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Abstract: The purpose of this paper is to present a numerical method for solving a generalized
equilibrium problem involving a Lipschitz continuous and monotone mapping in a Hilbert space.
The proposed method can be viewed as an improvement of the Tseng’s extragradient method and
the regularization method. We show that the iterative process constructed by the proposed method
converges strongly to the smallest norm solution of the generalized equilibrium problem. Several
numerical experiments are also given to illustrate the performance of the proposed method. One of
the advantages of the proposed method is that it requires no knowledge of Lipschitz-type constants.
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strong convergence
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1. Introduction

Let C be a closed, convex and nonempty subset of a real Hilbert space H . Let
F : C× C → R be a bifunction, A : C →H be a mapping. The generalized equilibrium
problem ( GEP) is defined as:

Find a point u∗ ∈ C such that F (u∗, v) + 〈A u∗, v− u∗〉 ≥ 0, ∀v ∈ C. (1)

Denote by GEP(F , A ) the set of solutions of the GEP. If A = 0, then the GEP (1)
becomes the equilibrium problem (EP):

Find a point u∗ ∈ C such that F (u∗, v) ≥ 0, ∀v ∈ C. (2)

The solutions set of (2) is denoted by EP(F ).
In the oligopolistic market equilibrium model [1], it is assumed that the cost functions

hi(i = 1, . . . , n) are increasingly piecewise-linear concave and that the price function
p(∑n

j=1 xj) can change firm by firm. Namely, the price has the following form: pi(σ) :=
αi − βi ∑n

j=1 xj. Take h(x) = ∑n
i=1 hi(xi), A(x) = B1x − α, φ(x) = xT Bx + h(x), and

F (u, v) = φ(u) − φ(v) (B1, B are two corresponding matrixes). Then the problem of
finding a Nash equilibrium point becomes the GEP (1). The GEP is very general in the sense
that it includes, as particular cases, optimization, Nase equilibrium problems, variational
inequalities, and saddle point problems. Many problems of practical interest in economics
and engineering involve equilibrium in their description; see [2–15] for examples.
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If F (u, v) = 0 for all u, v ∈ C, then the GEP (1) becomes the variational inequality
problem (VIP):

Find a point u∗ ∈ C such that 〈A u∗, v− u∗〉 ≥ 0, ∀v ∈ C, (3)

for which the solutions set is denoted by VI(C, A ). The VIP (3) was introduced by Stam-
pacchia [16] in 1964. It provides a convenient, natural, and unified framework for the
study of many problems in operation research, engineering and economics. It includes,
as special cases, such well-known problems in mathematical programming as systems of
optimization and control problems, traffic network problems, and fixed point problems;
see [6,7,17].

Many iterative methods for solving the VIPs have been proposed and studied;
see [4,6–8]. Among them, two notable and general directions for solving VIPs are the
projection method and the regularized method. In order to solve monotone variational
inequality problems, Thong and Hieu [5] recently introduced the following Tseng’s extra-
gradient method (TEGM):

Assume A : H → H is monotone and Lipschitz continuous. Then they proved
that the sequence {xn} generated by Algorithm 1 converges weakly to some solution to
the VIP (3) under appropriate conditions. Based on Tseng’s extragradient method and
the viscosity method, they also introduced the following Tseng-type viscosity algorithm
(TEGMV):

Algorithm 1: Tseng’s extragradient method (TEGM)
Initialization: Set ς > 0, κ, δ ∈ (0, 1) and let x0 ∈H be arbitrary.
Step 1. Given xn(n ≥ 0), compute

yn = PC(xn − σnA xn),

where σn is chosen to be the largest σ ∈ {ς, ςκ, ςκ2, · · ·} satisfying the following:

σ‖A yn −A xn‖ ≤ δ‖yn − xn‖.

If xn = yn, then stop and xn is the solution of the VIP (3). Otherwise, go to Step 2.
Step 2. Compute

xn+1 = yn − σn(A yn −A xn).

