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Abstract: Due to the disturbance effect of excavation, the original stress is redistributed, resulting
in an excavation damaged zone around the roadway. It is significant to predict the thickness of
an excavation damaged zone because it directly affects the stability of roadways. This study used
a sparrow search algorithm to improve a backpropagation neural network, and an Elman neural
network and support vector regression models to predict the thickness of an excavation damaged
zone. Firstly, 209 cases with four indicators were collected from 34 mines. Then, the sparrow search
algorithm was used to optimize the parameters of the backpropagation neural network, Elman neural
network, and support vector regression models. According to the optimal parameters, these three
predictive models were established based on the training set (80% of the data). Finally, the test set
(20% of the data) was used to verify the reliability of each model. The mean absolute error, coefficient
of determination, Nash–Sutcliffe efficiency coefficient, mean absolute percentage error, Theil’s U
value, root-mean-square error, and the sum of squares error were used to evaluate the predictive
performance. The results showed that the sparrow search algorithm improved the predictive per-
formance of the traditional backpropagation neural network, Elman neural network, and support
vector regression models, and the sparrow search algorithm–backpropagation neural network model
had the best comprehensive prediction performance. The mean absolute error, coefficient of de-
termination, Nash–Sutcliffe efficiency coefficient, mean absolute percentage error, Theil’s U value,
root-mean-square error, and sum of squares error of the sparrow search algorithm–backpropagation
neural network model were 0.1246, 0.9277, −1.2331, 8.4127%, 0.0084, 0.1636, and 1.1241, respectively.
The proposed model could provide a reliable reference for the thickness prediction of an excavation
damaged zone, and was helpful in the risk management of roadway stability.

Keywords: excavation damaged zone; prediction; sparrow search algorithm; BP neural network;
Elman neural network; support vector regression

MSC: 86-10

1. Introduction

After the excavation of roadway, the initial stress in the surrounding rock mass is
redistributed. When the stress is greater than the strength of the surrounding rock, the rock
mass will be damaged. Then, a ringlike broken zone can be formed around the excavated
space; this is called the excavation damaged zone (EDZ) [1,2]. The thickness of the EDZ
can not only be used to judge the stability of the roadway, but can also be adopted in the
support design [3–5]. In addition, due to the weakening in the rock strength, an EDZ can
also be utilized for nonexplosive continuous mining in deep hard-rock mines [6]. Therefore,
predicting the thickness of the EDZ around a roadway is significant.

Since the concept of the EDZ was proposed, many scholars have conducted plenty of
research to determine its size or thickness. These methods can be mainly summarized as the
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onsite measurement technique, the numerical simulation method, the empirical formula,
and the machine-learning (ML) algorithm. Among them, the onsite measurement tech-
nique is the most direct method to determine the thickness of an EDZ, and includes digital
panoramic drilling camera technology [7], ground-penetrating radar [8], ultrasonic detec-
tion technology [9], the borehole imaging method [10], the complex resistivity method [11],
and microseismic monitoring [12,13]. Although the results of these measurements are
accurate, the operation is complicated and vulnerable to the site conditions. With the rapid
development of rock mechanics and computers, numerical-simulation methods became
popular to determine the thickness of an EDZ. Liu et al. [14] used the ANSYS software to an-
alyze the influencing factors and distribution law of an EDZ around a rectangular roadway.
Sun et al. [15] studied the formation mechanism of a butterfly-shaped EDZ by combining
the force and elastic wave theory, and then used Midas/GTS-FLAC3D simulation technol-
ogy to determine the range of the EDZ. Perras et al. [16] used the finite element method
in the Phase2 software to determine the thickness of an EDZ. Wan et al. [17] used 3DEC
to determine the thickness of an EDZ, and the simulation results were consistent with the
measured values. Although a numerical simulation is low-cost and convenient to operate,
many assumptions exist in the simulation process that lead to idealized results and affect
the accuracy. According to field-engineering experience and theoretical analysis, some
empirical formulas were proposed to calculate the thickness of an EDZ. Yan [18] proposed
an empirical formula for the thickness prediction of an EDZ based on the wave velocity
of the rock and rock mass. Wang [19] combined the elastoplastic theory and measured
data to determine the range of the EDZ in the Chazhen Tunnel. Chen et al. [20] deduced
the radius of an EDZ based on the Hoek–Brown criterion and elastoplastic solution of a
circular hole. Based on similar simulation tests and field experience, Dong [4] proposed
a relationship between the stress and the rock strength to calculate the thickness of an
EDZ. Zhao [21] derived the quantitative relationship between the thickness of an EDZ
and its influencing factors based on a dimensional-analysis method. In addition, the zonal
disintegration phenomenon, which indicates the alternation of fractured and intact zones,
appears in deep roadways. Shemyakin [22] proposed the concept of zonal disintegration
and deduced the empirical formula for the thickness of the discontinuous zone. After
Myasnikov [23] proposed a non-Euclidean continuum model to describe the stress-field
distribution, some scholars [24–26] used that non-Euclidean model to investigate the zonal
disintegration phenomenon in a surrounding rock mass, and obtained the corresponding
formulas. Although an empirical formula is easy to understand, it ignores the effects
of joints and mining. Currently, there is no universally accepted empirical formula for
predicting the thickness of an EDZ.

Considering ML can well deal with nonlinear and complex problems [27,28], it shows
great potential to predict the thickness of an EDZ. Asadi et al. [29] used artificial neural
networks in the thickness prediction of an EDZ. Zhou [30] verified that the support vector
machine (SVM) could reliably estimate the range of an EDZ. In addition, some scholars
adopted intelligent optimization techniques to improve traditional ML algorithms for the
determination of an EDZ’s thickness. For example, Hu [31] used a layered fish school to
improve the SVM; Ma [32] combined the particle-swarm algorithm (PSO) and the least-
squares support vector machine; Yu [33] integrated PSO and a Gaussian process model;
and Liu [34] employed the wavelet-relevance vector machine. In addition, ML is being
increasingly used in other civil engineering fields, and achieves an excellent prediction
performance [35–37]. For example, Mangalathu et al. [38] used ML to classify the building
damage caused by earthquakes; Ruggieri et al. [39] adopted ML to analyze the vulnerability
of existing buildings. ML can not only obtain reliable prediction results, but can also
save time and economic costs. However, numerous EDZ cases are needed to improve
its credibility.

