos
(

2πqxi
λx

)
, sin

(
2πqxi

λx

)
, cos

(
2πqyi

λy

)
, sin

(
2πqyi

λy

)
,

cos
(

2πqxi
λx

+
2πqyi

λy

)
, sin

(
2πqxi

λx
+

2πqyi
λy

)
, cos

(
2πqxi

λx
− 2πqyi

λy

)
, sin

(
2πqxi

λx
− 2πqyi

λy

)


(5)

in which the relative coordinate values(xi, yi) are measured from node i, namely xi = x− xi
and yi = y − yi; the used trigonometric function is of q order; in this work, q = 1 and
λx = λy = 2h are employed. Although the higher order of polynomials and trigonomet-
ric functions also can be used to construct the local enrichment functions, the involved
numerical integration is accordingly more numerically expensive.

Then Equation (4) can also be written by [37,41]

Eq
i [u] = ui +

[
xi yi xiyi cos

(
2πxi
λx

)
sin
(

2πxi
λx

)
· · · sin

(
2πxi
λx
− 2πyi

λy

) ]
ai1
ai2
...

ai10


︸ ︷︷ ︸

additional interpolation cover

, (6)

From Equation (6), the distinct difference between the traditional FE approximation
and the present enriched FE approximation can be seen because the present EFEM contains
the additional interpolation cover in the interpolation scheme.

When the standard linear triangular element with the usual linear interpolation func-
tion Ni is used, the global displacement u can be expressed by [37]

TEq
i [u] =

m

∑
1

(
3

∑
i=1

NiE
q
i [u]

)
=

m

∑
1

(
3

∑
i=1

Niui +
3

∑
i=1

Hiai

)
=

m

∑
1

(
3

∑
i=1

Niui +
3

∑
i=1

n

∑
j=1

Hi,jai,j

)
, (7)

in which j is the additional degree of freedom for node i, and m is the total number of nodes
in the problem domain.

Hi = Ni

[
xi yi xiyi cos

(
2πxi
λx

)
sin
(

2πxi
λx

)
· · · sin

(
2πxi
λx
− 2πyi

λy

) ]
, (8)

From Equations (6) and (7), it is seen that when we only use the constant term 1 in
Equation (5) as the local enrichment function for required interpolation, the present EFEM
will become the standard FEM. Therefore, the proposed EFEM in this work is actually
the combination of the higher interpolation and the conventional FE interpolation. Using
the present EFEM, the computation accuracy of the obtained numerical solutions can be
markedly increased without adding the additional nodes, because the higher interpolation
can be obtained using the low-order linear elements.

2.3. Dispersion Analysis

When the FEM-like numerical techniques are used for wave analysis, the involved
numerical dispersion error issue should be carefully addressed because it is able to strongly
influence the computation accuracy of the obtained numerical solutions. Therefore, the
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dispersion properties of the present EFEM will be evaluated carefully in this sub-section.
As shown in Figure 1, in the dispersion analysis, the uniform triangular mesh is used, the
blue line denotes the wave propagation direction θ and h stands for the average mesh size
of the used mesh.
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By eliminating the time dependency from Equation (3) and without considering the
boundary conditions, we have [35,37](

K− k2M
)

a = 0, (9)

in which a =
[

ui ai1 ai2 ai3 · · ·
]T lists all unknown solution coefficients, and k is

the wave number.
Using the enriched finite element interpolation scheme shown in Equation (7) and

referring to the uniform mesh shown in Figure 1, for one typical node, we can obtain [35,37]

[Dstiff − k2Dmass]ai = 0, (10)

in which Dstiff and Dmass are the obtained Hermitian matrices of order np × np, correspond-
ing to the stiffness matrix K and mass matrix M; np is the total number of unknown solution

coefficients for each node and ai =
[

A1 A2 · · · Anp

]T is the amplitude vector for
one typical node i [35,37].

If the nontrivial solutions to Equation (10) exist, we must have [35,37]

det[Dstiff − k2Dmass] = 0, (11)

Note that the numerical wave number kh is involved in the matrices Dstiff and
Dmass [35,37]; hence, the corresponding exact wave number k can be calculated using
Equation (11) for any given kh. Owing to the numerical dispersion issue by the spatial
discretization, k is in general different from kh. In this work, the obtained spatial dispersion
error by the numerical methods is quantified by using the measure k/kh.

Figure 2 shows the calculated spatial dispersion error k/kh from the standard FEM and
the present EFEM as a function of the non-dimensional wave number kh along different
wave propagation directions. It is seen that the spatial dispersion error from FEM is much
larger than that from the present EFEM for the considered non-dimensional wave number.
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The numerical dispersion error from the temporal discretization is also investigated
in this section. Here, the additional boundary conditions and the damping effects are not
considered. Assuming that all the variables in Equation (3) are time-harmonic, then the
following matrix equation can be arrived at [35,37]

M
..
¯
a + c2K

¯
a = 0, (12)

in which c is the wave speed,
¯
a =

^
aej(khn·x−ωht) and ωh is the numerical angular frequency.