Set n := n + 1 and return to Step 1.

The mapping f in Algorithm 2 is a contraction of H . By adding this viscosity term,
they proved that the process {xn} constructed by Algorithm 2 converges strongly to
x∗ = PVI(C,A ) f (x∗) under suitable conditions, where PVI(C,A ) denotes the metric projection
from H onto the solution set VI(C, A ).

Most recently, inspired by the extragradient method and the regularization method,
Hieu et al. [18] introduce the following double projection method (DPM),{

xn+1 = PC(xn − σn(A yn + αnxn),
yn = PC(xn − σn(A xn + αnxn),

(4)

for each n ≥ 1, where σn ∈ (0, 1/L). This method converges if A is L-Lipschitz continuous
and monotone.

Motivated by Thong and Hieu [5], Hieu et al. [18] and Tseng [19], we introduce
a new numerical algorithm for solving a generalized equilibrium problem involving a
monotone and Lipschitz continuous mapping. This method can be viewed as a combination
between the regularization method and the Tseng’s extragardient method. We prove that
the sequences constructed by the proposed method converge in norm to the smallest norm
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solution of the generalized equilibrium problem. Finally, we provide several numerical
experiments for supporting the proposed method.

Algorithm 2: Tseng’s extragradient method with viscosity technique (TEGMV)
Initialization: Set ς > 0, κ, δ ∈ (0, 1) and let x0 ∈H be arbitrary.
Step 1. Given xn(n ≥ 0), compute

yn = PC(xn − σnA xn),

where σn is chosen to be the largest σ ∈ {ς, ςκ, ςκ2, · · ·} satisfying the following:

σ‖A yn −A xn‖ ≤ δ‖yn − xn‖.

If xn = yn, then stop and xn is the solution of VIP. Otherwise, go to Step 2.
Step 2. Compute

xn+1 = αn f (xn) + (1− αn)zn,

where
zn = yn − σn(A yn −A xn).

Set n := n + 1 and return to Step 1.

2. Preliminaries

In this section, we use xn → x(respectively, xn ⇀ x) to denote the strong (respectively,
weak) convergence of the sequence {xn} to x as n→. We denote by Fix(T), the set of fixed
points of the mapping T, that is Fix(T) = {x ∈ C : x = Tx}. Let R stand for the set of real
numbers, and C denote a nonempty, convex and closed subset of a Hilbert space H .

Definition 1. The equilibrium bifunction F : C× C → R is said to be monotone, if:

F (x, y) +F (y, x) ≤ 0, ∀x, y ∈ C.

Definition 2. A mapping A : C →H is said to be:

(1) monotone on C, if
〈A x−A y, x− y〉 ≥ 0, ∀x, y ∈ C;

(2) L- Lipschitz continuous on C, if there exists L > 0 such that

‖A x−A y‖ ≤ L‖x− y‖, ∀x, y ∈ C.

Assumption 1. Let C be a nonempty, convex and closed subset of a Hilbert space H and F :
C× C → R be a bifunction satisfying the following restrictions:

(A1) F (u, u) = 0, ∀u ∈ C;
(A2) F is monotone;
(A3) for all u ∈ C, F (u, ·) is convex and lower semicontinuous;
(A4) for all u, v, w ∈ C, lim supt↓0 F (tw + (1− t)u, v) ≤ F (u, v);
(A4′) lim supn↓∞ F (un, v) ≤ F (u∗, v) for every v ∈ C and {un} ⊂ C satisfy un ⇀ u∗;
(A4′′) F is jointly weakly upper semicontinuous on C × C in the sense that, if x, y ∈ C and

{xn}, {yn} ⊂ C converges weakly to x and y, respectively, then F (xn, yn) → F (x, y) as
n→ +∞ (see, e.g., [20]).