After comparing it with other types of approaches, the ML method was preferentially
chosen to predict the thickness of an EDZ. An important reason is that it has strong self-
learning and adaptive capabilities based on big data and can find implicit relationships
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between indicators. Nevertheless, it is essential to determine the favorable parameters of
ML, because they directly affect its predictive performance [40]. The sparrow search algo-
rithm (SSA) proposed by Xue [41] in 2020 is an efficient swarm-intelligence optimization
algorithm. Compared with other optimization algorithms, the SSA has a higher search
efficiency and a simpler operation. SSA considers all possible situations of a sparrow
population, so that the sparrows in the population are close to the global optimal value,
and converge [42]. At the same time, SSA has a high convergence speed, a good stability,
a strong global search ability, and few parameters. In addition, backpropagation neural
network (BPNN), Elman neural network (ENN), and support vector regression (SVR) mod-
els have shown extraordinary capabilities in solving prediction problems, and have been
widely used in various engineering fields [43–45]. Therefore, using SSA to optimize the
parameters of BPNN, ENN, and SVR models is more competitive.

The goal of this study was to use SSA-BPNN, SSA-ENN, and SSA-SVR models to pre-
dict the thickness of an EDZ. Firstly, an EDZ database including 209 cases was established.
Secondly, SSA-BPNN, SSA-ENN, and SSA-SVR models were proposed for the thickness
prediction of an EDZ. Thirdly, seven indexes were used to evaluate the performance of
each model. Finally, all models were compared and analyzed, and the best model was
determined.

2. Data Collection

To establish a reliable predictive model, a total of 209 cases from 34 mines were
collected [46–50]. The locations of these mines are shown in Figure 1. It can be seen that the
types of these mines were different, and included coal mines, gold mines, phosphate mines,
and lead–zinc mines. In addition, these mines were in different regions, which indicated
that the collected dataset was complex to some extent.

Figure 1. Locations of the selected mines.

The dataset statistics of each indicator are shown in Table 1, where A1 indicates the
embedding depth, A2 indicates the drift span, A3 indicates the surrounding rock strength,
A4 indicates the joint index, and A5 indicates the EDZ thickness. The complete data can
be found in Appendix A Table A1. It should be noted that EDZ indicates the ruptured
zone around the roadway, but not the zonal disintegration. For a better understanding, the
structure of an EDZ and some indicators are illustrated in Figure 2. The meaning of these
indicators is indicated in Table 2.
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Table 1. Statistics for each indicator.

Indicator Max Min Mean Standard Deviation

A1 (m) 1159.00 97.00 499.20 242.94
A2 (m) 10.00 2.40 3.71 1.13

A3 (MPa) 158.83 7.50 30.80 31.12
A4 5.00 1.00 2.89 1.15

A5 (m) 3.45 0.30 1.56 0.61

Figure 2. Excavation damaged zone around the roadway.

Table 2. Meanings of these indicators.

Indicator Meaning

A1 (m) Indicates the depth of the roadway from the ground.
A2 (m) Indicates the width of the roadway.

A3 (MPa) Indicates the uniaxial compressive strength of the surrounding rock.
A4 Indicates the development degree of joints in the surrounding rock.

Each sample contained four indicators and the thickness of the EDZ. The thickness
of an EDZ is affected by many factors, such as the strength of surrounding rock mass,
in situ stress, size and shape of the roadway, excavation method, time effect, and other
environmental factors. First of all, the strength of the surrounding rock mass reflects the
ability of the rock mass to resist damage, and is inversely proportional to the thickness
of EDZ. Therefore, the indicators A3 and A4 were selected. Second, considering that the
thickness of an EDZ is proportional to the in situ stress around the roadway, the indicator
A1 was chosen. Third, because different roadway sizes have diverse influences on an EDZ,
A2 was used as an indicator. Fourth, since the thickness of the EDZ used in this study was
a stable value, the time effect could be ignored. When considering the influence of other
factors, such as temperature, groundwater, and excavation method, they were deemed too
complicated to quantify, and were not considered in this study.

To quantitatively describe the correlation between indicators and the thickness of
an EDZ, the Pearson correlation coefficient was calculated, as shown in Figure 3. In this
figure, red represents a positive correlation, blue represents a negative correlation, and the
depth of color indicates the strength of correlation. It can be seen that the thickness of an
EDZ and these four indicators had different correlation degrees, which showed that these
indicators were relatively independent. Therefore, these four indicators were used as the
input variables.
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Figure 3. The correlation heat map of each indicator.

The advantages of these selected indicators can be summarized as: (1) they could
reflect the main factors affecting the formation of an EDZ; (2) their values were easy to
obtain; and (3) the information described by these indicators was independent.

3. Methodology

The structure of the proposed methodology is shown in Figure 4. Firstly, the original
data were randomly divided into a training set (80%) and test set (20%). Secondly, the SSA
was used to optimize the parameters of the BPNN, ENN and SVR models. Thirdly, the
training set was adopted to train the optimized model. Fourthly, the test set was employed
to analyze the accuracy of each model, and seven indexes, including the mean absolute
error (MAE), coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSC),
mean absolute percentage error (MAPE), Theil’s U value, root-mean-square error (RMSE),
and the sum of squares error (SSE), were used to evaluate each model’s performance.
Finally, the optimal model was determined based on their comprehensive performance.
The whole process was implemented in the MATLAB software. This section introduces the
principles of the different models and the performance-evaluation indexes in detail.

Figure 4. Structure of the proposed methodology.
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3.1. Sparrow Search Algorithm (SSA)

Xue [41] proposed the SSA, which was inspired by the behavior strategy of a sparrow
population. It solves the global optimization problems by simulating the behavior char-
acteristics of sparrows, and provides a new approach to solving practical problems with
a large number of local optimal values. SSA has a faster solution speed, a better stability,
and convergence accuracy. In addition, because randomness is introduced in the search
process, it can avoid falling into local solutions, and solve global optimization problems
more effectively [51–53].

