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Abstract: Multi-degree-of-freedom isolator with low stiffness is a fair prospect in engineering appli-
cation. In this paper, a novel 6-DOF QZS vibration isolation platform based on leaf spring structure is
presented. Its bearing capacity is provided through four leaf springs, and the quasi-zero-stiffness is
realized by the force balance between the central spring and the suspension spring. 6-DOF vibration
isolation is realized by the ball-hinge fixed design of a leaf spring. Through static and dynamic
analysis, the following conclusions are brought. The stiffness of the leaf spring and the deformation
of the central spring under static load are directly proportional to the bearing capacity of the isolation
table. Besides, in order to ensure that the stiffness of the system is close to zero, the stiffness of the
suspension spring and the inner spring should be as similar as possible. The vertical and horizontal
displacement transmissibility tests of the isolation platform are carried out, in which the jumping
phenomenon in the QZS vibration isolation platform is analyzed. By improving the damping of the
structure and the length of the suspension spring, the dynamic vibration isolation process of the
system can be more stable, the transmissibility can be reduced, and the vibration isolation effect can
be enhanced.

Keywords: vibration isolation platform; static and dynamic analysis; quasi-zero-stiffness; six degrees
of freedom; transmissibility; nonlinear

MSC: 37G25

1. Introduction

Vibration isolator is regularly adopted to reduce or isolate the unexpected external
disturbance on the normal running condition of precision equipment. In order to widen the
load capacity, and increase the isolation efficiency, the ideal isolator is inclined to possess
the higher static stiffness and lower dynamic stiffness, which is known as high-static and
low-dynamic stiffness (HSLDS) [1].

Generally, the conventional isolators merely have the solo isolation component along
the main vibration direction, such as the spring or rubber blanket. Nevertheless, it’s difficult
to fulfill the requirements of low frequency and large load-capacity simultaneously because
of the linearity of the system stiffness. Since the early 1990s, quasi-zero-stiffness (QZS)
vibration isolator with the characteristic of HSLDS has been proposed [2]. The main princi-
ple of QZS isolator is to realize the system stiffness near zero through adjustment of the
components of positive and negative stiffness. Hence, QZS isolator can provide the higher
load capacity, and comply with the essential requirements of subtle dynamic stiffness.
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In the early decade, Alabuzhev [3] proposed several QZS isolator prototypes which
included spring and buckled beam structure, single buckled beam structure, and ejector
rob hinged joint with a spring structure. Whereafter, most of the QZS isolators are the
improvements based on Alabuzhev’s prototypes, and the main research concentrated on
the realization of negative stiffness mechanism (NSM). Platus [4] designed the isolation
structure with two rods hinged joint to each other to realize the NSM. Then, Liu et al. [5]
adopted the Eular compression rods subjected to the axial preloading force as the NSM.
Konvacic [6] used the symmetrically inclined spring and vertical spring to realize the QZS
effect. The common disadvantage of the above structures is that the negative stiffness
structure takes up more space. Therefore, Meng [7] later used leaf spring structure, and
greatly reduced the volume of the vibration isolator. Carrella [8] combined the regular
linear spring and permanent magnet in series to achieve QZS feature through equilibrating
the elastic force and the magnetic force. Shin [9] carried out the engineering application
based on Carrella’s research. Shan [10] and Robertson [11] used the magnetic ring spring
and permanent magnets structure, respectively, to achieve QZS. Besides, Araki [12] initiated
the research from the functional materials. He proposed the superplastic Cu-Al-Mn shape
memory alloy rod, which had the advantages of large load-capacity and stroke length.
In recent years, more research transferred to the bionic structure area. Jing et al. [13,14]
proposed the X-shaped and Z-shaped configurations on the basis of the leg structures of
animals. Then, Gatti [15,16] proposed a K-shaped configuration consisting of four linear
springs to increase the available vibration amplitude. Kim [17] presented the band-stop
filter-type vibration isolator with V-shaped configuration inspired by the middle ear of
the human auditory system. Although the above bio-inspired configurations are creative
and possess the HSLDS characteristic, there is still the problem that the effective vibration
displacement is difficult to meet the engineering application requirements.

For the reason that the actual excitations are in multiple directions and have the
characteristics of low frequency and large amplitude, such as the wind load and wave
load, the conventional QZS isolators are more difficult to achieve the better vibration iso-
lation effect. Most existing solutions adopted the 6-DOF vibration isolator, and Stewart
platforms with cubic or orthogonal structure are the most commonly used configurations
from Wu et al. [18]. Zhou et al. [19] designed the QZS rod with cam-roller-spring structure
as the NSM, and assembled a 6-DOF vibration isolation platform by combining the rods.
Wang et al. [20] proposed the 6-DOF vibration isolation platform consisting of passive air
springs and magnetostrictive actuators. Zhang et al. [21] proposed a hybrid vibration
isolator composed of the active piezo stack actuator and the passive rubber isolator. Nev-
ertheless, the complex adjustment is needed between each degree of freedom to achieve
good vibration isolation effect. Hence, the active structures occupy most of the vibration
isolators of this type. This is difficult to realize in the underwater environment where
passive supplies are available.

From the above, the ideal isolator should maintain the quasi-zero dynamic stiffness
and long-term stability over wide vibration amplitude [22]. Hence, it is practical to design
a 6-DOF vibration isolation platform with the characteristics of compact structure, large
load capacity, low natural frequency, and wide displacement range.

The main contributions of this paper are as follows:

• A novel 6-DOF QZS vibration isolation platform based on leaf spring structure is
proposed, which consists of four leaf spring brackets for zero stiffness adjustment.

• Through the static analysis in different degrees of freedom, the effects of stiffness and
dimension on the stiffness-displacement (rotation angle) relationship of the vibration
isolation system are obtained.

• The influences of the damping and dimension parameters on the stability of the
system were obtained through dynamic analysis. Moreover, the transmissibility
characteristics were analyzed to evaluate the vibration isolation performance of the
essential parameters determined in the static analysis and stability analysis. It is
indicated that the system will tend to be more stable and there will be a better vibration
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isolation effect when the damping and length parameters increase. Besides, the
bifurcation of the isolation system will be caused as the amplitude of the excitation
force increases, so that the vibration isolation effect will also decrease.