Obviously, the condition (A4′′) implies (A4′) and the condition (A4′) implies (A4)
(see, e.g., [21] for more details).
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Lemma 1 ([2,3]). Let F : C× C → R be a bifunction satisfying Assumption 1 (A1)–(A4). For
u ∈H and r > 0, define a mapping TF

r : H → C by:

TF
r u = {w ∈ C : F (w, v) +

1
r
〈v− w, w− u〉 ≥ 0, ∀v ∈ C}.

Then, it holds that:

(i) TF
r is single-valued;

(ii) TF
r is a firmly nonexpansive mapping, i.e., for all u, v ∈ H,

∥∥∥TF
r u− TF

r v
∥∥∥2
≤ 〈TF

r u−
TF

r v, u− v〉;
(iii) Fix(TF

r ) = EP(F );
(iv) EP(F ) is nonempty closed and convex.

Remark 1. Suppose A : C → H is monotone and Lipschitz continuous, F : C× C → R is a
bifunction satisfying Assumption 1 (A1)–(A4). It is easy to check that the mapping F̃(u, v) :=
F (u, v) + 〈A u, v− u〉 satisfies Assumption 1. Hence, from Lemma 1, we find that:

(i) T F̃
r is single-valued;

(ii) T F̃
r is a firmly nonexpansive mapping;

(iii) Fix(T F̃
r ) = EP(F̃) = GEP(F , A );

(iv) EP(F̃) = GEP(F , A ) is nonempty, closed and convex.

Lemma 2 ([22]). Let {xn} be a sequence in H . If xn ⇀ x and ‖xn‖⇀ ‖x‖, then xn → x.

Lemma 3 ([23,24]). Assume {an} is a sequence of nonnegative numbers satisfying the follow-
ing inequality:

an+1 ≤ (1− βn)an + bn + βncn, n ∈ N,

where {βn}, {bn}, {cn} satisfy the conditions:

(i) ∑∞
n=1 βn = ∞, limn→∞ βn = 0,

(ii) bn ≥ 0, ∑∞
n=1 bn < ∞,

(iii) lim supn→∞ cn ≤ 0.

Then, limn→∞ an = 0.

3. Main Results

In this section, we focus on the strong convergence analysis for the smallest norm
solution of the GEP (1) by using the Tikhonove-type regularization technique. As we
know, the Tikhonove-type regularization technique has been effectively applied to convex
optimization problems to solve ill-posed problems.

In the sequel, we assume that F : C× C → R is a bifunction satisfying (A1)–(A3) and
(A4′), A : H →H is monotone and L-Lipschitz continuous. For each α > 0, we associate
the GEP (1) with the so-called regularized generalized equilibrium problem (RGEP):

Find a point x ∈ C such that F (x, y) + 〈A x + αx, y− x〉 ≥ 0, ∀y ∈ C. (5)

We deduce from the following Lemma 4 that the RGEP has a unique solution xα

for each α > 0. On the other hand, noticing Remark 1 (iv), one finds that GEP(F , A ) is
nonempty, closed and convex. Hence there exists uniquely a point x† ∈ GEP(F , A ) which
has the smallest norm in the solutions set GEP(F , A ). The relationship between xα and x†

can also be described in the following lemma.

Lemma 4. Let A : H → H be monotone and L-Lipschitz continuous, F : C× C → R be a
bifunction satisfying Assumption 1 (A1)–(A3) and (A4′). Then it holds that:

(i) for each α > 0, the RGEP has a unique solution xα;
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(ii) limα→0+
∥∥xα − x†

∥∥ = 0, and ‖xα‖ ≤
∥∥x†

∥∥, ∀α > 0;
(iii)

∥∥xα − xβ

∥∥ ≤ α−β
α

∥∥x†
∥∥, ∀α, β > 0.