According to the original foraging principle of sparrow populations, a discoverer–
scrounger model was established [54]. The interrelationships between individuals in the
sparrow population are shown in Figure 5. Generally, the discoverer S1 is responsible for
finding food and safe areas, while the scrounger S2 tracks the location of S1 to obtain food,
and their roles are constantly changing [55,56]. S3 represents the sparrow at the edge of
feeding area. It may leave the location and find another place because it is in the most
dangerous position. S4 is responsible for detecting the safety of surrounding environment,
and other sparrows also pay attention to S4 while eating.

Figure 5. Interrelationships between individuals in the sparrow population.

During the foraging and eating process of sparrow groups, individuals monitor each
other while constantly observing changes in the surrounding environment [57,58]. If S4
sends a hazard signal to the population, the entire group will scatter away immediately.
In addition, sparrows at the edge of community are more likely to be attacked by natural
enemies than those at the center, so they will spontaneously and constantly adjust their
positions to ensure safety.

According to the above idea, the SSA model can be established. Assuming that the
sparrow population is in the space of N × D, it can be defined by:

X =



X1
X2
...

Xn
...

XN


=



x1,1 x1,2 . . . x1,d · · · x1,D
x2,1 x2,2 . . . x2,d . . . x2,D

...
...

...
...

...
...

xn,1 xn,2 . . . xn,d . . . xn,D
...

...
...

...
. . .

...
xN,1 xN,2 . . . xN,d . . . xN,D


, n = 1, 2, 3, . . . .., N (1)

where x is the position of sparrows, D indicates the spatial dimension, and N represents the
number of total sparrows.
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The fitness value indicates the energy reserve, which is defined as:

FX =



f1
f2
...
fn
...

fN


=



f [x1,1 x1,2 · · · x1,d · · · x1,D]
f [x2,1 x2,2 · · · x2,d · · · x2,D]

...
...

...
...

...
...

f [xn,1 xn,2 · · · xn,d · · · xn,D]
...

...
...

...
. . .

...
f [xN,1 xN,2 · · · xN,d · · · xN,D]


, n = 1, 2, 3, . . . .., N (2)

Generally, the discoverer S1 has a larger foraging range than the scrounger S2, and
updates its position constantly. The update process can be calculated as:

Xt+1
nd =

{
Xt

nd · exp
(−n

α·P
)
, R2 < ST

Xt
nd + Q · L, R2 ≥ ST

(3)

where t denotes the current number of iterations; P refers to the maximum number of
iterations; α is a random number of [0, 1]; R2 is the warning threshold, and R2 ∈ [0, 1]; ST
indicates the safety value, and ST ∈ [0.5, 1]; Q represents a random number that follows the
normal distribution; L shows a 1× d matrix in which each element is 1; and Xnd signifies
the position of a sparrow.

When R2 < ST, it indicates the current foraging area is safe, and the sparrows can
continue to eat, so the foraging range can be expanded. When R2 ≥ ST, the spectators find
the predator and immediately issue an alarm signal, then all sparrows will scatter away
immediately.

The location of scroungers S2 is also updated accordingly because the central location
is more secure. The update equation is indicated as:

Xt+1
n,d =

 Q · exp
(

Xt
worst−Xt

n,d
n2

)
, n > N

2

Xt+1
best +

∣∣∣Xt
n,d − Xt+1

best

∣∣∣ · A+ · L, n ≤ N
2

(4)

where Xt
worst represents the global worst position; Xt

n,d is the best position occupied by the
discoverer; and A represents a 1 × d matrix in which the elements are randomly assigned
to be 1 or −1, and A+ = AT(AAT)−1.

When n > N
2 , it means that the nth scrounger with a poor fitness value is hungry, and

should fly in other directions to find food.
The spectators S4 generally account for 10% to 20% of the population. When danger

approaches, they will scatter away and move to a new location. The position-update
equation is:

Xt+1
n,d =


Xt

best + β
(

Xt
n,d − Xt

best

)
, fn 6= fg

Xt
n,d + K ·

(
Xt

n,d−Xt
worst

| fn− fw |+e

)
, fn = fg

(5)

where Xt
best represents the global safest position; β and K ∈ [−1, 1] are both control param-

eters of step length, while β is a random number that follows the normal distribution with
a mean value of 0 and variance of 1, and K ∈ [−1, 1] represents the direction of sparrow
movement; fn, fg, and fw respectively represent the current fitness value of a sparrow,
the global optimal value, and the global worst value; and e is a constant to prevent the
denominator from being 0.

When fn > fg, it means the sparrow is at the edge of the population and is vulnerable
to predators. When fn = fg, it indicates the sparrow in the middle of the population is
aware of the danger and needs to be close to other sparrows to reduce the probability of
being preyed upon.
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3.2. Sparrow Search Algorithm–Back Propagation Neural Network (SSA-BPNN) Model

The calculation process of a BPNN is similar to nonlinear mapping, which uses
multiple neurons to form a multilayer feedback model. The characteristics of the data are
obtained through the continuous iteration of the algorithm. BPNN has a high learning
adaptability, and can predict unknown data based on a previously learned pattern [59–63].

However, a BPNN has the defect of being easy to converge to a local minimum
when fitting nonlinear functions. The SSA provides a new method to solve the parameter-
optimization problem of a BPNN. In the SSA-BPNN model, the SSA reduces the error
by continuously adjusting the weight and threshold of each layer, and improves the
convergence speed.

The steps for an SSA to optimize a BPNN are as follows:
Step 1: The relevant parameters of the BPNN are initialized;
Step 2: The relevant parameters of the sparrow population are initialized, and the

maximum number of iterations P is defined;
Step 3: Based on the fitness values, the sparrows are sorted to generate initial popula-

tion positions. The mean-square error (MSE) is selected as the fitness function;
Step 4: According to Equations (3)–(5), the positions of discoverer S1, scrounger S2,

and spectator S4 are updated;
Step 5: The current updated position is obtained. If the new position is better than

the old position from a previous iteration, the update operation is performed; otherwise,
the iterative process continues until the condition is met. Finally, the best individual and
fitness values are obtained;

Step 6: The global optimal individual is used as the weight of the BPNN, and the
global optimal solution is adopted as the threshold of the BPNN;

Step 7: When the number of iterations is reached or the error is met, the calculation
process stops; otherwise, the program re-executes beginning at step 3.

