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Abstract: We develop a technique for obtaining the fourth moment bound on the normal approxima-
tion of F, where F is an Rd-valued random vector whose components are functionals of Gaussian
fields. This study transcends the case of vectors of multiple stochastic integrals, which has been
the subject of research so far. We perform this task by investigating the relationship between the
expectations of two operators Γ and Γ∗. Here, the operator Γ was introduced in Noreddine and
Nourdin (2011) [On the Gaussian approximation of vector-valued multiple integrals. J. Multi. Anal.],
and Γ∗ is a muilti-dimensional version of the operator used in Kim and Park (2018) [An Edgeworth
expansion for functionals of Gaussian fields and its applications, stoch. proc. their Appl.]. In the specific
case where F is a random variable belonging to the vector-valued multiple integrals, the conditions
in the general case of F for the fourth moment bound are naturally satisfied and our method yields
a better estimate than that obtained by the previous methods. In the case of d = 1, the method
developed here shows that, even in the case of general functionals of Gaussian fields, the fourth
moment theorem holds without conditions for the multi-dimensional case.

Keywords: Malliavin calculus; fourth moment theorem; multiple stochastic integrals; multivariate
normal approximation; Gaussian fields

MSC: 60H07; 60F25

1. Introduction

For a given real separable Hilbert space H, we write X = {X(h), h ∈ H} to indicate an
isonormal Gaussian process defined on a probability space (Ω,F,P). Let {Fn, n ≥ 1} be
a sequence of random variables of functionals of Gaussian fields associated with X. The
authors in [1] discovered a central limit theorem (CLT), known as the fourth moment theorem,
for a sequence of random variables belonging to a fixed Wiener chaos.

Theorem 1. [Fourth moment theorem] Let {Fn, n ≥ 1} be a sequence of random variables

belonging to the q(≥ 2)th Wiener chaos with E[F2
n ] = 1 for all n ≥ 1. Then, Fn

L−→ Z if and

only if E[F4
n ]→ 3, where Z is a standard normal random variable and the notation L−→ means a

convergence in distribution.

Such a result provides a remarkable simplification of the method of moments or
cumulants. In [2], the fourth moment theorem is expressed in terms of the Malliavin derivative.
However, the results given in [1,2] do not provide any estimates, whereas the authors in [3]
find an upper bound for various distances by combining Malliavin calculus (see, e.g., [4–6])
and Stein’s method for normal approximation (see, e.g., [7–9]). Moreover, the authors
in [10,11] obtain optimal Berry–Esseen bounds as a further refinement of the main results
proven in [3] (see, e.g., [12] for a short survey).

Mathematics 2022, 10, 1352. https://doi.org/10.3390/math10081352 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10081352
https://doi.org/10.3390/math10081352
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8246-2772
https://doi.org/10.3390/math10081352
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10081352?type=check_update&version=1


Mathematics 2022, 10, 1352 2 of 17

For the fourth moment theorem, the key step for the proof of this theorem is to show the
following inequality:

Var(〈DF,−DL−1F〉H) ≤ c(E[F4]− 3(E[F2])2), (1)

where DF is the Malliavin derivative of F and L−1 is the pseudo-inverse of the Ornstein–
Uhlenbeck generator (see Section 2). In the particular case where F = Iq( f ), f ∈ H⊗q, with
E[F2] = 1, the bound in (1) is given by

dKol(F, Z) ≤ Var(〈DF,−DL−1F〉H) ≤
√

q− 1
3q

√
E[F4]− 3. (2)

where dKol stands for the Kolmogorov distance.
Another research of this line can be found: [13] for multiple Winger integrals in a

fixed order of free Winger chaos, and [14–16] for multi-dimensional vectors of multiple
stochastic integrals, such that each integral belongs to a fixed order of Wiener chaos. In
particular, the new techniques for the proof of the fourth moment theorem are also found
in [17–19]. In [19], the authors prove this theorem by using the asymptotic independence
between blocks of multiple stochastic integrals. At this point, it is important to mention
that all of these approaches deal with only the random variables in a fixed chaos, and thus
do not cover the cases that are not part of some chaoses. For this reason, we are interested
in the conditions that the property of (2) holds for the generalized random variables that
are not in a fixed Wiener chaos.

In this paper, we will develop a method for finding a bound on the multivariate normal
approximation of a random vector F for which the fourth moment theorem holds even when
F is a d-dimensional random vector whose components are general functionals of Gaussian
fields. By applying this method to a random vector whose components belong to some
Wiener chaos, we derive the fourth moment theorem with an upper bound more sharply than
the previous one given in Theorem 4.3 of [19].

Differently from the fourth moment theorem for functionals of Gaussian fields studied so
far, the findings of our research represent a further extension and refinement of the fourth
moment theorem, in the sense that (i) they do not require the involved random vector whose
components belong to some Wiener chaos, and (ii) the constant part except for the fourth
cumulant may be significantly improved. The main aim in this paper is to discover under
what conditions the fourth moment bound holds for vector-valued general functionals of
Gaussian fields, where each of which needs not to belong to some Wiener chaos. In the case
of vector-valued multiple integrals, the conditions on the fourth moment theorem are quite
naturally satisfied.

On the other hand, in the case of d = 1, the application of the method developed
here shows that, even in case of general functionals of Gaussian fields, the fourth moment
theorem holds without any conditions needed for the case of d ≥ 2. The only necessary
condition is that the fourth cumulant is non-zero. The result in the one-dimensional case is
different from the result obtained by substituting d = 1 into the multi-dimensional case.
For these reasons, we will see how the random vector case can be reformulated in the
one-dimensional case.