Proof. (i) Since A is monotone and Lipschitz continuous, then A + αI is also monotone
and Lipschitz continuous. From Remark 1 (iv), we find that the solutions set of the RGEP is
nonempty. For α > 0, if x∗, y∗ are two solutions of the RGEP, then one has:

F (x∗, y∗) + 〈A x∗ + αx∗, y∗ − x∗〉 ≥ 0 (6)

and
F (y∗, x∗) + 〈A y∗ + αy∗, x∗ − y∗〉 ≥ 0. (7)

Adding up (6) and (7), we have:

F (x∗, y∗) +F (y∗, x∗) + 〈A y∗ −A x∗, x∗ − y∗〉 − α‖x∗ − y∗‖2 ≥ 0. (8)

In view of (8) and the monotone property of F and A , we obtain:

‖x∗ − y∗‖2 ≤ 0,

which implies x∗ = y∗. In turn, we complete the proof of (i).
(ii) Now we prove that:

‖xα‖ ≤ ‖w‖, ∀w ∈ GEP(F , A ). (9)

Taking any w ∈ GEP(F , A ), we have F (w, y) + 〈A w, y−w〉 ≥ 0 for all y ∈ C, which
with y = xα ∈ C, implies that

F (w, xα) + 〈A w, xα − w〉 ≥ 0. (10)

Since xα is the solution of the RGEP, we then find:

F (xα, y) + 〈A xα + αxα, y− xα〉 ≥ 0, ∀y ∈ C. (11)

Substituting y = w ∈ C into (11), we obtain:

F (xα, w) + 〈A xα + αxα, w− xα〉 ≥ 0. (12)

Summing up inequalities (10) and (12), we get:

F (w, xα) +F (xα, w) + 〈A xα −A w, w− xα〉+ α〈xα, w− xα〉 ≥ 0. (13)

Noticing (13), and using the monotone property of F and A , we obtain:

〈xα, w− xα〉 ≥ 0,

which implies ‖xα‖2 ≤ 〈xα, w〉. Thus we have ‖xα‖ ≤ ‖w‖, ∀w ∈ GEP(F , A ). Especially,
we also obtain ‖xα‖ ≤

∥∥x†
∥∥. Therefore, we deduce that {xα} is bounded.

Since C is closed and convex, then C is weakly closed. Hence there is a subsequence
{xαj} of {xα} and some point x∗ ∈ C such that xαj ⇀ x∗. In view of the monotone property
of A , we deduce, for all v ∈ C, that:

(F (xαj , y) + 〈A y, y− xαj〉)− (F (xαj , y) + 〈A xαj + αjxαj , y− xαj〉)
= 〈A y−A xαj , y− xαj〉 − αj〈xαj , y− xαj〉
≥ −αj〈xαj , v− xαj〉. (14)
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Due to the fact that F (xαj , y) + 〈A xαj + αxαj , y − xαj〉 ≥ 0 and noticing (14), we
infer that:

F (xαj , y) + 〈A y, y− xαj〉 ≥ −αj〈xαj , y− xαj〉, ∀y ∈ C.

Letting j→ ∞ and noticing (A4’), we obtain:

F (x∗, y) + 〈A y, y− x∗〉 ≥ 0, ∀y ∈ C.

For ∀x ∈ C and t ∈ [0, 1], substituting y = (1 − t)x∗ + tx into above inequality,
we have:

F (x∗, (1− t)x∗ + tx) + t〈A ((1− t)x∗ + tx), x− x∗〉 ≥ 0, ∀x ∈ C.

In view of (A3), we get:

(1− t)F (x∗, x∗) + tF (x∗, x) + t〈A ((1− t)x∗ + tx), x− x∗〉 ≥ 0, ∀x ∈ C.

By (A1), we have:

F (x∗, x) + 〈A ((1− t)x∗ + tx), x− x∗〉 ≥ 0, ∀x ∈ C.