The remainder of this paper is organized as follows. The isolator structure is intro-
duced, and the stiffness of the leaf spring is calculated in Section 2. Then, static analysis
is carried out to obtain the relations of force- (or torque)-displacement (or angle) and
stiffness-displacement (or angle) in Section 3. The dynamic analysis is proceeded to obtain
the stability of the system response to external excitations in different degrees of freedom
in Section 4. Moreover, the amplitude frequency response and the displacement trans-
missibility are compared to evaluate the parameter effects of damping and dimension. In
order to verify the effect of vibration isolation, the vertical and horizontal displacement
transmissibility tests of the isolation platform are given in Section 5. Finally, the conclusions
and future recommendations are contained in Section 6.

2. Structural Description

There are several common disadvantages in the existing 6-DOF QZS vibration isolation
platform, which are the large volume, complicated adjustment, and narrow displacement
range. Therefore, a novel 6-DOF QZS vibration isolation platform based on leaf spring
structure is presented.

2.1. Structure and Mechanism

The platform mainly consists of top plate, base plate, spring bracket, and central
spring. The top plate is used to fix vibration-isolated objects, and the base plate is the fixed
surface of the whole platform. The spring bracket is placed between the top and base plates,
and rotates symmetrically around the vertical axis of the base plate at an angular interval
of 90◦. The central spring is fixed along the centerline of the top and base plates by hanging
rings. The schematic of the platform is shown in Figure 1.

Figure 1. Schematic of the platform: (1) top plate; (2) leaf spring; (3) suspension spring; (4) central
spring; (5) base plate; (6) spherical hinge.

The leaf spring and suspension spring are fixed to the spherical hinge by bolt and
hanged ring connection, respectively. These two springs are used to coordinate with the
central spring for system stiffness adjustment. Since the leaf springs are blocked in the
lateral direction, the relative rotation between the top and base plates is achieved through a
spherical hinge in which the leaf spring can rotate around the fixed point.

The system stiffness is adjusted by the spring bracket and the central spring. In the
initial state, the central spring is stretched and provides negative stiffness. The leaf springs
and suspension springs are compressed and provide positive stiffness. The loaded weight
is supported by the leaf spring, and hence, the selection of leaf spring should satisfy the
load capacity requirement. As to the system stiffness in different degree of freedom, the
stretch or compression state of each spring will change with the stiffness adjustment.
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2.2. Stiffness Analysis of Leaf Spring

In order to calculate the stiffness, the leaf spring is approximately equivalent to the
cantilever, as shown in Figure 2.

Figure 2. Schematic diagram of leaf spring force analysis.

The force-bearing end of the leaf spring rotates α under the force F, and the moment
of inertia can be defined as Equation (1):

J =
1

12
bh3 (1)

where b is the width of leaf spring, and h is the thickness.
Under the load force F, the angle α can be obtained by Mohr’s theorem, which is

defined as Equation (2):

α =

l∫
0

F·x·dx
E·J =

l∫
0

12F·x·dx
E·b·h3 =

6Fl2

E·b·h3 (2)

where l is the length of leaf spring and E is elasticity modulus.
The dimension of the leaf spring is shown in Figure 3.

Figure 3. Dimensions of leaf spring.

Hence, the force F can be calculated as Equation (3):

F =
E·b·h3

6·l2 ·α (3)

As to the stiffness of suspension spring, the force condition is shown in Figure 4.
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Figure 4. Schematic diagram of suspension spring force analysis.

As shown in Figure 4, the parameters of L0, α0 are the initial length and slant angle of
suspension spring, respectively. x is the displacement of top plate under the force F. Then,
the relation of force and displacement is calculated as Equation (4):{

F = k1·(L0 − L1)
x = L0· sin α0 − L1· sin α1

(4)

3. Static Analysis
3.1. Establishment of Statics Model

Since the platform is axisymmetric structure, the different degree of freedom is classi-
fied into vertical displacement, horizontal displacement, vertical rotation, and horizontal
rotation.

3.1.1. Vertical Displacement

The static loading status of the platform in vertical displacement is shown in Figure 5.
There is the downward displacement x1 in the top plate under the vertical force Fvd from
the initial state Iv to the second state IIv. Accordingly, the length of suspension spring
decreases from L20 to L2v, and the slant angle changes from α to β, and the leaf spring has
a rotation angle of θv. Besides, the central spring has the initial stretch length of L1. In
the state IIv, the central spring is still stretched, whereas the suspension spring and leaf
spring are both compressed. Hence, the positive stiffness is provided by the leaf spring and
suspension spring, and the negative stiffness is provided by central spring.

Figure 5. Schematic diagram of vertical displacement.
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According to the force balance in vertical direction, the relation of the vertical force Fvd,
elastic force of suspension spring F2v and elastic force of leaf spring F3v can be calculated
as Equation (5):

Fvd + k1·(L1 − x1 − L10) = F2v· sin β + F3v (5)

where k1 is the stiffness of central spring, and L10 is unstretched length of the central spring.
In order to obtain the value of Fvd from Equation (3), the rotation angle of the leaf

spring needs be calculated firstly. From Figure 5, there are the relations of α and β that

sin α = L1/L20, sin β = (L1 − x1)/L2v, cos α =
√

L2
20 − L2

1/L20, cos β =
√

L2
20 − L2

1/L2v.
In the case where the rotation angle of leaf spring is small enough, the approximation

of θv ≈ sin θv = sin(α− β), then θv can be calculated as Equation (6):

θv =
x1·
√

L2
20 − L2

1

L20·L2v
(6)

Substituting Equations (3) and (6) into Equation (5) yields Equation (7):