Our paper is organized in the following way. Section 2 contains some basic notion
on Malliavin calculus. Section 3 is devoted to developing a method for obtaining the
fourth moment bound for a Rd-valued random vector whose components are functionals
of Gaussian fields. In Section 4, we will show the fourth moment theorem by applying
the new method developed in Section 3 to vector-valued multiple stochastic integrals.
In Section 5, we will describe how the random vector case can be reconstructed in the
one-dimensional case.
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2. Preliminaries

In this section, we describe some basic facts on Malliavin calculus for Gaussian pro-
cesses. For a more detailed explanation on this subject, see [4,5]. Fix a real separable
Hilbert space H with an inner product denoted by 〈·, ·〉H. Let B = {B(h), h ∈ H} be an
isonormal Gaussian process that is a centered Gaussian family of random variables, such
that E[B(h)B(g)] = 〈h, g〉H. If Hq is the qth Hermite polynomial, then the closed linear
subspace, denoted by Hq of L2(Ω) generated by {Hq(B(h)) : h ∈ H, ‖h‖H = 1} is called
the qth Wiener chaos of B.

We define a linear isometric mapping Iq : H�q → Hq by Iq(h⊗n) = q!Hq(B(h)), where
H�q is the symmetric qth tensor product. It is well known that any square integrable
random variable F ∈ L2(Ω,G,P), where G denotes the σ-field generated by B, admits a
series expansion of multiple stochastic integrals:

F =
∞

∑
q=0

Iq( fq),

where the series converges in L2(Ω) and the functions fq ∈ H�q and q ≥ 0 are uniquely
determined with f0 = E[F].

Let {ei, i = 1, 2, . . .} be a complete orthonormal system of the Hilbert space H. For
f ∈ H�p and g ∈ H�q, the contraction f ⊗r g of f and g, r ∈ {0, 1, . . . , p ∧ q}, is the element
of H⊗(p+q−2r) defined by

f ⊗r g =
∞

∑
i1,··· ,ir=1

〈 f , ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r . (3)

The product formula for the multiple stochastic integrals is given below.

Proposition 1. If f ∈ H�p and g ∈ H�q, then

Ip( f )Iq(g) =
p∧q

∑
r=0

r!
(

p
r

)(
q
r

)
Ip+q−2r( f ⊗r g). (4)

We denoted by S the class of smooth and cylindrical random variables F of the form

F = f (B(ϕ1), · · · , B(ϕn)), n ≥ 1, (5)

where f ∈ C∞
b (Rn) and ϕi ∈ H, i = 1, · · · , n. For these random variables, the Malliavin

derivative of F with respect to B is the element of L2(Ω,H) defined as

DF =
n

∑
i=1

∂ f
∂xi

(B(ϕ1), · · · , B(ϕn))ϕi. (6)

Let Dq,p be the closure of its associated smooth random variable class with respect to
the norm

‖F‖p
q,p = E[|F|p] +

q

∑
k=1

E[‖DkF‖p
H⊗k ].

Let δ be the adjoint of the Malliavin derivative D. The domain of δ, denoted by Dom(δ), is
composed of those elements u ∈ L2(Ω;H) such that there exists a constant C satisfying

|E[〈DkF, u〉H⊗l ]| ≤ C(E[|F|2])1/2 for all F ∈ Dk,2.

If u ∈ Dom(δ), then δ(u) is an element of L2(Ω) defined as the following duality formula,
called an integration by parts,

E[Fδ(u)] = E[〈DF, u〉H] for all F ∈ D1,2.
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Recall that any square integrable random variable F can be expanded as F = E[F] +
∑∞

q=1 Jq(F), where Jq, q = 0, 1, 2 . . ., is the projection of F onto Hq. We say that this random
variable belongs to Dom(L) if ∑∞

q=1 q2E[Jq(F)2] < ∞. For such a random variable F,
we define an operator L = ∑∞

q=0−qJq, which coincides with the infinitesimal generator
of the Ornstein–Uhlhenbeck semigroup. Then, F ∈ Dom(L) if and only if F ∈ D1,2 and
DF ∈ Dom(δ), and, in this case, δDF = −LF. We also define the operator L−1, called the
pseudo-inverse of L, as L−1F = ∑∞

q=1
1
q Jq(F). Then, L−1 is an operator with values in D2,2,

and LL−1F = F−E[F] for all F ∈ L2(Ω).

3. Main Results

In this section, we will find a sufficient condition on the fourth moment bound for a
vector-valued random variable whose components are functionals of Gaussian fields. It
is important to note that these functionals of Gaussian fields do not necessarily belong to
some Wiener chaos. The next lemma will play a fundamental role in this paper.

Lemma 1. Suppse that F ∈ D1,2 and G ∈ L2(Ω). Then, we have that L−1G ∈ D2,2 and

E[FG] = E[F]E[G] +E[〈−DL−1G, DF〉H].

A multi-index is a vector of a non-negative integer of the form α = (α1, . . . , αd). Then,
we write

|α| =
d

∑
j=1

αj, ∂j =
∂

∂xj

, ∂α = ∂α1
1 . . . ∂

αd
d , xα =

d

∏
i=1

xαi
i ,

where x = (x1, . . . , xd). By convention, we set 00 = 1.
For the rest of this section, we fix a random vector F = (F1, . . . , Fd), d ≥ 2.

Definition 1. Assume that E[|F|α] < ∞ for some α ∈ Nd \ {0}. The joint cumulant of order |α|
of F is defined by

κα(F) = (−i)|α|∂α
∣∣∣
t=0

log φF(t) for t ∈ Rd,

where φF(t) = E
[
ei〈t,F〉Rd

]
is the characteristic function of F.

Suppose that Fi ∈ D1,2 for each i = 1, . . . , d. Let l1, l2, . . . be a sequence taking values
in {e1, . . . , ed}, where ei is the multi-index of length d given by

ei = (0, . . . , 0, 1, 0, . . . , 0).

If l1 = ei, then Γ∗l1(F) = Fi. Suppose that Γ∗l1,...,lk
(F) is a well-defined random variable of

L2(Ω). We define
Γ∗l1,...,lk+1

(F) = 〈−DL−1Flk+1 , DΓ∗l1,...,lk
(F)〉H.