Using the Newmark time integration method with the parameters δ = 1/2 and
α = 1/4 for temporal discretization, we can obtain the following discretized equation [1](

M +
1
4

ω2∆t2K
)t+∆t

U +

(
−2M +

1
2

ω2∆t2K
)t

U +

(
M +

1
4

ω2∆t2K
)t−∆t

U = 0, (13)

in which ∆t is the used temporal discretization step, and ω is the exact angular frequency.
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Based on the formulation in Ref. [35], the following equation can be arrived at

ωh∆t = j ln

(
−m±

√
m2 − 4nl

2l

)
, (14)

in which l = 1 + 1
4 ω2∆t2, m = −2 + 1

2 ω2∆t2 and n = 1 + 1
4 ω2∆t2.

In Equation (14) we can see that the right side of the equation only contains the param-
eter ω∆t; hence, the parameter ωh∆t is actually a function of the parameter ω∆t, namely

ωh∆t = f (ω∆t) = f
(

kh
c∆t
h

)
= f (khCFL), (15)

where CFL = c∆t/h is the defined Courant–Friedrichs–Lewy (CFL) number [35,37].
Then, for transient wave propagations, the total numerical dispersion error can be

calculated using the following equation

ch
c

=
ωh/kh

c
=

ωh∆t
khc∆t

=
ωh∆t

khhCFL
=

f (ω∆t)
khhCFL

=
f (khCFL)
khhCFL

, (16)

Using the Taylor series expansion, we have

ch
c = 1

khhCFL

 f (0)︸︷︷︸
=0

+ f ′(0)(khCFL) + 1
2! f ′′ (0)︸ ︷︷ ︸

=0

(khCFL)2 + 1
3! f (3)(0)(khCFL)3 + · · ·


= k

kh

(
1− 1

12
(khCFL)2 +

1
80

(khCFL)4 + · · ·
)

︸ ︷︷ ︸
Temporal dispersion error

(17)

Note that ch
c = ωh/kh

ω/k = k
kh

ωh
ω = k

kh
T
Th

, in which T and Th are, respectively, the exact
and numerical period of the wave mode; then, we can have

ch
c

=
k
kh

T
Th

=
k
kh

(
1− 1

12
(khCFL)2 +

1
80

(khCFL)4 + · · ·
)

︸ ︷︷ ︸
Temporal dispersion error

, (18)

From above formulation, we can obtain the following important observations:
(1) The total dispersion error ch/c for transient wave analysis clearly contains

two different parts, namely k/kh and T/Th, which are respectively caused by the spa-
tial discretization method (FEM and the present EFEM) and the time integration scheme
for temporal discretization.

(2) T/Th is basically a monotonic function with respect to sufficiently small CFL
numbers when the spatial discretization step h and the considered wave number k are
determined. In other words, T/Th will approach 1 when the temporal discretization step
∆t, which is related to the CFL number, gets smaller, namely T/Th → 1 can be obtained
when ∆t→ 0 .

(3) Both the spatial and temporal discretization are able to affect the total dispersion
error ch/c. The effects from these two different factors can be counteracted to some degree,
because in general, T/Th 1 and k/kh 1. In addition, we also can observe that ch/c will
tend to k/kh when ∆t→ 0 (namely CFL→ 0), because T/Th → 1 can be obtained when
∆t→ 0 .

(4) There exists an optimal time step ∆t (namely the optimal CFLopt) which can lead
to almost non-dispersive numerical solutions, namely ch/c ≈ 1.

Based on the above findings, we can see that for transient wave analysis, the obtained
total dispersion error ch/c from the proposed EFEM and the Newmark time integration
scheme can be basically decreased by using the decreasing temporal discretization step ∆t.



Mathematics 2022, 10, 1380 7 of 12

As a result, the obtained numerical solutions from the EFEM and Newmark method will
approach the “exact” solutions when the temporal discretization step ∆t tends to zero, be-
cause the involved spatial dispersion error k/kh is very small for kh π (see Figure 2); hence,
the so-called monotonic convergence property with respect to the temporal discretization
step ∆t can be reached, while this important and attractive property is not applicable for
the standard FEM because the resultant spatial discretization error from the standard FEM
is much larger than that from the EFEM (see Figure 2).

In addition, it should be noted that the involved linear dependence (LD) problem
should be carefully addressed when the EFEM is employed for engineering computation.
Owing to the LD problem, the nearly singular matrix equation can always be obtained,
especially as the used local enrichment functions are constructed by the polynomials.
In [37], the LD issue of the EFEM was investigated systematically, and the LD could be
totally suppressed by an elegantly-designed scheme. Using this scheme, the relatively
high computation accuracy of the EFEM could be completely maintained by removing
the sufficiently few cover degrees of freedom (DOFs). In this work, the LD problem of
the EFEM is addressed by using the scheme proposed in [37], and the performance of the
EFEM for complicated transient waves is examined.