Fvd =
k2·L20

L2v
·(L1 − x1)− (k1 + k2)·(L1 − x1) +

E·b·h3·x1

6L2v·L3
20
·
√

L2
20 − L2

1 + k1·L10 (7)

where k2 is the stiffness of suspension spring. By introducing the non-dimensional pa-

rameters
∧
Fvd = Fvd/k1·L20,

∧
x1 = (x1 − L1)/L20,

∧
k3 = E·b·h3/(6k1·L3

20), A = k2/k1,

∧
L1 = L1/L20,

∧
L2v =

√
∧
x1

2 + 1−
∧
L

2

1, and the term of L10/L20 can be eliminated, since the
value of L10 is small enough relative to L20, thus the non-dimensional form of Equation (7)
can be rewritten as Equation (8):

∧
Fvd =

∧
x1 + A·∧x1·(1−

1
∧
L2v

) +
∧
k3·

√
1−

∧
L

2

1
∧
L2v

·(∧x1 +
∧
L1) (8)

Hence, the non-dimensional stiffness of vertical displacement can be obtained by

differentiating
∧
Fvd with respect to

∧
x1 as Equation (9):

∧
Kvd =

∂
∧
Fvd

∂
∧
x1

= 1 + A +
−A·(1−

∧
L

2

1) +
∧
k3·

√
1−

∧
L

2

1·(1−
∧
L

2

1 +
∧
x1·
∧
L1)

(
∧
x

2

1 + 1−
∧
L

2

1)

3
2

(9)

3.1.2. Horizontal Displacement

The force condition in horizontal displacement analysis is shown in Figure 6. The top
plate has a leftward displacement x2 under the horizontal force Fhd from the initial state
Ih to the second state IIh. Therefore, the length of the left and right springs will change
inconsistently. The length of suspension spring decreases from L20 to L2h1 in the left, and
increases from L20 to L2h2 in the right, and both sides of the leaf springs have a same
rotation angle of θh. Moreover, the central spring also rotates θh from its initial position.
In the state IIv, the central spring is stretched, whereas the suspension springs are both
compressed. Although the leaf springs are also compressed, the horizontal force is offset
by the interaction of the left and right leaf springs. Hence, the positive stiffness is provided
by leaf spring and left suspension spring, and the negative stiffness is provided by right
suspension spring.
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Figure 6. Schematic diagram of horizontal displacement.

The relation of the horizontal force Fhd, and the elastic force of suspension spring F2h1
and F2h2 can be calculated as Equation (10):

Fhd + F2h2· cos(α− θh) = F2h1· cos(α + θh) + F1h· sin θh (10)

According to the relations of rotation angles and dimensions in Figure 6, there are

cos(α− θh) =
√

L2
2h2 − L2

1/L2h2, sin θh = x2/
√

x2
2 + L2

1, cos(α + θh) =
√

L2
2h1 − L2

1/L2h1.

By introducing the non-dimensional parameters
∧
Fvh = Fvh/k1·L20,

∧
x2 = x2/L20,

∧
L2h1 =√

(

√
1−

∧
L

2

1 −
∧
x2)2 +

∧
L

2

1,
∧
L2h2 =

√
(

√
1−

∧
L

2

1 +
∧
x2)2 +

∧
L

2

1, the non-dimensional form of
Equation (10) can be expressed as Equation (11):

∧
Fhd = A·(( 1

∧
L2h1

+
1
∧
L2h2

)− 2)·

√
1−

∧
L

2

1 + (1−
∧
L1√
∧
x

2

2 +
∧
L

2

1

− A·( 1
∧
L2h1

− 1
∧
L2h2

))·∧x2 (11)

3.1.3. Vertical Rotation

The force condition in vertical rotation analysis is shown in Figure 7. The top plate
has a contrarotation under the torque Mvm around the vertical axis, and hence, there is the
rotation angle θvm from the initial state Ivm to the second state IIvm. Moreover, the length of
suspension spring increases from L20 to L2vm, and the slant angle changes θvm horizontally
and circumferentially, and the leaf spring has a rotation angle of θvm1. Besides, there is no
change in the central spring. In the state IIv, the suspension spring and leaf spring are both
compressed, whereas the positive stiffness is provided by the leaf spring, and the negative
stiffness is provided by the suspension spring because the direction of torque on the two
springs is different.

The relation of the torque Mvm, elastic force of the suspension spring F2vm, and elastic
force of the leaf spring F3vm can be calculated as Equation (12):

Mvm + F2vm· sin θvm1·L0 = F3vm· cos θvm1·L0 (12)

where L0 is the radius of top plate.
According to the relations of rotation angle and radius in Figure 7, there are sin θvm1 =

L0·θvm/
√

L2
0·θ2

vm + L2
20, cos θvm1 = L20/

√
L2

0·θ2
vm + L2

20, θvm1 ≈ sin θvm1. By introducing

the non-dimensional parameter
∧
Mvm = Mvm/(k1·L20·L0), the non-dimensional form of

Equation (12) can be expressed as Equation (13):

∧
Mvm = −A· θvm·

∧
L0√

(θvm·
∧
L0)

2
+ 1

·(

√
(
∧
L0·θvm)

2
+ 1− 1) +

∧
k3·

∧
L0·θvm

(
∧
L0·θvm)

2
+ 1

(13)
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Figure 7. Schematic diagram of vertical rotation.

3.1.4. Horizontal Rotation

The force condition in horizontal rotation analysis is shown in Figure 8. The top plate
has a contrarotation under the torque Mhm around the horizontal axis, and hence, there
is the rotation angle θhm from the initial state Ihm to the second state IIhm. Moreover, the
length of the left and right springs will change inconsistently. The length of the suspension
spring decreases from L20 to L2hm1 in the left, and increases from L20 to L2hm2 in the right,
and both sides of the leaf springs have the same rotation angle of θhm. Besides, there is no
change in the central spring. In the state IIv, the suspension spring and leaf spring are both
compressed, whereas the positive stiffness is provided by the leaf spring and suspension
spring in the left, and the negative stiffness is provided by the leaf spring and suspension
spring in the right because the direction of torque on the two springs is different.

Figure 8. Schematic diagram of horizontal rotation.