For the multivariate Gamma operator Γl1,...,lk (F), see Definition 4.2 in [14]. For simplicity,
we will frequently write Γ∗i1,...,ik

(F) and Γi1,...,ik (F) instead of Γ∗ei1
,...,eik

(F) and Γei1
,...,eik

(F),
respectively.

Using the Gamma operators Γl1,...,lk of F, we can state a formula for the cumulants of
any random vector F (see, e.g., [14,20]).

Lemma 2 (Noreddine and Nourdin). Let α = (α1, . . . , αd) ∈ Nd \ {0} be a d-dimensional
multi-index with the unique decomposition {l1, . . . , l|α|}. If Fi ∈ D|α|,2|α| for 1 ≤ i ≤ d, then

κα(F) = ∑
σ

E
[
Γl1,lσ(2),...,lσ(|α|)(F)

]
, (7)

where the sum ∑σ is taken over all permutations σ of the set {2, 3, . . . , |α|}.
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Remark 1. Obviously, the above lemma can be expressed in the one-dimensional case as follows:
Let m ≥ 1 be an integer, and suppose that F ∈ Dm,2m

. Then

κm+1(F) = m!E[Γm(F)]. (8)

Remark 2. Successive applications of Lemma 1 yield that

E[Γi,i,j,j(F)] =
1
2
E[〈DF2

j ,−DL−1Γi,i(F)〉H]

=
1
2

{
E[F2

j Γi,i(F)]−E[F2
j ]E[Γi,i(F)]

}
=

1
2

{
E[F2

i F2
j ]− 2E[FiFjΓi,j(F)]−E[F2

i ]E[F
2
j ]
}

=
1
2

{
E[F2

i F2
j ]− 2(E[FiFj])

2 −E[F2
i ]E[F

2
j ]
}

−
(
E[Γi,j,i,j(F)] +E[Γi,j,j,i(F)]

)
. (9)

Equation (9) gives that

E[Γi,i,j,j(F)] +E[Γi,j,i,j(F)] +E[Γi,j,j,i(F)]

=
1
2

{
E[F2

i F2
j ]− 2(E[FiFj])

2 −E[F2
i ]E[F

2
j ]
}

. (10)

For the forthcoming theorem, first we define a set:

E(d)(F) =

{
e ∈ R :

d

∑
i,j=1

∑
l1+l2+l3=ei+2ej

E[Γ∗i,l1,l2,l3(F)]

≥ e
d

∑
i,j=1

∑
l1+l2+l3=ei+2ej

E[Γi,l1,l2,l3(F)]

}
.

Theorem 2. Let F = (F1, . . . , Fd), d ≥ 2, with Fi ∈ D3,23
and E[Fi] = 0 for i = 1, . . . , d, and

Z be a centered normal random vector with the covariance Σ = (σij)1≤i,j≤d, where σij = E[FiFj].
Suppose that, for 1 ≤ i, j ≤ d,

(α) E[Γ∗i,i(F)Γ∗j,j(F)] ≥ E[Γ∗i,i(F)]E[Γ∗j,j(F)],

(β) E[Γ∗i,j(F)Γ∗j,i(F)] ≥ (E[Γ∗i,j(F)])2,

(γ) e ∈ E(d)(F).

Assume that Σ is invertible. We have that, for any Lipschitz function h : Rd → R,

|E[h(F)]−E[h(Z)]|

≤
√

d‖Σ‖1/2
op ‖Σ−1‖op‖h‖Lip

√√√√(2− e

2

) d

∑
i,j=1

κei ,ej ,ei ,ej(F), (11)

or, as another expression,

|E[h(F)]−E[h(Z)]|

≤
√

d‖Σ‖1/2
op ‖Σ−1‖op‖h‖Lip

√(
2− e

2

)(
E[‖F‖4

Rd ]−E[‖Z‖4
Rd ]
)
. (12)
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where ‖ · ‖op and ‖ · ‖Rd denote the operator norm of a matrix and the euclidean norm in Rd,
respectively, and

‖h‖Lip = sup
x,y∈Rd

|h(x)− h(y)|
‖x− y‖Rd

.

Proof. Recall that, for a Lipschitz function h : Rd → R, Theorem 6.1.1 in [4] shows that

|E[h(F)]−E[h(N)]|

≤
√

d‖Σ‖1/2
op ‖Σ−1‖op‖h‖Lip

√√√√ d

∑
i,j=1

E
[(

σij − Γi,j(F)
)2
]
. (13)

Since Γ∗i,j = Γj,i for 1 ≤ i, j ≤ d, the right-hand side of (13) can be expressed as

|E[h(F)]−E[h(N)]|

≤
√

d‖Σ‖1/2
op ‖Σ−1‖op‖h‖Lip

√√√√ d

∑
i,j=1

E
[(

σij − Γ∗i,j(F)
)2
]
.

By the definition of the operator Γ∗, we have that, for 1 ≤ i, j ≤ d,

E[Γ∗i,j(F)2] = E[Γ∗i,j(F)〈−DL−1Fj, DFi〉H]

= E[〈−DL−1Fj, D(FiΓ∗i,j(F))〉H]

−E[Fi〈−DL−1Fj, DΓ∗i,j(F)〉H]
= E[FiFjΓ∗i,j(F)]−E[Γ∗i,j,j,i(F)]. (14)

For a + b + c = 1, we write, using Lemma 1 and the definition of Γ∗, the first term in (14)
as follows:

E[FiFjΓ∗i,j(F)] = aE[FiFj〈−DL−1Fj, DFi〉H]

+bE[〈−DL−1Fi, D(FjΓ∗i,j(F))〉H]

+cE[〈−DL−1Fj, D(FiΓ∗i,j(F))〉H]
:= A1 + A2 + A3.