3. Numerical Example
3.1. The Lamb’s Problem

In this sub-section, the hardware configuration of the used laptop were two cores
Intel 2.50 GHz CPU and 4 GB RAM. Firstly, the well-known Lamb’s problem, with plane
strain conditions in which the two-dimensional elastic wave propagations are involved,
has been considered to investigate the capabilities of the present EFEM in transient wave
propagation analysis. As shown in Figure 3, the material parameters of the considered
elastic medium are mass density ρ =2200 kg/m3, P-wave velocity cp = 3200 m/s and
S-wave velocity cs = 1848 m/s. The uniform triangular mesh with nodal space h = 20 m ias
employed in the calculation. The following concentrated line load [37] is imposed at the
free surface of the elastic medium.

Fc = 2× 106
[
1− 2π2 f 2

p(t− ts)
2
]

exp
[
−π2 f 2

p(t− ts)
2
]
, (19)

where fp = 10 Hz is the peak frequency, and ts =0.1 s is the time shift.
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Figure 3. The Lamb’s problem.

Figure 4 gives the calculated displacement solutions from the standard FEM along
the y-axis at the observation time t = 0.5 s; the higher and lower peaks correspond to the
P-wave and S-wave, respectively. From the discussion in Section 2, it is known that the
conventional FEM does not have the monotonic convergence property with the decreasing
temporal discretization step; however, there exists an optimal time step (which is related
to the crucial parameter CFL) for each wave component. Using the optimal time step,
the minimal numerical dispersion error can be obtained [1]. In Figure 4, two different
time steps ∆t = 0.004 s and ∆t = 0.007 s are used for time integration; these two time
steps approximately correspond to the optimal CFL = 0.65 [40] for the P-wave and S-wave,
respectively. From Figure 4, it is clearly seen that the P-wave and S-wave can be accurately
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simulated using the corresponding optimal steps; however, these two different elastic wave
components with different speeds cannot be predicted simultaneously with sufficiently
good accuracy.
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Figure 4. The calculated displacement solutions from the standard FEM along the y-axis at observa-
tion time t = 0.5 s.

Figure 5 presents the corresponding numerical solutions from the present EFEM using
three time steps for time integration. It is seen that both the P-wave and S-wave solutions
will converge monotonically to the exact solutions with the decrease of the temporal
discretization step. The reason for this is that the so-called monotonic convergence property
can be basically reached when the transient wave propagations are analyzed by the EFEM,
so all considered wave components with different speeds can be accurately solved as
long as the used time step is small enough. In addition, the von Mises stress distribution
results from the present EFEM are also calculated and shown in Figure 6; we can see
that the physical behaviors of all different wave components can be accurately simulated.
From these numerical results, we can see that the proposed EFEM possesses very excellent
properties and is a powerful numerical approach to tackle the transient wave propagations.

3.2. The Transient Wave Propagation along an Elastic Bar

In this sub-section, we further examine the abilities of the EFEM by studying the
scalar wave propagation along a one-dimensional elastic bar. As shown in Figure 7, the
right end of the bar is fixed, and the elastic bar is made of two different elastic media
(which are represented in blue and black lines) with wave propagation speed c1 = 1 m/s
and c2 = 2 m/s. The problem domain is discretized into a uniform mesh with nodal space
h = 0.02 m. Assuming that a sinusoidal wave u = 0.8 sin(20πt)cm, t ∈

[
0, 0.05

]
s begins

to travel along this bar from the left end.
At the observation time t = 0.8 s, the displacement solutions from the standard FEM

with linear elements and the present EFEM with linear polynomials and trigonometric
enrichment functions are given in Figures 8 and 9. It is known that both reflected and
transmitted waves will be induced in this problem, and it is easily to identify that in the
figures, the small and large peaks, respectively, correspond to reflected and transmitted
wave components. Similar to the previous numerical example, several different time steps
are used in the calculation. From the results in Figures 8 and 9, the similar observations,
which have been found in the previous numerical example, can again be obtained, namely
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all different wave components with different wave propagation speeds can be accurately
predicted using the present EFEM when the used time step gets smaller, while the dif-
ferent waves cannot be predicted simultaneously in sufficiently good accuracy by the
standard FEM.
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4. Conclusions

In this work, a novel enriched finite element method (EFEM) with additional appropri-
ate interpolation cover functions was developed for transient wave propagation analysis.
In the present EFEM, the additional linear polynomials and trigonometric functions were
used to enrich the original nodal shape functions of the traditional FEM. It was mathe-
matically and numerically shown that the present EFEM possessed the important and
attractive monotonic convergence property with the decreasing temporal discretization
steps in solving transient wave propagation problems; so, all different wave components
with different propagation speeds could be accurately predicted using the sufficiently small
time step. Therefore, the present EFEM is also a prospective powerful approach to deal
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with the elastic wave propagation in anisotropic media and multiple waves propagation in
laminated composite structures.
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