3.3. Sparrow Search Algorithm–Elman Neural Network (SSA-ENN) Model

An ENN is a dynamic recurrent neural network that adds local memory units on the
basis of a traditional feedforward network [64,65]. In addition to the hidden layer, it inserts
an undertaking layer to the original grid that is used as a one-step delay operator to record
dynamic information. Therefore, it obtains the ability to adapt to time-varying characteris-
tics. Compared with traditional neural networks, it has better learning capabilities and can
be used to solve problems including optimization, fitting, and regression.

However, an ENN has the randomness problem with initial weights and thresholds,
which affects the accuracy of its predictions. In this study, an SSA was used to optimize the
initial weights and thresholds of an ENN to improve the overall predictive performance.

The stages of SSA optimization of an ENN are as follows:
Stage 1: Initialize the relevant parameters of ENN and SSA;
Stage 2: Calculate the fitness of initial population and sort the results. The best and

worst individuals can be determined. MSE is selected as the fitness function;
Stage 3: According to Equations (3)–(5), the positions of sparrows S1, S2, and S4 are

updated based on fitness ranking;
Stage 4: Calculate the fitness value. The position of each sparrow is updated constantly.

If the stop condition is met, the iterative process stops. Otherwise, the above process should
be repeated;

Stage 5: Obtain the optimal weights and thresholds of the ENN.

3.4. Sparrow Search Algorithm–Support Vector Regression (SSA-SVR) Model

An SVR model mainly includes two steps. First, the nonlinear data is mapped into a
high-dimensional space through the kernel function to make the data linearly separable.
Then, the data is processed based on the principle of structural risk minimization.

Two important parameters in the SVR model include the penalty parameter c and the
kernel function parameter g. Among them, c represents the error tolerance and g indicates
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the learning ability. The higher the value of c, the smaller the tolerance to error, and the
more likely to overfit. In addition, g affects the prediction accuracy directly. Therefore, it is
necessary to determine the optimal c and g during the training process.

The stages of SSA optimization of an SVR are as follows:
Stage 1: Build and initialize the SVR model;
Stage 2: Initialize the parameters of SSA, and determine the range of c and g;
Stage 3: Calculate the fitness of the initial population and determine the best and worst

individuals. MSE is selected as the fitness function;
Stage 4: Update the positions of sparrows S1, S2, and S4 based on Equations (3)–(5);
Stage 5: Calculate the fitness value and update the position of the sparrows. The

iterative process will break when the stop condition is met. Otherwise, the above steps will
be repeated;

Stage 6: Obtain the optimal c and g, which are then used for model training.

3.5. Model Evaluation Indexes

In order to evaluate model performance, seven indexes, including MAE, R2, NSC,
MAPE, Theil’s U value, RMSE, and SSE, were adopted.

MAE represents the average error between predicted value and actual value. The
calculation equation is [66]:

MAE =
1
n

n

∑
i=1
| fi − yi| (6)

where n is the number of samples; fi and yi are the predicted value and actual value of the
ith sample, respectively; and y denotes the average of the actual values.

R2 is used to indicate the correlation between two variables. The calculation equation
is [33]:

R2 =

(n
n
∑

i=1
fiyi −

n
∑

i=1
fi

n
∑

i=1
yi)

2

(n
n
∑

i=1
( fi)

2 − (
n
∑

i=1
fi)2)(n

n
∑

i=1
(yi)

2−(
n
∑

i=1
yi)2)

(7)

NSC is used to describe the predictive efficiency. The calculation equation is [67]:

NSC = 1−

n
∑

i=1
(yi − fi)

2

n
∑

i=1
(yi − y)2

(8)

Theil’s U value is used to indicate the prediction accuracy. The calculation equation
is [68]:

Theil′s U =

√
1
n ∑n

i=1(yi − fi)
2√

1
n ∑n

i=1 yi
2 +

√
1
n ∑n

i=1 fi
2

(9)

MAPE denotes the average value of the relative error. The calculation equation is [69]:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ fi − yi
yi

∣∣∣∣× 100% (10)

RMSE is used to describe the deviation between the predicted value and actual value.
The calculation equation is [70]:

RMSE =

√
1
n

n

∑
i=1

( fi − yi)
2 (11)
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SSE is used to calculate the sum of the squared error. The calculation equation is [71]:

SSE =
n

∑
i=1

(yi − fi)
2 (12)

4. Results and Analysis
4.1. Results of SSA-BPNN Model

A three-layer grid was used to establish the SSA-BPNN model. Based on the input and
output of the model, the number of nodes in the input and output layers were determined
as 5 and 1. In addition, the number of nodes in the hidden layer was obtained based on the
MSE of the training set. By setting the number of nodes from 3 to 15, the MSE of the training
set was obtained, as shown in Figure 6. It can be seen that the MSE was the smallest when
the number of nodes was 5. Therefore, the grid structure of the SSA-BPNN model was
chosen as 4− 5− 1, as shown in Figure 7.

Figure 6. MSE of different number of hidden layer nodes for SSA-BPNN model.

Figure 7. Grid structure of SSA-BPNN model.

In order to obtain a better predictive performance, other grid parameters, such as
the number of trainings, minimum error of training target, initial population size of the
SSA, and maximum evolutionary generation, were optimized by trial and error and set to
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1000, 0.0001, 30, and 100, respectively. Then, the SSA was used to optimize the weights
and thresholds of the BPNN model, and the optimized weight matrices w1 and w2 were
obtained as follows:

w1 =


0.1089 −0.2795 0.2414 −0.7100
0.0890 −11.3880 7.6001 1.5449
0.3197 0.4036 −0.0070 −0.4563
−6.0878 0.7283 0.1796 1.3281
−0.6581 −2.0707 11.9725 10.5624

 (13)

w2 =
[
−2.6242 −0.2653 −4.0481 −0.2858 −0.4481

]
(14)

After the model was trained based on the training set, the test set was used to eval-
uate the predictive performance of the SSA-BPNN model. The relationship between the
actual and predicted values is shown in Figure 8. It can be seen that their values had a
good correlation.

Figure 8. Predictive performance of SSA-BPNN model.