It is obvious that

A1 = aE[〈−DL−1Fj, D(FiFj × Fi)〉H]
−aE[Fi〈−DL−1Fj, D(FiFj)〉H

= aE[F2
i F2

j ]− aE[F2
i Γ∗j,j(F)]− aE[FiFjΓ∗i,j(F)]

= aE[F2
i F2

j ]− aE[Γ∗i,i(F)Γ∗j,j(F)]− aE[Γ∗j,j,i,i(F)]

−A1. (15)

The above Equation (15) gives

A1 =
a
2

{
E[F2

i F2
j ]−E[Γ∗i,i(F)Γ∗j,j(F)]−E[Γ∗j,j,i,i(F)]

}
. (16)

Also using Lemma 1 and the definition of Γ∗, the terms A2 and A3 can be expressed as

A2 = bE[Γ∗i,j,i,j(F)] + bE[Γ∗i,j(F)Γ∗j,i(F)], (17)

A3 = cE[Γ∗i,j,j,i(F)] + cE[Γ∗i,j(F)2]. (18)
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Combining (16)–(18), we obtain, together with (14), that

E[Γ∗i,j(F)2]

=
a

2(1− c)

{
E[F2

i F2
j ]−E[Γ∗i,i(F)Γ∗j,j(F)]−E[Γ∗j,j,i,i(F)]

}
+

b
1− c

{
E[Γ∗i,j,i,j(F)] +E[Γ∗i,j(F)Γ∗j,i(F)]

}
+

c− 1
1− c

E[Γ∗i,j,j,i(F)]. (19)

Now, we choose a, b, and c such that a + b + c = 1 and

− a
2(1− c)

=
b

1− c
=

c− 1
1− c

.

Obviously, we may take a = 1, b = −1/2, and c = 1/2. The assumptions (α) and (β) yield
that the left-hand side of (19) can be bounded by

E[Γ∗i,j(F)2] ≤ E[F2
i F2

j ]−E[Γ∗j,j,i,i(F)]

−E[Γ∗i,j,i,j(F)]−E[Γ∗i,j,j,i(F)]

−E[Γ∗i,i(F)]E[Γ∗j,j(F)]− (E[Γ∗i,j(F)])2. (20)

Therefore the Inequality (20) and the assumption (γ) prove that, if e ∈ E(d)(F),

d

∑
i,j=1

E[(σij − Γ∗i,j(F))2]

≤
d

∑
i,j=1

{
E[F2

i F2
j ]− ∑

l1+l2+l3=ei+2ej

E[Γ∗i,l1,l2,l3(F)]

− 2(E[FiFj])
2 −E[F2

i ]E[F
2
j ]

}
≤

d

∑
i,j=1

{
E[F2

i F2
j ]− e ∑

l1+l2+l3=ei+2ej

E[Γi,l1,l2,l3(F)]

− 2(E[FiFj])
2 −E[F2

i ]E[F
2
j ]

}
. (21)

Applying (10) in Remark 2 (or Lemma 2) to the right-hand side of (21), we have, together
with the assumptions (α) and (β), that

d

∑
i,j=1

E[(σij − Γ∗i,j(F))2]

≤
d

∑
i,j=1

{
E[F2

i F2
j ]−

e

2
E[F2

i F2
j ] + (e− 2)(E[FiFj])

2

+
e− 2

2
E[F2

i ]E[F
2
j ]

}
=

(
2− e

2

) d

∑
i,j=1

(
E[F2

i F2
j ]− 2(E[FiFj])

2 −E[F2
i ]E[F

2
j ]
)

=
(2− e

2

) d

∑
i,j=1

κei ,ej ,ei ,ej(F). (22)
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The Inequality (22) proves the desired conclusion (11). Since E[Z2
i Z2

j ] = 2(E[ZiZj])
2 +

E[Z2
i ]E[Z

2
j ], the identity E[‖Z‖4

Rd ] = ∑d
i,j=1(2σ2

ij + σiiσjj) holds, which gives another expres-
sion (12). Hence, the proof of this theorem is completed.

Remark 3. Our techniques do not require the components of a random vector F = (F1, . . . , Fd) to
belong to a fixed Wiener chaos. Since the assumptions (α), (β), and (γ) are satisfied in the case
of a random vector whose entries are element of some Wiener chaos, our result is an extension of
Theorem 4.3 in [19]. This fact makes it possible to estimate how restrictive the assumptions given
in Theorem 2 are in practice. In addition, for this random vector, the constant of the estimate in
Theorem 4.3 in [19] corresponds to e = 0 in (12).

4. Vector-Valued Multiple Stochastic Integrals

In this section, we consider a special case of the previous result such that F is a vector-
valued multiple stochastic integral. First, for an explicit expression of Γ∗, we introduce the
combinatorial constants

β∗qi1
,...,qia

(r1, . . . , ra)

recursively defined by the relation

β∗qi1
,qi2

(r2) = qi2(r2 − 1)!
(

qi1 − 1
r2 − 1

)(
qi2 − 1
r2 − 1

)
,

and for any a ≥ 3,

β∗qi1
,...,qia

(r2, . . . , ra)

= β∗qi1
,...,qia−1

(r2, . . . , ra−1)(qi1 + · · ·+ qia−1 − 2r2 − . . .− 2ra−1)(ra − 1)!

×
(

qi1 + · · ·+ qia−1 − 2r2 − . . .− 2ra−1 − 1
ra − 1

)(
qia − 1
ra − 1

)
.

For an explicit expression of Γ, we use the notations

βqi1
,qi2

(r2) = qi2(r2 − 1)!
(

qi1 − 1
r2 − 1

)(
qi2 − 1
r2 − 1

)
,

and

βqi1
,...,qia

(r2, . . . , ra)

= βqi1
,...,qia−1

(r2, . . . , ra−1)qia(ra − 1)!

×
(

qi1 + · · ·+ qia−1 − 2r2 − . . .− 2ra−1 − 1
ra − 1

)(
qia − 1
ra − 1

)
for a ≥ 3.