The relation of the torque Mhm, elastic force of the suspension spring F2hm1 and F2hm2,
elastic force of the leaf spring F3hm can be calculated as Equation (14):

Mhm + F2hm2· cos θhm·L0 + F3hm· sin θhm·L0 = F2hm1· sin θhm·L0 + F3hm· cos θhm·L0 (14)

Similarly, if the rotation angle of the leaf spring is small enough, there is the approxima-
tion of θhm ≈ sin θhm, L2hm1 ≈ L20 − θhm·L0· cos θhm, L2hm2 ≈ L20 + θhm·L0· cos θhm. By in-

troducing the non-dimensional parameters
∧
Mhm = Mhm/(k1·L20·L0), the non-dimensional

form of Equation (14) can be expressed as Equation (15):

∧
Mhm = (A·

∧
L0·
√

1− θ2
hm −

∧
k3)·θhm·(θhm −

√
1− θ2

hm) (15)
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3.2. Relations of Force (Torque), Stiffness, and Displacement (Rotation Angle)

The essential condition that the QZS vibration isolation system can be realized is that
the system stiffness at the static equilibrium position should be zero. Hence, there are
some premises in the different degrees of freedom related to the parameters of dimension
and stiffness.

3.2.1. Vertical Displacement

According to Equation (9), there is the premise that the condition of
∧
Kvd(

∧
x1 = 0) = 0

can be fulfilled and expressed as Equation (16):

1 + A− A√
1−

∧
L

2

1

+
∧
k3 = 0 (16)

On account of
∧
k3 > 0, then Equation (16) can be defined as Equation (17):

A >
1

(1−
∧
L

2

1)

− 1
2

− 1

(17)

3.2.2. Horizontal Displacement

According to Equation (11), when
∧
x2 = 0,

∧
Khd is always zero.

3.2.3. Vertical Rotation

According to Equation (13), the premise that the condition of
∧
Kvm(θvm = 0) = 0 can

be fulfilled is expressed as Equation (18):

∧
k3·
∧
L0 = 0 (18)

3.2.4. Horizontal Rotation

According to Equation (15), the premise that the condition of
∧
Khm(θhm = 0) = 0 can

be fulfilled is expressed as Equation (19):

∧
k3 = A·

∧
L0 (19)

In conclusion, there are two constraint conditions for stiffness A,
∧
k3 and dimensions

∧
L1,
∧
L0 in all other three degrees of freedom, except horizontal displacement, as follows.

Deduced by Equation (19), one of the parameters
∧
k3 and

∧
L0 must be zero, whereas it is

impossible in reality. In other words, the system stiffness merely achieves quasi-zero value

in vertical displacement. Consequently, if the value of
∧
Kvm is expected to be less, then,

∧
k3

or
∧
L0 needs to be reduced as low as possible.

During the determination of stiffness and dimension parameters, the value of
∧
L1

should be evaluated at first. Then the ranges of
∧
k3, A,

∧
L0 are delimited according to

Equations (16), (17), and (19). Finally, the values of A,
∧
k3,

∧
L1,

∧
L0 are analyzed by the

comparison of force-displacement curves, and the precondition of the system stiffness at
the static equilibrium position needs to be zero.

In the following analysis, the value of
∧
L1 is predetermined as

√
3/2, which means that

the angle between the lower end of the suspension spring and the base plate is 60◦. Hence,
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the result of A > 1 can be determined by Equation (17), and then, the values of A are defined

as 1.1, 1.5, 2. Moreover, the values of
∧
k3 are defined as 0.1, 0.5, 1 by Equation (16), and the

values of
∧
L0 are defined as 0.1, 0.3, 0.5 by Equation (19). With the parameters setting above,

the variations of stiffness to displacement are shown in Figure 9.
As shown in Figure 9, the stiffness value will be close to zero when the value of A is

close to 1. Hence, the effective variation ranges of the displacement (rotation angle) will
be wider. Besides, it is shown in Figure 9b that the stiffness value of the vertical rotation
at the static equilibrium position is close to zero, not equal to zero, which belongs to the
quasi-zero stiffness state, whereas the system stiffness of the other degrees of freedom are
all zero.

Figure 9. Cont.
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Figure 9. Variations of stiffness with displacement: (a) force in vertical displacement; (b) force in
horizontal displacement; (c) force in vertical rotation; (d) force in horizontal rotation; (e) stiffness
in vertical displacement; (f) stiffness in horizontal displacement; (g) stiffness in vertical rotation;
(h) stiffness in horizontal rotation.

Based on the analysis result, the non-dimensional values are A = 1.1,
∧
k3 = 0.1,

∧
L1 =

√
3/2,

∧
L0 = 0.1.

In addition, there are cubic relations between force and displacement from Figure 9.
Therefore, the approximate expressions of the force can be expanded with the third order
Taylor series near the static equilibrium position, and rewritten as Equations (20)–(23):

∧
Fvd(

∧
x1) =

∧
Fvd(0) +

∧
F′vd(0)·

∧
x1 +

∧
F′′ vd(0)

2!
·∧x

2

1 +

∧
F′′′ vd(0)

3!
·∧x

3

1 = (
A

2a3 −
∧
k3

2a2 )·
∧
x

3

1 −
b

2a2 ·
∧
x

2

1 + (A + 1− A
a
+ k3)·

∧
x1 + b (20)

∧
Fhd(

∧
x2) = (−3A·a + 3A·a3)·∧x

2

2 +
1

2
∧
L

2

1

·∧x
3

2 (21)

∧
Mvm =

∧
k3·
∧
L0·θvm − (

A·
∧
L

3

0
2

+
∧
k3·
∧
L

3

0)·θ3
vm (22)

∧
Mhm = (A·

∧
L0 −

∧
k3)·(−θhm + θ2

hm +
1
2

θ3
hm) (23)

The maximum difference is no more than 3.5%, and is near to zero in the vertical rotation.
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Another essential design parameter is the static load capacity. In order to realize the
requirement of the static load force G being completely supported by four leaf springs,
the tensile force F1 provided by the central spring and the elastic force F2 provided by the
suspension springs should be balanced out to be zero.

In order to illustrate the approximate deviation, comparisons between Equations (20)–(23)
and Equations (8), (11), (13), and (15) are shown in Figure 10.