In addition, the predictive performance of the BPNN model before and after the
SSA optimization was compared. Seven performance evaluation indexes, including MAE,
R2, NSC, MAPE, Theil’s U value, RMSE, and SSE, were calculated, as shown in Table 3.
According to these index values, the SSA-BPNN model performed better than the BPNN
model. The absolute error of the different samples was determined, as demonstrated in
Figure 9. Overall, the absolute error of the SSA-BPNN model was smaller and more stable
than that of the BPNN model. At the same time, the maximum error of the BPNN model
was larger. Therefore, SSA improved the predictive performance of the BPNN model to
some extent.

Table 3. Evaluation index values of BPNN and SSA-BPNN models.

Model MAE R2 NSC MAPE Theil’s U Value RMSE SSE

BPNN 0.2169 0.7425 −3.8026 15.4075% 0.0144 0.2873 3.4665
SSA-BPNN 0.1246 0.9277 −1.2331 8.4127% 0.0084 0.1636 1.1241
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Figure 9. Absolute errors of BPNN and SSA-BPNN models.

4.2. Results of SSA-ENN Model

To establish the optimal grid structure, SSA-ENN models with different numbers of
hidden layer nodes were built. The training error was determined when the number of
nodes was selected from 3 to 12, as shown in Figure 10. When the number of hidden layer
nodes was 10, the error was the smallest. Therefore, the grid structure of the SSA-ENN
model was selected as 4− 10− 10− 1, as shown in Figure 11.

Figure 10. MSE of different number of hidden layer nodes for SSA-ENN model.
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Figure 11. Grid structure of SSA-ENN model.

For training the model, other grid parameters, such as the learning rate, minimum
error of training target, and initial population size of SSA, were optimized by trial and error
and set to 0.01, 0.0001, and 30, respectively. Then, the weights and thresholds of the ENN
were optimized by the SSA based on the training set, and the optimized weight matrices
w3, w4, and w5 were obtained as follows:

w3 =



−2.0388 −1.5616 −0.1513 1.3243
1.0527 −0.0656 −0.7647 −2.0608
−2.6026 −0.0921 −1.1416 −3.2409
0.2770 0.4636 −1.1443 −1.8673
−0.4656 −1.4285 −0.0750 −0.7841
−1.9833 0.1517 −0.6582 −0.5568
−0.5375 −1.6703 0.1149 0.6181
−0.3918 0.7763 −2.5244 −1.8498
0.0175 −2.2129 −1.1439 −1.3245
−2.1403 −0.4759 −0.2951 −2.0509


(15)

w4 =



−0.6309 −0.5862 −0.636 −0.6344 −0.71 −0.6323 −0.665 −0.7285 −0.6339 −0.6346
−0.6356 −0.6129 −0.632 −0.7323 −0.6546 −0.6458 −0.627 −0.7207 −0.759 −0.6144
−0.582 −0.7272 −0.683 −0.7091 −0.6001 −0.6132 −0.654 −0.6353 −0.6318 −0.5988
−0.708 −0.613 −0.635 −0.6603 −0.6202 −0.6294 −0.636 −0.6121 −0.6181 −0.597
−0.5904 −0.633 −0.644 −0.668 −0.6803 −0.6779 −0.635 −0.6116 −0.6568 −0.6448
−0.6247 −0.6524 −0.631 −0.6138 −0.6359 −0.7771 −0.667 −0.6259 −0.634 −0.6419
−0.6149 −0.6013 −0.691 −0.6621 −0.6069 −0.7022 −0.678 −0.633 −0.5831 −0.691
−0.6466 −0.6066 −0.643 −0.6517 −0.7294 −0.7349 −0.668 −0.6627 −0.6243 −0.6588
−0.6707 −0.5838 −0.645 −0.6155 −0.6464 −0.6233 −0.64 −0.5822 −0.6532 −0.6794
−0.6237 −0.631 −0.602 −0.644 −0.658 −0.6256 −0.63 −0.638 −0.6506 −0.702


(16)

w5 = [0.9634 1.5589 1.4220 −1.5235 −1.1393 0.7611 −1.3683 0.3639 1.3427 −1.8511] (17)
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The test set was used to evaluate the predictive performance of the SSA-ENN model.
The relationship between the actual and predicted values is shown in Figure 12. It can be
observed that the predicted value was very close to the actual value.

Figure 12. Predictive performance of SSA-ENN model.

In order to compare the predictive performance of the ENN and SSA-ENN models,
their performance evaluation indexes were calculated, as shown in Table 4. All index values
indicated that the SSA-ENN performed better than the ENN. In particular, the R2 increased
from 0.6824 to 0.9204, and the MAPE decreased from 15.5604% to 8.6297%. The absolute
error of each sample in the test set was obtained, as shown in Figure 13. It can be seen
that the error of the SSA-ENN was around zero, but the error of the ENN was larger and
relatively unstable. Therefore, the ENN model optimized by the SSA had a better accuracy.

Figure 13. Absolute errors of ENN and SSA-ENN models.
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Table 4. Evaluation index values of ENN and SSA-ENN models.

Model MAE R2 NSC MAPE Theil’s U Value RMSE SSE

ENN 0.2210 0.6824 −5.4164 15.5604% 0.0175 0.3429 4.9377
SSA-ENN 0.1215 0.9204 −1.3872 8.6297% 0.0088 0.1735 1.2646

4.3. Results of SSA-SVR Model

The SSA was used to optimize the parameters c and g of the SVR model. The popu-
lation size of the SSA, the maximum number of iterations, and the cross-validation fold
were set to 20, 100, and 5, respectively. Then, the best values of c and g were determined as
58.0379 and 2.2764, and the corresponding MAE of the cross-validation was 0.0569. The
structure of the SSA-SVR model is shown in Figure 14 Then, the test set was adopted to
assess the predictive performance of the SSA-SVR model. The fitting relation of the actual
and predicted values is shown in Figure 15.

Figure 14. Structure of SSA-SVR model.

Figure 15. Predictive performance of SSA-SVR model.
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The variation of fitness (MSE) with the number of iterations is shown in Figure 16. It
can be seen that as the number of iterations increased, the fitness decreased. Especially in
the first five generations, the fitness decreased rapidly. At the 12th iteration, the optimal
fitness value was obtained as 0.0569.

Figure 16. Fitness value of the SSA-SVR model.