Theorem 3. Fix d ≥ 2. Let qi ≥ 2, i = 1, . . . , d, be positive integers, and let F be a random vector

F = (F1, . . . , Fd) = (Iq1( fq1), . . . , Iqd( fqd)),

where fqi ∈ H�qi for i = 1, . . . , d. Let Z be a centered multivariate normal random variable with
the covariance Σ = (σij)1≤i,j≤d, where σij = E[FiFj]. For any Lipschitz function h : Rd → R, it
holds that

|E[h(F)]−E[h(Z)]|

≤
√

2− e

2

√
d‖Σ‖1/2

op ‖Σ−1‖op‖h‖Lip

√√√√ d

∑
i,j=1

κei ,ej ,ei ,ej(F), (23)
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or

|E[h(F)]−E[h(Z)]|

≤
√

2− e

2

√
d‖Σ‖1/2

op ‖Σ−1‖op‖h‖Lip

√
E[‖F‖4

Rd ]−E[‖Z‖4
Rd ], (24)

where a constant e is given by

e =
1

max1≤i≤d qi
.

Moreover, if q1 = · · · = qd = q, then e is given by

e =
2
q

. (25)

Proof. It is sufficient to prove that F satisfies the assumptions (α), (β), and (γ) in Theorem 2.
For the condition (α): By the definition of Γ∗, we have that

Γ∗ii(F)Γ∗jj(F)

= qiqj

qi

∑
r1=1

qj

∑
r2=1

(r1 − 1)!(r2 − 1)!
(

qi − 1
r1 − 1

)2(qj − 1
r2 − 1

)2

× I2qi−2r1( fqi ⊗̃r1 fqi )I2qj−2r2( fqj⊗̃r2 fqj),

which yields

E[Γ∗ii(F)Γ∗jj(F)]

= qiqj

qi

∑
r=1

(r1 − 1)!(qj − qi + r− 1)!
(

qi − 1
r− 1

)2( qj − 1
qj − qi + r− 1

)2

× (2qi − 2r)!〈 fqi ⊗̃r fqi , fqj⊗̃qj−qi+r fqj〉H⊗(2qi−2r)

= qi!qj!( fqi ⊗̃qi fqi )( fqj⊗̃qj fqj)

+qiqj

qi−1

∑
r=1

(r− 1)!(qj − qi + r− 1)!
(

qi − 1
r− 1

)2( qj − 1
qj − qi + r− 1

)2

× (2qi − 2r)!〈 fqi ⊗̃r fqi , fqj⊗̃qj−qi+r fqj〉H⊗(2qi−2r) . (26)

On the other hand,

E[Γ∗ii(F)]E[Γ∗jj(F)] = qi!( fqi ⊗̃qi fqi )× qj!( fqj⊗̃qj fqj). (27)

Denote by `(a) the length of a vector a. To prove (α), we need to show that, for every
1 ≤ i, j ≤ d, the inner products in (26)

〈 fqi ⊗̃r fqi , fqj⊗̃qj−qi+r fqj〉H⊗(2qi−2r) ≥ 0.

For this, it is sufficient, from the symmetry of fqi , i = 1, . . . , d, and symmetrization of
contractions, to show that, for every 1 ≤ i, j ≤ d,∫

Z2(qi+qj)
fqi (u1, w) fqi (u2, w) fqj(u1, v)

× fqj(u2, v)µ⊗
2(qi+qj)

(du1, du2, dv, dw) ≥ 0, (28)
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where `(w) = r and `(u1) + `(u2) = 2qi − 2r. Since `(u1) = `(u2) = qi − r, the integral
in (28) can be expressed as∫

Zqj−qi+2r ( fqi ⊗`(u1)
fqj)(w, v)( fqi ⊗`(u2)

fqj)(w, v)µ⊗
qj+r1+r2

(dw, dv)

=
∫
Zqj−qi+2r ( fqi ⊗`(u1)

fqj)
2(w, v)µ⊗

qj+r1+r2
(dw, dv) ≥ 0. (29)

Using (26) and (27) together with (29) yields that, for 1 ≤ i, j ≤ d,

E[Γ∗ii(F)Γ∗jj(F)] ≥ E[Γ∗ii(F)]E[Γ∗jj(F)].

For the condition (β): Obviously,

Γ∗ij(F)Γ∗ji(F) (30)

= qiqj

qi∧qj

∑
r1=1

qi∧qj

∑
r2=1

(r1 − 1)!(r2 − 1)!
(

qi − 1
r1 − 1

)2(qj − 1
r2 − 1

)2

× Iqi+qj−2r1( fqi ⊗̃r1 fqj)Iqi+qj−2r2( fqi ⊗̃r2 fqj).

The expectation of (30) gives

E[Γ∗ij(F)Γ∗ji(F)] (31)

= qiqj

qi∧qj

∑
r=1

[(r− 1)!]2
(

qi − 1
r− 1

)2(qj − 1
r− 1

)2

× (qi + qj − 2r)!‖ fqi ⊗̃r fqj‖
2
H
⊗(qi+qj−2r) .

For qi < qj, the expectation (31) can be written as

E[Γ∗ij(F)Γ∗ji(F)] = qiqj[(qi − 1)!]2‖ fqi ⊗̃qi fqj‖
2
H
⊗(qi+qj−2r)

+
qi−1

∑
r=1

[(r− 1)!]2
(

qi − 1
r− 1

)2(qj − 1
r− 1

)2

× (qi + qj − 2r)!‖ fqi ⊗̃r fqj‖
2
H
⊗(qi+qj−2r) . (32)

Since E[Γ∗ij(F)] = 0 for qi < qj, we deduce, from (32), that

E[Γ∗ij(F)Γ∗ji(F)] ≥ (E[Γ∗ij(F)])2 for qi < qj.