Since A is L-Lipschitz continuous on C, by taking t→ 0, we have:

F (x∗, x) + 〈A x∗, x− x∗〉 ≥ 0, ∀x ∈ C,

which implies

x∗ ∈ GEP(F , A ). (15)

From Lemma 4 (ii) and the lower weak semi-continuity of the norm, we obtain:

‖x∗‖ ≤ lim inf
n→∞

‖xα‖ ≤
∥∥∥x†

∥∥∥, ∀w ∈ GEP(F , A ).

Further, due to the fact that x† is a unique solution which has the smallest norm in
GEP(F , A ), we derive x∗ = x†. This means xαj ⇀ x† as j→ +∞. By following a similar
argument to that above, we deduce that the whole sequence {xα} converges weakly to x†

as α→ 0+.
Next we show that limα→0+

∥∥xα − x†
∥∥ = 0. Indeed, noticing the lower semi-continuous

of norm, Lemma 4 (ii) and (15), we obtain:∥∥∥x†
∥∥∥ = ‖x∗‖ ≤ lim inf

j→∞

∥∥∥xαj

∥∥∥ ≤ lim sup
j→∞

∥∥∥xαj

∥∥∥ ≤ ∥∥∥x†
∥∥∥,

which means
lim
j→∞

∥∥∥xαj

∥∥∥ = ‖x∗‖. (16)

In view of Lemma 2 and the fact that xαj ⇀ x∗, we derive that limj→∞ xαj = x∗ = x†.
By following the lines of proof as above, we obtain that the whole sequence {xα} converges
strongly to x†.

(iii) Assume that xα, xβ are the solutions of the RGEP. Then we have

F (xα, xβ) + 〈A xα + αxα, xβ − xα〉 ≥ 0

and
F (xβ, xα) + 〈A xβ + βxβ, xα − xβ〉 ≥ 0.
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From the above two inequalities and using the monotonicity of A and F , one obtains:

α〈xα, xβ − xα〉+ β〈xβ, xα − xβ〉 ≥ 0.

It follows that:

α
∥∥xα − xβ

∥∥2 ≤ (β− α)〈xβ, xα − uβ〉 ≤ |β− α|
∥∥xβ

∥∥∥∥xα − xβ

∥∥.

Simplifying it and noticing Lemma 4 (ii), we find:

∥∥xα − xβ

∥∥ ≤ |α− β|
α

∥∥xβ

∥∥ ≤ |α− β|
α

∥∥∥x†
∥∥∥.

This completes the proof.

In the following, combining with Tseng’s extragradient method and the regularization
method, we propose a new numerical algorithm for solving the GEPs. Assume that the
following two conditions are satisfied:

(C1) limn→∞ αn = 0 and ∑∞
n=1 αn = ∞;

(C2) limn→∞
αn−αn+1

α2
n

= 0.

An example for the sequence {αn} satisfying conditions (C1) and (C2) is αn = (n + 1)−p

with 1 > p > 0. We now introduce the following Algorithm 3:

Algorithm 3: The Tseng’s extragradient method with regularization (TEGMR)
Initialization: Set ς > 0, κ, δ ∈ (0, 1) and let x0 ∈H be arbitrary.
Step 1. Given xn(n ≥ 0), compute

yn = TF
σn (xn − σn(A xn + αnxn)),

where σn is chosen to be the largest σ ∈ {ς, ςκ, ςκ2, · · ·} satisfying the following:

σ‖A yn −A xn‖ ≤ δ‖yn − xn‖. (17)

Step 2. Compute
xn+1 = yn − σn(A yn −A xn).

Set n := n + 1 and return to Step 1.

Lemma 5 ([5]). The Armijo-like search rule (17) is well defined and min{ς, δκ
L } ≤ σn ≤ ς.

Theorem 1. Let C be a nonempty convex closed subset of real Hilbert spaces H , F : C× C → R
be a bifunction satisfying (A1)–(A3) and (A4′), and A : H →H be monotone and L-Lipschitz
continuous. Then the sequence {xn} constructed by Algorithm 3 converges in norm to the minimal
norm solution x† of the GEP (1) under conditions (C1) and (C2).