The traditional SVR model was also used for a comparison. Based on the cross-
validation results, the values of c and g were determined to be 1024 and 0.0078, respectively,
and the MAE was 0.2647. Seven performance evaluation indexes for the SVR and SSA-SVR
models were calculated, as shown in Table 5. Based on these index values, the SSA-SVR
model had a better predictive performance. The absolute error corresponding to each
sample is displayed in Figure 17. It can be seen that the prediction results of the SSA-SVR
model were closer to the actual value. Therefore, the predictive performance of the SVR
model was improved by the SSA.

Figure 17. Absolute errors of SVR and SSA-SVR models.
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Table 5. Evaluation index values of SVR and SSA-SVR models.

Model MAE R2 NSC MAPE Theil’s U Value RMSE SSE

SVR 0.3978 0.3699 −2.7614 28.3285% 0.0225 0.4568 8.7640
SSA-SVR 0.1856 0.8261 −4.6656 12.8829% 0.0122 0.2386 2.3907

5. Discussion

The main purpose of this study was to select an appropriate model to predict the
thickness of an EDZ. Although these models were comprehensively evaluated based on
seven evaluation indexes, as shown in Tables 3–5, it was necessary to determine their rank-
ing results. In order to obtain the predictive performance of each model more intuitively,
a score method was proposed. The specific scoring principle was that the best model in
each index was given 5 points, the second-ranked model was given 4.5 points, and the
lower-ranked models’ scores were sequentially reduced by 0.5 points. The radar chart of
the model score corresponding to each index is shown in Figure 18. It can be seen that
most of the scores for each model index were basically at the same level. According to the
area of the radar chart, it can clearly be seen that the SSA-BPNN and SSA-ENN models
performed better. Based on the scores of various indexes, a stacked chart was obtained,
as shown in Figure 19. It can be seen that the scores of the models optimized by SSA
increased significantly, which illustrated the importance of parameter optimization with
the SSA. According to the total scores, the ranking results were determined as SSA-BPNN >
SSA-ENN > SSA-SVR > BPNN > ENN >SVR. The SSA-BPNN model was more suitable for
predicting the thickness of an EDZ.

Figure 18. Radar chart of model scores corresponding to each index.
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Figure 19. Stacked chart of index scores for all models.

In addition, the predicted and actual values of each model were compared, as shown
in Figure 20. In the figure, it can be seen that the predicted results of the SSA-BPNN model
were closer to the actual value. Combined with the scoring principle, we determined that
the SSA-BPNN model had the highest accuracy.

Figure 20. Predicted and actual values of each model.

In order to further verify the reliability of the proposed model, it was necessary to
compare it with the empirical-formula method. Zhao et al. [21] proposed an empirical
formula to determine the thickness of an EDZ as follows:

A5 = 0.0145A1 A4
0.9324(

γA1

A3
)

0.4459
(

σHmax

A3
)
−0.4308

(
A2

A1
)

0.5334
(18)

where γ is the unit weight of rock and σHmax is the maximum horizontal principal stress.
This empirical formula adopts six indicators, such as A1, A2, A3, A4, γ, and σHmax .

Because some of its indicators are the same as those in this study, this empirical formula
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could be adopted to compare with the proposed model. The data in reference [21] were
used to evaluate the predictive performance, and the predicted results are shown in Table 6.
It can be seen that the overall prediction performance of the SSA-BPNN model was better
than that of the empirical formula.

Table 6. Predictive performance of SSA-BPNN model and empirical formula.

Mine A1/m A2/m A3/MPa A4 γ/(KN/m3) σHmax /MPa A5/m
MAPE of
Empirical
Formula

MAPE of
SSA-BPNN

Model

Maluping Phosphate Mine 660 4.5 34.37 4 27.2 34.49 1.65 9.34% 9.10%
Maluping Phosphate Mine 660 4.0 147.89 5 32.2 34.49 2.34 5.13% 6.27%

Sanshandao Gold Mine 600 3.8 71.26 3 27.1 32.45 1.10 7.27% 2.35%
Jinchuan Nickel Mine 1000 4.60 39.19 3 28.6 50.80 1.93 7.77% 4.68%

Although the proposed models could obtain satisfactory results, there were still
some limitations:

(1) The dataset of EDZ cases was relatively small. The accuracy of a regression model
heavily relies on the quantity and quality of the dataset. If the dataset is small, the
model may overfit, which will affect its generalization and reliability. Although this
study integrated most of the cases in the existing literature, the dataset was still rela-
tively small. Therefore, establishing a more comprehensive EDZ database would be
helpful to predict the thickness of an EDZ more efficiently using the proposed models.

(2) Only four indicators were selected for the thickness prediction of an EDZ. Due to the
complexity of EDZ formation, the thickness of an EDZ is affected by various factors.
Other indicators, such as the roadway shape, the presence of underground water, and
the excavation method, may also have influences on the prediction results. Therefore,
it is necessary to investigate the influences of more indicators in the future.

6. Conclusions

Determining the thickness of an EDZ is a crucial issue in the design of roadway sup-
port. This study proposed SSA-BPNN, SSA-ENN, and SSA-SVR models for the thickness
prediction of EDZ. A dataset including 209 cases from 34 mines was collected to establish
the predictive models. An SSA was used to optimize the parameters of the BPNN, ENN,
and SVR models. MAE, R2, NSC, MAPE, Theil’s U value, RMSE, and SSE were used to
evaluate model performance. According to these index values, the ranking result of each
model was determined to be: SSA-BPNN > SSA-ENN > SSA-SVR > BPNN > ENN > SVR.
Overall, the SSA improved the predictive performance of the traditional BPNN, ENN, and
SVR models. The proposed models obtained satisfactory results and were more suitable for
the thickness prediction of an EDZ. The SSA-BPNN model had the best comprehensive
performance. The MAE, R2, NSC, MAPE, Theil’s U value, RMSE, and SSE were 0.1246,
0.9277, −1.2331, 8.4127%, 0.0084, 0.1636, and 1.1241, respectively. The prediction results
provided an important reference for the determination of EDZ thickness.