Figure 10. Comparisons of force-displacement curves: (a) vertical displacement; (b) horizontal
displacement; (c) vertical rotation; (d) horizontal rotation.

It is indicated in Figure 10 that the variation tendency of
ˆ
Fvd,

_
F hd,

ˆ
Mvm, and

ˆ
Mhm can

be approximated using the third-order Taylor series within a small deviation near the static
equilibrium position. The maximum difference is no more than 3.5%, and is near to zero in
the vertical rotation.

Another essential design parameter is the static load capacity. In Figure 11, the initial
load condition of the QZS vibration isolator is illustrated. In order to realize the requirement
of the static load force G being completely supported by four leaf springs, the tensile force,
F1, provided by the central spring and the elastic force, F2, provided by the suspension
springs should be balanced out to be zero.
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Figure 11. Schematic diagram of initial load condition.

Deduced by Equation (21), the static load force G is mainly related to parameters
∧
k3,

∧
L1,
∧
x0, and expressed as Equation (24):

∧
G =

∧
k3·θ =

∧
k3·

∧
x0·

√
1−

∧
L

2

1√
∧
x02 + 1−

∧
L

2

1

(24)

where
∧
x0 is the vertical displacement of the isolator when it only bears the static load force.

Based on the values of
∧
k3 and

∧
L1 already determined, the variation of

∧
G with

∧
x0 is

shown in Figure 12.

Figure 12. Variation of
∧
G with

∧
x0.

It can be clearly noted from Figure 12. that
∧
G starts out proportional to

∧
x0, and then

it stays constant when the absolute value of
∧
x0 is greater than 3. This indicates that the

load capacity of the platform is proportional to the initial displacement of the top plate.

Moreover, there is also high relevancy between
∧
G and

∧
k3 from Equation (24), whereas

∧
G

changes less with
∧
L1. The reason is that

∧
L1 is related to static equilibrium position; hence,

there is a similar variation tendency of
∧
G with

∧
x0 whether

∧
L1 increases or decrease under

the premise of Equation (17). Conclusively, the load capacity of the isolator is mainly
related to the stiffness of the leaf spring and the deformation of the central spring under
static load.
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4. Dynamic Analysis
4.1. Establishment of Dynamic Models

The influence of damping parameters is taken into account in the dynamics models.
The responses and the external excitations are expressed as Equation (25):{

u = {u1, u2, u3, u4}
v = {v1, v2, v3, v4} = {H1 sin ωt, H2 sin ωt, H3 sin ωt, H4 sin ωt} (25)

Consequently, the dynamics models are established as Equation (26):

M× ··u = −C× (
·
u− ·v)− Fk (26)

where the mass matrix is M = {m, m, Ivm, Ihm}, the damping matrix is C = {C1, C2, C3, C4},
and the force matrix is Fk = {Fvd, Fhd, Mvm, Mhm}.

According to Equations (20)–(23), and introducing the non-dimensional parameters

Ω = ω/ω0, τ = ω0·t, ω0 =
√

k1/Mi, ζi = Ci·ω0/2k1,
∧
H1,2 = H1,2/L20,

∧
H3,4 = H3,4,

∧
f i =

∧
Hi·Ω2, Equation (26) can be rewritten as Equation (27):

··
∧
w1 + 2ζ1·

·
∧
w1 +

(
d1·
∧
w

3

1 + d2·
∧
w

2

1 + d3·
∧
w1 + b

)
=
∧
f1· sin Ωτ

··
∧
w2 + 2ζ2·

·
∧
w2 +

(
d4·
∧
w

2

2 + d5·
∧
w

3

2

)
=
∧
f2· sin Ωτ

··
∧
w3 + 2ζ3·

·
∧
w3 +

(
d6·
∧
w3 + d7·

∧
w

3

3

)
=
∧
f3· sin Ωτ

··
∧
w4 + 2ζ4·

·
∧
w4 +

(
d8·(−

∧
w4 +

∧
w

2

4 +
1
2
∧
w

3

4)

)
=
∧
f4· sin Ωτ

(27)

where d1 = A/2a3 −
∧
k3/2a2, d2 = −b/2a2, d3 = A + 1− A/a + k3, d4 = −3A·a + 3A·a3,

d5 = 1/2
∧
L

2

1, d6 =
∧
k3·
∧
L0, d7 = −A·

∧
L

3

0/2−
∧
k3·
∧
L

3

0, d8 = A·
∧
L0 −

∧
k3.

For the quantitative analysis, the harmonic balance (HB) method is applied, and the
fundamental response is assumed to be Equation (28):

∧
wi(τ) =

∧
wi(τ +

2π

Ω
) =

∧
Wi· sin(Ωτ + θi) (28)

where θi and
∧
Wi are, respectively, the phase and amplitude of the response.

During the approximate process, the higher order harmonic terms of cos2Ωτ, sin3Ωτ,
and cos3Ωτ are neglected.

Substituting Equation (28) into Equation (27) results in Equation (29):

( 3
4 ·d1)

2·
∧
W

6

1 + ( 3
2 ·d1)·(d3 −Ω2)·

∧
W

4

1 + ((d3 −Ω2)
2
+ (2Ω·ζ1)

2)·
∧
W

2

1 −
∧
f

2

1 = 0

( 3
4 ·d5)

2·
∧
W

6

2 − ( 3
2 ·d5·Ω2)·

∧
W

4

2 + (Ω4 + (2Ω·ζ2)
2)·
∧
W

2

2 −
∧
f

2

2 = 0

( 3
4 ·d7)

2·
∧
W

6

3 + ( 3
2 ·d7)·(d6 −Ω2)·

∧
W

4

3 + ((d6 −Ω2)
2
+ (2Ω·ζ3)

2)·
∧
W

2

3 −
∧
f

2

3 = 0

( 3
8 ·d8)

2·
∧
W

6

4 − ( 3
4 ·d8)·(d8 + Ω2)·

∧
W

4

4 + ((d8 + Ω2)
2
+ (2Ω·ζ4)

2)·
∧
W

2

4 −
∧
f

2

4 = 0

(29)

4.2. Stable Analysis

In order to carry out the stable analysis, the parameters are determined based on the
vibration isolation of large instruments. According to the conclusion in Figure 12, the value
of Ĝ will be less than 0.05, then there is Ĝ ≤ 0.05. The value of L20 is chosen as less than
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1 depending on the size of the platform. For the reason that the bearing capacity of the
platform is no less than 50 kg, the value of k1 is calculated by Equation (24):

m =
G
g
=

∧
G·k1·L20

g
≥ 50kg (30)

Hence, the parameters are set to k1 = 2× 104N/m, m = 50 kg.
The influences of the parameters of damping ratio ζi and slant length L20 are analyzed.