Proof. By (C1) and Lemma 4 (iii), we obtain xαn → x† as n→ ∞. Therefore, it is sufficient
to prove that:

lim
n→∞
‖xn − xαn‖ = 0.
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It follows that

‖xn+1 − xαn‖
2

= ‖yn − σn(A yn −A xn)− xαn‖
2

= ‖yn − xαn‖
2 + σ2

n‖A yn −A xn‖2 − 2σn〈yn − xαn , A yn −A xn〉
= ‖yn − xn‖2 + ‖xn − xαn‖

2 + 2〈yn − xn, xn − xαn〉+ σ2
n‖A yn −A xn‖2

−2σn〈yn − xαn , A yn −A xn〉
= ‖yn − xn‖2 + ‖xn − xαn‖

2 + 2〈yn − xn, xn − yn〉+ 2〈yn − xn, yn − xαn〉
+σ2

n‖A yn −A xn‖2 − 2σn〈yn − xαn , A yn −A xn〉
= ‖xn − xαn‖

2 − ‖yn − xn‖2 + 2〈yn − xn, yn − xαn〉+ σ2
n‖A yn −A xn‖2

−2σn〈yn − xαn , A yn −A xn〉. (18)

Since xα is a solution of the RGEP for all α > 0, we obtain that:

xαn = TF
σn (xαn − σn(A xαn + αnxαn)). (19)

Using Lemma 1 (ii), we derive:

‖yn − xαn‖
2

=
∥∥∥TF

σn (xn − σn(A xn + αnxn))− TF
σn (xαn − σn(A xαn + αnxαn))

∥∥∥2

≤ 〈TF
σn (xn − σn(A xn + αnxn))− TF

σn (xαn − σn(A xαn + αnxαn)),

(xn − σn(A xn + αnxn))− (xαn − σn(A xαn + αnxαn))〉
= 〈yn − xαn , (xn − σn(A xn + αnxn))− (xαn − σn(A xαn + αnxαn))〉,

which implies

〈yn − xαn , (xn − σn(A xn + αnxn))− (xαn − σn(A xαn + αnxαn))〉 − ‖yn − xαn‖
2 ≥ 0.

It follows that:

〈yn − xαn , xn − yn − σn(A xn + αnxn) + σn(A xαn + αnxαn)〉 ≥ 0,

or equivalently

〈yn − xαn , xn − yn〉 ≥ σn〈yn − xαn , (A xn + αnxn)− (A xαn + αnxαn)〉. (20)

Substituting (20) into (18) and noticing the monotone property of A and (17), we de-
rive:

‖xn+1 − xαn‖
2

≤ ‖xn − xαn‖
2 − ‖yn − xn‖2 − 2σn〈yn − xαn , (A xn + αnxn)− (A xαn + αnxαn)〉

+σ2
n‖A yn −A xn‖2 − 2σn〈yn − xαn , A yn −A xn〉

= ‖xn − xαn‖
2 − ‖yn − xn‖2 + σ2

n‖A yn −A xn‖2

−2σn〈yn − xαn , A yn −A xαn〉 − 2αnσn〈yn − xαn , xn − xαn〉
≤ ‖xn − xαn‖

2 − ‖yn − xn‖2 + σ2
n‖A yn −A xn‖2 + 2αnσn〈yn − xαn , xαn − xn〉

≤ ‖xn − xαn‖
2 − (1− δ2)‖yn − xn‖2 + 2αnσn〈yn − xαn , xαn − xn〉. (21)
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The last term in (21) is estimated as follows:

2〈yn − xαn , xαn − xn〉
= 2〈yn − xn, xαn − xn〉+ 2〈xn − xαn , xαn − xn〉
≤ 2‖yn − xn‖‖xαn − xn‖ − 2‖xn − xαn‖