On the other hand, if qi = qj, then

E[Γ∗ij(F)Γ∗ji(F)] = (qi!)2‖ fqi‖
4
H⊗qi (33)

+
qi−1

∑
r=1

[(r− 1)!]2
(

qi − 1
r− 1

)2(qj − 1
r− 1

)2

× (2qi − 2r)!‖ fqi ⊗̃r fqi‖
2
H⊗(2qi−2r)

≥ (E[Γ∗ij(F)])2.

For the condition (γ): First, write

∑
l1+l2+l3=ei+2ej

E[Γ∗i,l1,l2,l3(F)]

= E[Γ∗i,i,j,j(F)] +E[Γ∗i,j,i,j(F)] +E[Γ∗i,j,j,i(F)]. (34)
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Next, we compute the three expectations in (34). By the definition of the operator Γ∗,
we obtain

Γ∗i1,i2,i3,i4(F) (35)

=

qi1
∧qi2

∑
r2=1

(qi1
+qi2−2r1)∧qi3

∑
r3=1

(qi1
+qi2+qi3−2r1−2r2)∧qi4

∑
r4=1

× β∗qi1
,...,qi4

(r2, r3, r4)1{2r2<qi1
+qi2}

1{2r2+2r3<qi1
+qi2+qi3}

× Iqi1
+···+qi4

−2r2−2r3−2r4((( fqi1
⊗̃r2 fqi2

)⊗̃r3 fqi3
)⊗̃r4 fqi4

),

and

Γi1,i2,i3,i4(F) (36)

=

qi1
∧qi2

∑
r2=1

(qi1
+qi2−2r1)∧qi3

∑
r3=1

(qi1
+qi2+qi3−2r1−2r2)∧qi4

∑
r4=1

× βqi1
,...,qi4

(r2, r3, r4)1{2r2<qi1
+qi2}

1{2r2+2r3<qi1
+qi2+qi3}

× Iqi1
+···+qi4

−2r2−2r3−2r4((( fqi1
⊗̃r2 fqi2

)⊗̃r3 fqi3
)⊗̃r4 fqi4

).

When qi1 + · · ·+ qi4 = 2r2 + 2r3 + 2r4 and r3 ≤ qi1 + qi2 + qi3 − 2r2 − 2r3, we have that
qi4 ≥ r4. Hence, r4 = qi4 . Taking an expectation on (35) and (36) yields that

E[Γ∗i1,i2,i3,i4(F)] =

qi1
∧qi2

∑
r2=1

(qi1
+qi2−2r2)∧qi3

∑
r3=1

β∗qi1
,...,qi4

(r2, r3, qi4) (37)

× J1(i1, . . . , i4; r2, r3)1{2r2<qi1
+qi2}

× 1{2r2+2r3=qi1
+qi2+qi3−qi4

},

and

E[Γi1,i2,i3,i4(F)] =

qi1
∧qi2

∑
r2=1

(qi1
+qi2−2r2)∧qi3

∑
r3=1

βqi1
,...,qi4

(r2, r3, qi4) (38)

× J1(i1, . . . , i4; r2, r3)1{2r2<qi1
+qi2}

× 1{2r2+2r3=qi1
+qi2+qi3−qi4

},

where

J1(i1, . . . , i4; r2, r3) = 〈( fqi1
⊗̃r2 fqi2

)⊗̃r3 fqi3
, fqi4
〉
H
⊗qi4

.

Using the definition of coefficients β∗ and β, we compute

β∗qi1
,...,qi4

(r2, r3, qi4)− eβqi1
,...,qi4

(r2, r3, qi4) (39)

= (qi4)!
{

β∗qi1
,qi2 ,qi3

(r2, r3)− eβqi1
,qi2 ,qi3

(r2, r3)
}

= (qi1 + qi2 − 2r2 − eqi3)J2(i1, . . . , i4; r2, r3),

where

J2(i1, . . . , i4; r2, r3) = (qi4)!βqi1
,qi2

(r2)(r3 − 1)!

×
(

qi1 + qi2 − 2r2 − 1
r3 − 1

)(
qi3 − 1
r3 − 1

)
.
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If (i1, . . . , i4) = (i, i, j, j), (i, j, i, j) or (i, j, j, i), then we have, from a similar estimate as
for (29), that, for 1 ≤ r2 ≤ qi1 ∧ qi2 and 1 ≤ r3 ≤ (qi1 + qi2 − 2r2) ∧ qi3 ,

J1(i1, . . . , i4; r2, r3) ≥ 0.

Indeed, for (i1, . . . , i4) = (i, i, j, j), it is sufficient to show that∫
Z2(qi+qj)

fqi (u1, v1, w) fqi (u2, v2, w) fqj(u1, u2, v3)

× fqj(v1, v2, v3)µ
⊗2(qi+qj)

(du1, du2, w, dv1, dv2, dv3)

=
∫
Z2(qi+qj)

( fqi ⊗`(u1)
fqj)(v1, u2, w, v3)

× ( fqi ⊗`(v2)
fqj)(v1, u2, w, v3)(dv1, du2, w, dv3) ≥ 0, (40)

where `(u1) = `(v2). Similarly, we can show that, for (i1, . . . , i4) = (i, j, i, j) or (i, j, j, i),

J1(i1, . . . , i4; r2, r3) ≥ 0.