On account of the material of the platform mainly being steel, the variant range of damp-
ing ratio ζi is 0.0158~0.158, which means the deformation of the structure is within the
elastic range. The excitation parameter Ĥi is set to 0.6, which means the largest excitation
amplitude will be 0.6 m.

During the bifurcation analysis, the time step is 0.001 of a period T, and the absolute
error is 10−6. The excitation frequency is 6.28 rad/s. To eliminate the effects of transient
response, only the data from the last 400 periods are plotted in the diagrams.

4.2.1. Damping

The global bifurcation variations with the damping ratio are shown in Figure 13.

Figure 13. Bifurcation diagram of the displacement and rotation responses for varying ζi: (a) dis-
placement; (b) rotation. Black and blue line are vertical, red and green line are horizontal.

It is shown in Figure 13 that the displacement responses tend to be stable as the
damping increases, and exhibit steady-state periodical motion in the range of ζi > 0.06.
Moreover, the effect of damping on the displacement is more obvious by comparing the
displacement and rotation response. Especially in the range of ζi < 0.05, the chaos occurs in
the displacement responses, and weak in the rotation responses. In addition, it seems that
the vertical responses in both displacement and rotation take less time to stabilize. Besides,
the response amplitude will decrease as the damping increases.

4.2.2. Slant Length

The variation of global bifurcation with length parameters is illustrated in Figure 14.
It is shown in Figure 14a that the displacement response tends to be stable when L20 is

greater than 0.2, and the value is constant. The vertical response magnitude is larger than
the horizontal response. There is chaos occurring in the range of L20 < 0.2. In Figure 14b,
the rotation response will gradually decrease, and the period number will increase when
the slant length increases, especially in horizontal response. The reason for that is the
compressing length of the leaf spring and suspension spring will decrease, whereas there is
not any variant in the central spring. Therefore, the total stiffness of the platform will be
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unbalanced, and then, the response will become correspondingly unstable. Consequently,
increasing the slant length will improve the vibration isolation effect, nevertheless the
unstable response will also be introduced.

Figure 14. Bifurcation diagrams of the displacement and rotation responses for varying L20:
(a) displacement; (b) rotation. Black and blue line are vertical, red and green line are horizontal.

4.2.3. Periodical Analysis

The results above show that the displacement responses are periodic, except some
chaotic variations which are induced by the QZS adjustment. Hence, the periodical analysis
needs to be carried out to determine the influence of design parameters on the system

stability. The parameters are set as ζi = 0.07,
∧
H1,2 = 0.6,

∧
H3,4 = 5◦, L20 = 0.6, and the results

are demonstrated in Figures 15–18.

Figure 15. Periodical analysis of vertical displacement: (a) Poincaré phase diagram; (b) time history.
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Figure 16. Periodical analysis of horizontal displacement: (a) Poincaré phase diagram; (b) time history.

Figure 17. Periodical analysis of vertical rotation: (a) Poincaré phase diagram; (b) time history.

Figure 18. Periodical analysis of horizontal rotation: (a) Poincaré phase diagram; (b) time history.

It is shown in Figures 15–18 that the response in each degree of freedom will have a
large amplitude of transient response in the beginning, and then eventually oscillate in the
form of single-period steady-state vibration. All the vibration responses are dominated by
the excitation frequency. Hence, the chaotic motion occurs only for a very short time at the
beginning of the isolation operation. In conclusion, the vibration displacement response
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of the vibration isolation platform in each degree of freedom will be steady-state periodic
vibration eventually.

4.3. Characteristics of Transmissibility

The displacement transmissibility is adapted here, which is obtained by Equation (25)
as Equation (31):

Ti =

∣∣∣∧ui

∣∣∣∣∣∣∧vi

∣∣∣ =
∣∣∣∧vi +

∧
wi

∣∣∣∣∣∣∧vi

∣∣∣ (31)

where
∧
vi =

∧
Hi sin ωt,

∧
wi =

∧
Wi· sin(Ωτ + θi).

Then, Equation (31) is rewritten as Equation (32):

Ti =

√
∧
W

2

i +
∧
H

2

i + 2
∧
Wi·

∧
Hi· cos θi

∧
Hi

(32)

4.3.1. Damping

According to Section 4.2, the value of damping ζi is set as 0.0158, 0.07, and 0.158. The
comparison results are shown in Figure 19.

Figure 19. Comparison of displacement transmissibility in variation with damping: (a) displacement;
(b) rotation. Dash lines show the vertical results, solid lines show the horizontal results.

The following conclusions can be drawn from Figure 19.
Increasing the damping will reduce the peak value of the system in the resonance

region, which is more obvious in the displacement transmissibility. When the damping
parameter is large enough, the frequency jump phenomenon will disappear, and the linear
amplitude-frequency variation will be generated.

When there is Ti ≥ 1, increasing the damping will reduce the transmissibility, which
is shown in Figure 19a. On the contrary, when there is Ti < 1, which means the excitation
frequency is greater than the system resonance frequency, the transmissibility will increase
with the damping.

Through the comparison of vertical and horizontal transmissibility, there is a more
obvious difference in the displacement. The reason for the small difference in rotation is
that the effect of the central spring is smaller than that of the other springs.
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4.3.2. Slant Length

The value of slant length L20 is set as 0.1, 0.6, and 1. The comparison results are shown
in Figure 20.

Figure 20. Comparison of displacement transmissibility in variation with slant length: (a) displace-
ment; (b) rotation. Dash lines show the vertical results, solid lines show the horizontal results.