In the future, a more comprehensive and higher-quality EDZ database should be de-
veloped. In addition, it is necessary to analyze the influences of other indicators, especially
the excavation method, on the prediction results. Considering the complexity of an EDZ,
other swarm-intelligence or ML algorithms can be used for comparison.
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Abbreviations

Full Name Abbreviation
Excavation damaged zone EDZ
Sparrow search algorithm SSA
Backpropagation neural network BPNN
Elman neural network ENN
Support vector regression SVR
Mean absolute error MAE
Coefficient of determination R2
Nash–Sutcliffe efficiency coefficient NSC
Mean absolute percentage error MAPE
Root-mean-square error RMSE
Sum of squares error SSE
Particle swarm algorithm PSO
Support vector machine SVM
Machine learning ML

Appendix A

The complete database of the EDZ cases is shown in Table A1.

Table A1. Database of EDZ cases.

Samples A1/m A2/m A3/MPa A4 A5/m

1 800.00 4.00 48.00 3.00 1.62
2 800.00 3.60 67.00 4.00 2.14
3 650.00 6.00 16.80 5.00 3.45
4 220.00 3.40 21.30 4.00 1.31
5 876.40 3.40 13.80 3.00 1.41
6 321.00 3.00 13.30 1.00 2.41
7 420.00 3.20 9.10 4.00 1.40
8 800.00 3.60 70.60 3.00 1.84
9 340.00 3.40 18.80 1.00 1.52
10 315.00 2.80 11.20 1.00 1.77
11 740.00 3.30 32.42 3.00 2.00
12 1154.00 4.20 15.94 2.00 1.53
13 720.00 4.80 102.40 2.00 1.10
14 125.00 2.80 13.30 2.00 0.70
15 680.00 3.30 30.49 3.00 2.10
16 199.00 3.60 10.73 3.00 1.30
17 252.00 5.20 15.08 4.00 2.65
18 660.00 3.60 21.96 5.00 2.20
19 140.00 3.60 13.40 2.00 0.50
20 342.50 3.20 15.94 2.00 0.39
21 280.00 2.80 12.70 2.00 0.80
22 665.00 3.60 10.90 2.00 2.94
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Table A1. Cont.

Samples A1/m A2/m A3/MPa A4 A5/m

23 510.00 8.00 54.87 3.00 1.40
24 350.00 3.20 10.50 1.00 1.93
25 689.00 3.00 15.10 4.00 1.80
26 321.00 2.60 13.30 3.00 1.10
27 615.00 3.60 25.64 3.00 1.50
28 510.00 4.00 64.54 2.00 1.10
29 740.00 4.00 22.70 5.00 2.25
30 249.00 3.20 16.80 1.00 2.46
31 961.00 4.00 12.76 3.00 1.57
32 362.00 2.60 62.40 2.00 0.60
33 680.00 3.80 25.64 5.00 2.35
34 180.00 2.80 110.20 1.00 0.89
35 342.50 3.20 13.80 3.00 0.55
36 403.00 2.90 12.60 1.00 1.90
37 150.00 3.60 14.60 2.00 0.60
38 510.00 3.70 12.60 4.00 1.40
39 470.00 3.60 9.10 2.00 3.26
40 876.40 3.60 12.76 3.00 1.48
41 660.00 4.40 12.50 5.00 2.20
42 610.00 3.00 34.00 3.00 1.35
43 869.00 4.00 67.00 4.00 1.78
44 340.00 3.40 18.80 3.00 1.30
45 450.00 3.00 11.20 1.00 2.11
46 350.00 3.20 10.50 3.00 1.20
47 680.00 4.20 47.00 3.00 1.40
48 400.00 5.32 21.71 3.00 1.62
49 740.00 2.60 32.42 2.00 1.50
50 520.00 3.80 11.90 2.00 2.59
51 480.00 3.00 10.35 3.00 1.20
52 470.00 4.00 10.10 2.00 2.97
53 300.00 4.50 20.00 3.00 1.50
54 300.00 4.50 20.00 4.00 1.60
55 340.00 3.00 73.60 1.00 0.99
56 961.00 3.60 15.94 2.00 1.35
57 850.00 3.80 48.00 1.00 1.04
58 690.00 4.60 47.00 3.00 1.50
59 1154.00 4.20 13.80 3.00 1.69
60 178.00 2.60 23.80 3.00 1.20
61 710.00 6.00 16.80 4.00 3.20
62 125.00 2.80 13.30 1.00 1.91
63 630.00 4.80 52.45 2.00 1.20
64 310.00 3.20 28.00 1.00 1.33
65 800.00 5.10 28.22 4.00 2.43
66 218.00 3.89 38.11 3.00 0.70
67 837.00 3.80 70.00 1.00 0.67
68 525.00 3.20 15.80 4.00 1.60
69 220.00 3.40 7.80 4.00 1.50
70 97.00 2.60 11.20 3.00 1.20
71 97.00 2.60 11.20 1.00 1.70
72 125.00 2.80 13.30 3.00 1.30
73 700.00 3.60 16.80 5.00 2.55
74 450.00 3.40 9.10 2.00 2.36
75 685.00 3.60 25.64 3.00 1.78
76 1154.00 4.20 12.76 3.00 1.77
77 961.00 4.00 10.00 5.00 2.46
78 700.00 3.80 25.64 3.00 1.78
79 460.00 3.20 101.60 1.00 0.99
80 410.00 3.00 26.78 3.00 1.00
81 665.00 3.60 10.90 4.00 1.70
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Table A1. Cont.

Samples A1/m A2/m A3/MPa A4 A5/m

82 400.00 5.32 15.30 3.00 1.90
83 876.40 3.60 10.00 5.00 2.34
84 700.00 3.60 48.00 3.00 1.40
85 125.00 3.40 13.30 3.00 1.00
86 705.00 3.80 16.80 5.00 2.85
87 316.00 8.00 78.43 4.00 1.90
88 392.00 2.80 14.50 2.00 0.80
89 340.00 3.20 32.20 2.00 0.70
90 357.00 3.20 10.50 3.00 1.10
91 665.00 4.40 10.90 4.00 1.70
92 293.00 3.50 11.90 1.00 1.93
93 329.67 2.40 44.72 3.00 0.70
94 362.00 2.60 58.00 2.00 0.80
95 869.00 3.80 70.00 3.00 1.21
96 480.00 3.00 15.00 3.00 1.00
97 620.00 3.60 21.96 5.00 2.12
98 410.00 3.20 13.30 1.00 2.32
99 244.00 3.40 11.20 3.00 1.00