These facts lead us to E[Γi1,i2,i3,i4(F)] ≥ 0 and E[Γ∗i1,i2,i3,i4
(F)] ≥ 0 for (i1, . . . , i4) = (i, i, j, j),

(i, j, i, j) or (i, j, j, i), which implies that E(d)(F) 6= ∅. Now, we find a constant e > 0 such
that e ∈ E(d)(F). Let us set J(· · · ) = J1(· · · ) × J2(· · · ). From (37) and (38), we have,
together with (39), that

d

∑
i,j=1

{
∑

l1+l2+l3=ei+2ej

(
E[Γ∗i,l1,l2,l3(F)]− eE[Γi,l1,l2,l3(F)]

)}

=
d

∑
i,j=1

{
E[Γ∗i,i,j,j(F)]− eE[Γi,i,j,j(F)] +E[Γ∗i,j,i,j(F)]

− eE[Γi,j,i,j(F)] +E[Γ∗i,j,j,i(F)]− eE[Γi,j,j,i(F)]
}

= V1,d + V2,d + V3,d, (41)

where

V1,d =
d

∑
i,j=1

qi

∑
r2=1

(2qi − 2r2 − eqj)J(i, i, j, j; r2, r3)

× 1{r2<qi}1{r2+r3=qi},

V2,d =
d

∑
i,j=1

qi∧qj

∑
r2=1

(qi + qj − 2r2 − eqj)J(i, j, i, j; r2, r3)

× 1{2r2<qi+qj}1{r2+r3=qi},

and

V3,d =
d

∑
i,j=1

qi∧qj

∑
r2=1

(qi + qj − 2r2 − eqj)J(i, j, j, i; r2, r3)

× 1{2r2<qi+qj}1{r2+r3=qj}.

For every i, j ∈ {1, . . . , d} and r2 ∈ {1, . . . , qi − 1}, we have

(2qi − 2r2 − eqj) ≥ (2− e max
1≤i≤d

qi).
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This leads us to
V1,d ≥ (2− e max

1≤i≤d
qi)Ṽ1,d, (42)

where

Ṽ1,d =
d

∑
i,j=1

qi

∑
r2=1

J(i, i, j, j; r2, r3)1{r2<qi}1{r2+r3=qi}.

For the second sum V2,d in (41), we change the range of r2 from the inequality 2r2 < qi + qj
to

r2 ≤
qi + qj

2
− αi,j for αi,j ∈ (0, 1],

where [(qi + qj)/2]− αi,j is a positive integer. For fixed i, j ∈ {1, . . . , d},

(qi + qj − 2r2 − eqj)

≥
(

qi + qj − 2
[( qi + qj

2
− αi,j

)
∧ qi

]
− eqj

)
. (43)

If qi = qj for 1 ≤ i, j ≤ d, then, from (43), we have

(qi + qj − 2r2 − eqj) ≥ (2qi − 2(qi − 1)− eqi)

≥ (2− e max
1≤i≤d

qi) (44)

for every i, j ∈ {1, . . . , d} and r2 ∈ {1, . . . , qi − 1}. For qj − qi ≥ 2, we deduce, from (43), for
fixed i, j ∈ {1, . . . , d}, that

(qi + qj − 2r2 − eqj) ≥ (qi + qj − 2qi − eqj)

≥ (2− e max
1≤i≤d

qi). (45)

For qj = qi + 1 and 0 < αi,j ≤ 0.5, the Inequality (43) yields

(qi + qj − 2r2 − eqj) ≥ (2qi + 1− 2qi − eqj)

≥ (1− e max
1≤i≤d

qi). (46)

On the other hand, if qj = qi + 1 and 0.5 < αi,j ≤ 1, then we obtain, from (43), that

(qi + qj − 2r2 − eqj) ≥
[

2qi + 1− 2
(

qi +
1
2
− αi,j

)
− eqj

]
≥ (2αi,j − eqj)

≥ (1− e max
1≤i≤d

qi). (47)

Combining the above results (44)–(47), we obtain

V2,d ≥ (1− e max
1≤i≤d

qi)Ṽ2,d, (48)

where

Ṽ2,d =
d

∑
i,j=1

qi∧qj

∑
r2=1

J(i, j, i, j; r2, r3)1{2r2<qi+qj}1{r2+r3=qi}.

Similarly,
V3,d ≥ (1− e max

1≤i≤d
qi)Ṽ3,d, (49)



Mathematics 2022, 10, 1352 14 of 17

where

Ṽ3,d =
d

∑
i,j=1

qi∧qj

∑
r2=1

J(i, j, j, i; r2, r3)1{2r2<qi+qj}1{r2+r3=qj}.

The Inequalities (42), (48), and (49) yield

d

∑
i,j=1

{
∑

l1+l2+l3=ei+2ej

(
E[Γ∗i,l1,l2,l3(F)]− eE[Γi,l1,l2,l3(F)]

)}
≥ (1− e max

1≤i≤d
qi)(Ṽ1,d + Ṽ2,d + Ṽ3,d)

≥ 0 for e ∈
[

0,
1

max1≤i≤d qi

]
,

so that the condition (γ) is satisfied. Hence, applying Theorem 2 gives the desired conclu-
sion. If q1 = · · · = qd = q, the estimate in (42) yields a constant e given in (25).

Remark 4. 1. Theorem 3 proves that the three assumptions in Theorem 2 are satisfied under the
same conditions as in Theorem 4.3 of [19]. To achieve this, we just need to explicitly compute the
expected values of Gamma operators and compare them.
2. The estimate in Theorem 4.3 of [19] corresponds to the estimate (24) with e = 0. Hence,
our approach improves the rate of constants appearing in the previous estimate given in [19]. If
q1 = · · · = qd = 1, then e = 2, which implies that F has the same distribution with Z.

5. Results in Dimension One (d = 1)

In this section, we specialize the results given in the previous Sections 3 and 4 to the
one-dimensional case. We begin with a one-dimensional version of Gamma operators
Γ and Γ∗ (for these operators, see [21,22]). We set Γ1(F) = F and Γ∗1(F) = F. If F is a
well-defined element in L2(Ω), we set Γk+1(F) = 〈DF,−DL−1Γk(F)〉H and Γ∗k+1(F) =

〈−DL−1F, DΓ∗k (F)〉H for k = 1, 2, . . ..

Theorem 4. If d = 1, the conditions (α), (β), and (γ) are satisfied under the assumption
E[Γ4(F)] 6= 0.