2

≤ ‖yn − xn‖2 + ‖xαn − xn‖2 − 2‖xn − xαn‖
2

= ‖yn − xn‖2 − ‖xαn − xn‖2. (22)

Substituting (22) into (21), one finds:

‖xn+1 − xαn‖
2

≤ ‖xn − xαn‖
2 − (1− δ2)‖yn − xn‖2 + αnσn(‖yn − xn‖2 − ‖xαn − xn‖2)

= (1− αnσn)‖xn − xαn‖
2 − (1− δ2 − αnσn)‖yn − xn‖2. (23)

Since 0 < δ < 1, αn → 0 and min{ς, δl
L } ≤ σn ≤ ς (by Lemma 5), then there exists

n0 ≥ 1 such that
1− δ2 − αnσn > 0, σnαn ∈ (0, 2), ∀n ≥ n0.

Thus, we get from (23) that

‖xn+1 − xαn‖
2 ≤ (1− αnσn)‖xn − xαn‖

2. (24)

For each n ≥ n0, from the Cauchy–Schwarz inequality and Lemma 4 (iii), we infer

‖xn+1 − xαn‖
2 =

∥∥xn+1 − xαn+1

∥∥2
+

∥∥xαn+1 − xαn

∥∥2
+ 2〈xn+1 − xαn+1 , xαn+1 − xαn〉

≥
∥∥xn+1 − xαn+1

∥∥2
+

∥∥xαn+1 − xαn

∥∥2 − 2
∥∥xn+1 − xαn+1

∥∥∥∥xαn+1 − xαn

∥∥
≥

∥∥xn+1 − xαn+1

∥∥2
+

∥∥xαn+1 − xαn

∥∥2 − 2
σnαn

∥∥xαn+1 − xαn

∥∥2 − σnαn

2

∥∥xn+1 − xαn+1

∥∥2

≥ 2− σnαn

2

∥∥xn+1 − xαn+1

∥∥2 − 2− σnαn

σnαn

∥∥xαn+1 − xαn

∥∥2

≥ 2− σnαn

2

∥∥xn+1 − xαn+1

∥∥2 − 2− σnαn

σnαn

(
αn+1 − αn

αn

)2∥∥∥x†
∥∥∥2

=
2− σnαn

2

∥∥xn+1 − xαn+1

∥∥2 − (2− σnαn)(αn+1 − αn)2

σnα3
n

∥∥∥x†
∥∥∥2

,

which implies

∥∥xn+1 − xαn+1

∥∥2 ≤ 2
2− σnαn

‖xn+1 − xαn‖
2 +

2(αn+1 − αn)2

σnα3
n

∥∥∥x†
∥∥∥2

. (25)

Therefore, it follows from (24) and (25) that:

∥∥xn+1 − xαn+1

∥∥2 ≤ 2− 2σnαn

2− σnαn
‖xn − xαn‖

2 +
2(αn+1 − αn)2

σnα3
n

∥∥∥x†
∥∥∥2

≤
(

1− σnαn

2− σnαn

)
‖xn − xαn‖

2 +
2(αn+1 − αn)2

σnα3
n

∥∥∥x†
∥∥∥2

.

We deduce from (C1), (C2) and Lemma 3 that limn→∞‖xn − xαn‖
2 = 0, which means

limn→∞ xn = x†. This completes the proof.
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4. Application to Split Minimization Problems

Let C be a nonempty closed convex subset of R, ψ : C → R is a convex and continuous
differentiable function. Consider the constrained convex minimization problem:

Find a point v∗ ∈ C such that ψ(v∗) = min
v∈C

ψ(v). (26)

The monotonicity of convexity of ∇ψ can be ensured by the monotonicity of ψ. A
point v∗ ∈ C is a solution of the minimization problem (26) if and only if it is a solution of
the following variational inequality

〈∇ψ(v∗), u− v∗〉 ≥ 0, ∀u ∈ C.