It is illustrated from Figure 20a that the resonance peak values and the initial vibration
isolation frequencies in the displacement will gradually decrease with the increase of the
slant length. The reason for the above phenomenon is that the increase of the slant length
will reduce the rigidity of the suspension spring, so it will reduce the rigidity of the entire
system. Nevertheless, only the resonance peak decreases with the increase of the length in
the rotation variable, which also explains the same phenomenon as the third conclusion in
Section 4.3.1.

5. Experimental Investigation
5.1. Experimental Instrument Setup

In order to verify and analyze the effect of vibration isolation, a set of 6-dOF quasi-zero
stiffness vibration isolation platform is built in this paper, and the stiffness and dimension
parameters are based on the results of Sections 3 and 4. The parameters of the isolation
table are listed in Table 1.

Table 1. The physical parameters for building the experimental platform.

Parameters Symbol Value

Stiffness of central spring k1 20,000 N/m
Stiffness of suspension spring k2 22,000 N/m

Stiffness of leaf spring k3 2000 N/m
Initial length of central spring L1 0.52 m

Initial length of suspension
spring L20 0.6 m

Radius of top plate L0 0.06 m
Damping Ci 44.3 N·m

Excitation amplitude Hi 0.1 m
Static load m 50 kg

In addition, the material of each component of the vibration isolation table is shown
in Table 2.
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Table 2. The material parameters.

Components Material

Central spring Stainless steel
Suspension spring Stainless steel

Leaf spring Mn-steel
Top and base plates Stainless steel

Spherical hinge Stainless steel
Screws and fastenings Stainless steel

The central spring and the suspension spring of the vibration isolation platform are all
selected as a round section cylindrical spring, in which the vertical spring is used as a stretch
spring, and the oblique spring is used as a compression spring. The spring parameters can
be selected according to Equation (33) and the size parameters in Table 1.

ki =
Gd4

8nD3 (33)

where d is the wire diameter of spring, D is the middle diameter of spring, n is the number
of turns, and G is the shear modulus of material.

According to Table 2, the material shear modulus of spring is G = 79,380 N/mm2, and
the parameters of the central spring and the suspension spring can be calculated according
to Equation (33), which are listed in Table 3.

Table 3. The physical parameters of the springs.

Type d-mm D-mm n L-mm k-N/m

Central
spring 10 60 23 465 19,973

Suspension
spring 8 35 42 607 22,570

The size of the leaf spring can be selected according to Equation (3) and parameter L20,
and finally determined as: b = 80 mm, h = 2 mm. The shape of the whole vibration isolation
platform and the configuration of the measurement system are shown in Figure 21.

Figure 21. Six degrees of freedom quasi-zero stiffness vibration isolation platform and its test setup:
(a) the experiment platform; (b) test on site ((1) 6-DOF QZS platform; (2) accelerometer; (3) vibrator;
(4) acquisition instrument).
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The horizontal and vertical vibration excitation tests of the isolation platform were
carried out. The response values of input and output terminals of the isolation platform
were measured by the accelerometers fixed on the base and the top surface of the platform,
and the displacement transmissibility was compared and analyzed. During the experiment,
the linear vibration isolation performance is achieved by removing the central spring and
four suspension springs on the vibration isolation platform, and only by four leaf springs.
The instrument configuration of the whole measurement system is shown in Table 4.

Table 4. Experimental instrument setup.

Instruments Models Parameters

Vibration table ACT2000-R0225S, CMI Max. Force: 22 kN, Max. Acceleration: 1000 m/s2,
Frequency Range: 1~3000 Hz.

Accelerometer 4529-B, B&K Sensitivity: 10 mV/ms−2, Frequency range: 0.3~6.0 kHz,
Weight: 14.5 g.

Data Acquisition System CRONOS-PL-3, imc 16 channels, Max. sampling rate: 400 kS/s

5.2. Experiment Analysis

Due to the experimental conditions, this verification test mainly analyzes the dis-
placement transmissibility of vertical and horizontal displacement degrees of freedom.
According to the correlation of vibration reduction performance of the platform in terms
of translational and rotational degrees of freedom mentioned above, the experimental
results can also provide preliminary guiding significance for vibration reduction under
rotational excitation.

The forward and reverse linear frequency sweep excitation is used in the experiment.
The frequency range of the excitation force is 0.5–20 Hz, the sweep duration is 60 s, and the
frequency interval is 0.32 Hz.

The vertical and horizontal displacement transmissibility obtained by the test is com-
pared in Figure 22.

Figure 22. Experimental comparison of vertical and horizontal displacement transmissibility between
the linear system and the quasi-zero-stiffness.

As can be seen from Figure 22, when the platform is in linear mode, its initial vibration
isolation frequency is about 19.32 Hz in vertical vibration, and larger than 20 Hz in hori-
zontal vibration. In the quasi-zero stiffness mode, the initial vibration isolation frequency
is about 2.22 Hz (vertical) and 4.43 Hz (horizontal), which is about 10 Hz lower than that in
the linear mode.

According to the platform parameters given in Table 1, the natural frequency of the
platform can be calculated from Equation (27) as 20 Hz. In addition, combined with
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the theoretical calculation results of transmissibility in Figures 19 and 20, it can be seen
that the effective initial vibration isolation frequency of the platform is 0.1~0.2 times the
natural frequency: about 2~4 Hz. Therefore, the above test results are basically in line
with the expectation of theoretical calculation. At the same time, the vibration isolation
frequency of vertical displacement is about 2 Hz smaller than that of horizontal displace-
ment, about 0.1 times the natural frequency, which is also consistent with the characteristics
of Figures 19 and 20. This indicates that compared with the corresponding linear isola-
tion platform, the QZS vibration isolation platform expands the vibration isolation range,
reduces the initial vibration isolation frequency, and has a great possibility to achieve
low-frequency vibration isolation, which is basically consistent with theoretical research.

In addition, in order to verify the frequency jump phenomenon of the QZS vibration
isolation system, the reverse frequency sweep experiment was carried out on the premise
of keeping the experimental settings unchanged. The forward and reverse displacement
transmissibility are compared in Figure 23.