Proof. The assumptions (α) and (β) obviously hold. Indeed, the Cauchy–Schwartz in-
equality proves that

E[Γ∗2(F)2] ≥ (E[Γ∗2(F)])2,

where Γ∗2(F) = Γ2(F) = 〈−DL−1F, DF〉H. A repeated application of Lemma 1 proves that

E[Γ2(F)2] = E[F2Γ2(F)]−E[Γ∗4(F)]

= 2E[Γ4(F)] + (E[F2])2 −E[Γ∗4(F)].

This shows that Var(Γ2(F)) = 2E[Γ4(F)] − E[Γ∗4(F)]. Let φ(x) = E[Γ4(F)]x − E[Γ∗4(F)].
Then, φ(2) ≥ 0. Since E[Γ4(F)] 6= 0, there exists a constant e ∈ R such that φ(e) ≤ 0. This
implies that the condition (γ) is satisfied.

Remark 5. If E[F] = 0, it follows from (8) that

E[Γ4(F)] =
1
6
(
E[F4]− 3(E[F2])2). (50)

Studies so far have shown that Inequality (1) holds true only when F belongs to a fixed Wiener chaos.
However, the technique developed here can be applied to prove that the fourth moment theorem (1)
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holds even if F is not an element of a fixed Wiener chaos. The proof in Theorem 4 yields, together
with (50), that

Var(Γ2(F)) ≤ 2− e

6
(
E[F4]− 3(E[F2])2), (51)

where a constant e satisfies φ(e) ≤ 0. Note that the constant given in (12) is three times that in (51).

Proposition 2. Let φ be a linear function in the proof of Theorem 4. Let F = Iq( f ) with f ∈ H�q

(q ≥ 2). Then, there exists a constant e ∈ [2/q, 2) such that φ(e) ≤ 0, and (−∞, 2/q] ⊆ E(1)(F).

Proof. A direct computation yields that

E[Γ∗4(F)] = q!
q−1

∑
r=1

β∗q,q(r)(2q− 2r)(q− r− 1)!
(

2q− 2r− 1
q− r− 1

)
×
(

q− 1
q− r− 1

)
‖ f ⊗̃r f ‖2

H⊗(2q−2r) > 0. (52)

On the other hand, Theorem 5.1 in [22] shows that

E[Γ4(F)] = q!
q−1

∑
r=1

βq,q(r)q(q− r− 1)!
(

2q− 2r− 1
q− r− 1

)
×
(

q− 1
q− r− 1

)
‖ f ⊗̃r f ‖2

H⊗(2q−2r) > 0. (53)

Combining (52) and (53) (or V1,d for d = 1 in (41) in the proof of Theorem 3) together with
β∗q,q = βq,q, we obtain that

−φ(e) = E[Γ∗4(F)]− eE[Γ4(F)]

= q!
q−1

∑
r=1

βq,q(r)(2q− 2r− eq)(q− r− 1)!
(

2q− 2r− 1
q− r− 1

)
×
(

q− 1
q− r− 1

)
‖ f ⊗̃r f ‖2

H⊗(2q−2r)

≥ (2− eq)q!
q−1

∑
r=1

βq,q(r)(q− r− 1)!
(

2q− 2r− 1
q− r− 1

)
×
(

q− 1
q− r− 1

)
‖ f ⊗̃r f ‖2

H⊗(2q−2r) . (54)

This Inequality (54) shows that φ(2/q) ≤ 0. Since E[Γ∗4(F)] > 0 and E[Γ4(F)] > 0, it may
be possible for e to belong to [2/q, 2).

Remark 6. Substituting 2/q for e in (51), we can derive the fourth moment theorem in (2). By
using the new method developed in this paper, we show that the constant term given in (51) is less
than or equal to the one in (2). This means that

2− e

6
≤ q− 1

3
. (55)

Let’s take an example that satisfies (55).
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Example 1. We consider the case of q = 3. Let F = I3(h⊗3) with h ∈ H. A similar computation
as for (54) proves that

E[Γ∗4(F)]− eE[Γ4(F)]

= 3!× 3
2

∑
r=1

(r− 1)!
(

2
r− 1

)2
(6− 2r− eq)(3− r− 1)!

×
(

6− 2r− 1
3− r− 1

)(
2

3− r− 1

)
‖h⊗3⊗̃rh⊗3‖2

H⊗(6−2r)

= (3!× 18)(4− 3e)‖h⊗3⊗̃1h⊗3‖2
H⊗4

+(3!× 12)(2− 3e)‖h⊗3⊗̃2h⊗3‖2
H⊗2

= 72
(

8− 15
2
e
)
‖h‖6

H. (56)

From (56), it follows that (−∞, 16/15] = C(1)(F) and

e =
E[Γ∗4(F)]
E[Γ4(F)]

= 16/15.

As a consequence of (51), the upper bound is given by

Var(Γ2(F)) ≤
√

7
45

√
E[F4]− 3(E[F2])2. (57)

On the other hand, the estimate (2) (q = 3) gives

Var(Γ2(F)) ≤
√

30
45

√
E[F4]− 3(E[F2])2. (58)

Compare the constant in (57) with that in (58).

6. Conclusions and Future Works

This paper finds a method to obtain the fourth moment bound on the normal approx-
imation of F, where F is a d-dimensional random vector whose components are general
functionals of Gaussian fields. In order to prove the fourth moment theorem, all we need to do
is to show that the conditions (α), (β), and (γ) in Theorem 2 are satisfied. The significant
feature of our works is that these conditions are naturally satisfied in the specific case where
F is a random variable belonging to the vector-valued multiple integrals. In addition, our
technique yields a much better estimate than the conventional method. Comparing with
the studies in literatures [3,14–16,19,20], our study is not only an extension of these studies,
but it is also possible to naturally derive the results of existing studies.

As future research directions, we will apply our approach for the fourth moment
theorem, developed here, to more general processes, including Markov diffusion processes
and Poisson processes. Our developed approach is expected to integrate the fourth moment
theorem for many processes.
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