100 690.00 4.80 9.20 4.00 2.10
101 420.00 3.20 9.10 1.00 2.85
102 293.00 3.50 11.90 3.00 1.10
103 660.00 3.60 21.96 4.00 2.20
104 675.00 3.80 25.64 4.00 2.10
105 296.00 3.40 22.40 3.00 1.20
106 296.00 3.40 22.40 1.00 1.67
107 236.00 3.00 14.30 1.00 2.00
108 410.00 3.60 13.30 4.00 1.40
109 313.00 10.00 38.00 3.00 1.76
110 340.00 3.20 32.20 1.00 1.31
111 252.00 5.20 17.23 4.00 2.41
112 450.00 3.60 13.30 2.00 2.58
113 520.00 3.80 11.90 4.00 1.70
114 296.00 3.40 22.40 4.00 1.40
115 720.00 4.80 86.30 2.00 1.20
116 268.00 3.40 11.96 4.00 1.40
117 490.00 3.70 12.50 4.00 1.50
118 321.00 3.00 13.30 3.00 1.10
119 450.00 3.60 13.30 4.00 1.60
120 410.00 3.20 13.30 4.00 1.40
121 720.00 10.00 102.40 2.00 1.20
122 192.70 2.40 35.83 4.00 0.85
123 400.00 5.32 10.61 3.00 2.10
124 868.00 3.80 60.00 1.00 0.98
125 872.00 4.00 48.00 2.00 1.49
126 610.00 3.60 22.40 4.00 1.75
127 420.00 3.20 9.10 4.00 1.70
128 510.00 8.00 54.87 3.00 1.50
129 345.00 3.00 65.00 2.00 0.70
130 200.00 3.00 15.12 4.00 0.90
131 510.00 4.00 64.54 2.00 1.20
132 342.50 3.40 12.76 3.00 0.62
133 470.00 3.60 9.10 5.00 2.10
134 1056.00 4.00 15.94 2.00 1.44
135 403.00 2.90 12.60 3.00 1.30
136 876.40 3.40 15.94 2.00 1.26
137 467.00 3.40 10.10 4.00 1.80
138 322.00 4.40 14.30 4.00 1.50
139 208.00 3.40 42.41 2.00 0.38
140 268.00 3.40 11.96 1.00 2.05
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Table A1. Cont.

Samples A1/m A2/m A3/MPa A4 A5/m

141 249.00 3.40 16.80 3.00 1.00
142 178.00 2.60 23.80 1.00 1.12
143 520.00 4.20 25.43 3.00 1.30
144 690.00 4.80 32.00 2.00 1.70
145 1159.00 4.50 13.80 4.00 2.21
146 460.00 3.20 101.60 1.00 0.40
147 310.00 3.20 28.00 3.00 0.80
148 780.00 3.00 70.60 1.00 0.65
149 450.00 3.40 9.10 5.00 2.00
150 180.00 2.80 110.20 1.00 0.30
151 550.00 3.40 12.50 5.00 2.10
152 467.00 3.40 10.10 2.00 2.31
153 231.00 3.00 18.30 2.00 0.70
154 340.00 3.20 19.80 3.00 1.30
155 685.00 3.20 52.00 2.00 1.20
156 305.00 3.20 10.10 4.00 1.30
157 321.00 2.60 9.20 3.00 1.20
158 420.00 3.60 14.30 1.00 1.98
159 670.00 3.60 16.80 5.00 2.35
160 370.00 3.50 10.50 1.00 2.00
161 236.00 3.00 14.30 3.00 1.20
162 510.00 3.20 12.60 4.00 1.60
163 1154.00 4.50 10.00 5.00 2.73
164 630.00 4.80 48.97 3.00 1.42
165 520.00 4.20 63.54 3.00 1.10
166 373.00 2.50 14.60 2.00 0.90
167 305.00 3.20 10.10 1.00 1.98
168 384.00 3.50 8.50 3.00 1.20
169 500.00 3.00 38.50 4.00 1.77
170 640.00 3.60 25.64 4.00 1.98
171 420.00 3.60 14.30 3.00 1.10
172 480.00 2.80 10.00 3.00 1.10
173 343.00 3.20 32.20 2.00 0.70
174 325.07 2.40 17.15 5.00 2.20
175 213.00 10.00 48.00 2.00 1.40
176 480.00 3.80 64.50 3.00 1.00
177 1056.00 4.00 10.00 5.00 2.60
178 348.00 3.20 7.50 3.00 1.20
179 600.00 3.60 16.80 5.00 2.25
180 362.00 2.60 62.40 1.00 0.94
181 510.00 3.70 12.60 1.00 2.47
182 310.00 2.80 13.80 3.00 1.20
183 465.00 4.00 9.50 4.00 1.60
184 961.00 3.60 13.80 3.00 1.50
185 322.00 4.40 14.30 2.00 2.88
186 315.00 2.80 11.20 3.00 1.10
187 370.00 3.50 10.50 3.00 1.00
188 630.00 4.00 21.96 5.00 2.60
189 410.00 3.20 13.30 3.00 1.10
190 1056.00 4.00 12.76 3.00 1.67
191 246.00 3.20 38.20 3.00 0.80
192 435.00 2.80 15.20 3.00 1.20
193 690.00 4.20 32.00 2.00 1.58
194 276.00 2.60 15.90 2.00 0.80
195 428.00 3.60 16.50 3.00 1.20
196 680.00 2.60 22.70 5.00 2.20
197 420.00 3.70 9.10 4.00 1.40
198 400.00 5.32 66.31 4.00 1.32
199 740.00 3.80 38.00 4.00 2.00
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Table A1. Cont.

Samples A1/m A2/m A3/MPa A4 A5/m

200 680.00 3.30 22.70 5.00 2.35
201 450.00 3.00 11.20 3.00 1.20
202 292.00 3.40 12.50 4.00 1.40
203 1056.00 4.00 13.80 3.00 1.60
204 676.00 4.00 35.00 3.00 1.60
205 680.00 2.60 36.14 3.00 1.90
206 470.00 4.00 10.10 5.00 2.20
207 264.00 3.20 11.20 3.00 1.10
208 249.00 3.20 16.80 3.00 1.00
209 340.00 3.00 73.60 2.00 0.80
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