Setting F (u, v) = 0, it is not difficult to check that GEP(F ,∇ψ) = VI(C,∇ψ) =
arg minψ and TF

σ = PC. From Theorem 1, we have the following result.

Theorem 2. Let ψ : C → R be a convex and continuous differentiable function whose gradient ψ
is L-Lipschitz continuous. Suppose that the optimization problem minx∈C ψ(x) is consistent, i.e.,
its solution set is nonempty. Then the sequence {xn} constructed by Algorithm 4 converges to the
unique minimal norm solution of the minimization problem (26) under conditions (C1) and (C2).

Algorithm 4: The Tseng’s extragradient method with regularization for mini-
mization problems

Initialization: Set ς > 0, l, δ ∈ (0, 1) and let x0 ∈ R be arbitrary.
Step 1. Given xn(n ≥ 0), compute

yn = PC(xn − σn(∇ψ(xn) + αnxn)),

where σn is chosen to be the largest γ ∈ {ς, ςl, ςl2, · · ·} satisfying the following:

γ‖∇ψ(yn)−∇ψ(xn)‖ ≤ δ‖yn − xn‖.

Step 2. Compute
xn+1 = yn − σn(∇ψ(yn)−∇ψ(xn)).

Set n := n + 1 and return to Step 1.

In this subsection, we provide some numerical examples to illustrate the behavior
and performance of our Algorithm 3 (TEGMR) as well as comparing it with Algorithm (4)
(DPM of Hieu et al. [18]), Algorithm 1 (TEGM of Thong and Hieu [5]) and Algorithm 2
(TEGMV of Thong and Hieu [5]).

Example 1. Let H = R be the set of real numbers. Define the bifunction F (u, v) = uv− u2

for all u, v ∈ H . Let A : H → H be given by Ax = x, f : H → H be given by f x = 2x
3

for all x ∈ H . We get that A is monotone and 1-Lipschitz continuous. It is easy to check that
TF

σn x = x
1+2σn

. It is also not difficult to check GEP(F , A ) = {0}. Let us choose αn = 1√
n+1

,

σn = 1
2 , ς = 1 and δ = l = 1

2 . We test our Algorithm 3 for different values of x0, see Figures 1–3.

Example 2. Let F : Rm × Rm → R be given by F (x, y) = xy − x2 for all x, y ∈ Rm,
A : Rm → Rm be given by Ax = x, f : Rm → Rm be given by f x = 2x

3 for all x ∈ Rm. The
feasible set C is given by C = {x ∈ Rm : 0 ≤ xi ≤ 1, i = 1, . . . , m}. The maximum number of
iterations is 300 as the stopping criterion and the initial values x0 are randomly generated by rand
(0, 1) in MATLAB. Let us choose αn = 1√

n+1
, σn = 1

2 , ς = 1 and δ = l = 1
2 . Figure 4 describe

the numerical results, for Example 2 in R5 and and R10, respectively.
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Figure 1. Example 1, left: x0 = 1; right: x0 = 5.
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Figure 2. Example 1, left: x0 = 10, right: x0 = 15.
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Figure 3. Example 1, top left: x0 = 1; top right: x0 = 5, bottom left: x0 = 10, bottom right: x0 = 15.
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Figure 4. Example 2, Left: m = 5; Right: m = 10.
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According to all graphical representations in Figures 1–4, one finds that Algorithm 3
performs better than than Algorithm (4). Algorithms 1 and 2 in terms of number of
iterations and CPU-time taken for computation.

5. Conclusions

This paper presents an alternative regularization method for finding the smallest
norm solution of a generalized equilibrium problem. This method can be considered an
improvement of the Tseng’s extragradient method and the regularization method. We
prove that the iterative process constructed by the proposed method converges strongly
to the smallest norm solution of the generalized equilibrium problem. Several numerical
experiments are also given to demonstrate the competitive advantage of the suggested
methods over other known methods.
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