Figure 23. Comparison of forward and reverse frequency sweep displacement transmissibility of
QZS system.

As shown in Figure 23, in the case of forward frequency sweeping, the initial vibration
isolation frequency of the vibration isolation platform is about 2.22 Hz (vertical) and
4.43 Hz (horizontal). In reverse frequency sweep, the initial vibration isolation frequencies
are 1.90 Hz (vertical) and 4.12 Hz (horizontal), respectively. This indicates that the QZS
vibration isolation platform has a jumping phenomenon, and its jump-down frequency is
2.22 Hz (vertical) and 4.43 Hz (horizontal), and its jump-up frequency is 1.90 Hz (vertical)
and 4.12 Hz (horizontal), resulting in a jumping interval of 0.32 Hz (vertical) and 0.31 Hz
(horizontal). Therefore, it can be verified through the experiment that the cause of the jump
phenomenon is caused by the inconsistency between the jump frequency and the jump
frequency generated in the forward and reverse frequency sweep.

At the same time, there will be damping differences caused by different degrees of
lubrication and tightness in the connection of components of the platform itself, which
will also affect the vibration isolation frequency differences in the process of forward and
reverse frequency sweeping. Therefore, it is necessary to study the change of vibration
isolation effect caused by contact friction damping in the future, and put forward a stan-
dardized process for the manufacture and installation of vibration isolation platform, which
will have a better guiding significance for the engineering application of such vibration
isolation platform.

6. Conclusions

A novel 6-DOF QZS vibration isolation platform based on the leaf spring structure is
proposed, and its structural characteristics and debugging methods are described. Through
the static analysis in different degrees of freedom, the effects of stiffness and dimension on
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the stiffness-displacement (rotation angle) relationship of the vibration isolation system
are obtained. Then, the influences of the damping and dimension parameters on the
stability of the system were obtained through dynamic analysis. Finally, the transmissibility
characteristics were analyzed and testified to evaluate the vibration isolation performance
of the essential parameters determined in the static analysis and stability analysis. Through
the above analysis, the following conclusions are drawn.

(1) Three design parameters, including A,
∧
k3, and

∧
L0, have the greatest influence on

the vibration isolation performance of the platform, in which, in order to make the
stiffness of the isolation system close to zero, the value of A should be near to 1, and

the values of
∧
k3 and

∧
L0 should be minimal under the premise of ensuring the static

load capacity of the system;
(2) The load capacity of the isolator is mainly related to the stiffness of the leaf spring and

the deformation of the central spring under static load. Besides, in order to ensure
that the stiffness of the system is close to zero, the stiffness of the suspension spring
and the central spring should be as similar as possible.

(3) The system will tend to be more stable and there will be a better vibration isolation
effect when the damping and length parameters increase. Besides, the bifurcation of
the isolation system will be caused as the amplitude of the excitation force increases,
so that the vibration isolation effect will also decrease. The reason for that is the
compressing length of the leaf spring and suspension spring will decrease, and there
is not any variant in the central spring. Hence, increasing the slant length will
improve the vibration isolation effect, nevertheless the unstable response will also
be introduced.

(4) There is a jumping phenomenon in the QZS vibration isolation platform, and its
jumping interval are 0.32 Hz (vertical) and 0.31 Hz (horizontal). Through the exper-
iment, the cause of the jump phenomenon is caused by the inconsistency between
the jump frequency and the jump frequency generated in the forward and reverse
frequency sweep.

At present, it is still innovative to use quasi-zero stiffness vibration isolation technology
to solve the problem of low frequency and high efficiency vibration isolation. In the future,
relevant research should focus on its engineering realizability and reliability, for example,
the system damping changes caused by the difference in lubrication degree and tightness
degree of the leaf spring and other core components in the process of production and
installation, as well as the impact of the fastness changes in the process of long-term use.
All of these problems need to be analyzed theoretically and studied regularly.
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Nomenclature
Parameters Symbol Parameters Symbol

Ratio of k1 and k2 A
Length of suspension
spring in horizontal
displacement

L2h1, L2h2

Width of the leaf spring b
Length of suspension
spring in horizontal
rotation

L2hm1, L2hm2

Damping Ci

Length of suspension
spring in vertical dis-
placement

L2v

Elasticity modulus E
Bearing capacity of
the platform

m

Lord force F
Torque around the
vertical axis

Mvm

Tensile force provided by the cen-
tral spring

F1
Torque around the
horizontal axis

Mhm

Tensile force provided by the sus-
pension spring

F2 Transmissibility Ti

Vertical force Fvd

Vertical displacement
of the isolator bearing
the static load force

x0

Horizontal force Fhd
Downward displace-
ment of the top plate

x1

Elastic force of suspension spring
in vertical displacement

F2v

Leftward displace-
ment of the top
plate

x2

Elastic force of suspension spring
in horizontal displacement

F2h1, F2h2

Elastic force of suspension spring
in vertical rotation

F2vm Greek letters

Elastic force of suspension spring
in horizontal rotation

F2hm1,
F2hm2

Rotation angle of the
leaf spring

α, β

Elastic force of leaf spring in ver-
tical displacement

F3v Product of ω0 and t τ

Elastic force of leaf spring in ver-
tical rotation

F3vm Damping ratio ζi

Elastic force of leaf spring in hori-
zontal rotation

F3hm

Rotation angle of the
leaf spring in vertical
displacement

θv

Acceleration of gravity g
Rotation angle of the
leaf spring in horizon-
tal displacement

θh

Amplitude of excitation force H1,2,3,4

Rotation angle of the
leaf spring in vertical
rotation

θvm

Stiffness of central spring k1

Rotation angle of the
leaf spring in horizon-
tal rotation

θhm

Stiffness of suspension spring k2
Stiffness of leaf spring k3 Superscripts

Stiffness in vertical displacement kvd
Denotes dimension-
less quantity

ˆ

Initial stretch length of the central
spring

L1

Radius of top plate L0
Unstretched length of the suspen-
sion spring

L20
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