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Abstract: In this work, we consider a mathematical model describing spontaneous calcium signaling
in astrocytes. Based on biologically relevant principles, this model simulates experimentally observed
calcium oscillations and can predict the emergence of complicated dynamics. Using analytical and
numerical analysis, various attracting sets were found and investigated. Employing bifurcation
theory analysis, we examined steady state solutions, bistability, simple and complicated periodic limit
cycles and also chaotic attractors. We found that astrocytes possess a variety of complex dynamical
modes, including chaos and multistability, that can further provide different modulations of neuronal
circuits, enhancing their plasticity and flexibility.
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1. Introduction

Recent experimental and theoretical findings demonstrated that glial cells, particu-
larly astrocytes, can participate in neuronal signaling and brain information processing.
Astrocytes operate at the time scale of seconds and can release different gliotransmitters,
e.g., neuroactive chemicals, modulating neuronal activity from the level of single synapses
up to coordination of different networks. Chemical calcium excitability represents the
characteristic feature of astrocytic signaling [1–8]. Ca2+ elevations in astrocytes are vital for
the optimal functioning of the CNS [9]. Astrocytic Ca2+ signals also control K+ uptake [10],
contribute to the regulation of local blood flow [11] and morphological plasticity of these
cells [12] and induce the release of gliotransmitters [13]. It is believed that this release
which is crucial for neuronal regulation is directly connected with the generation of intrinsic
calcium pulses. That is, the calcium signals and their characteristics further define synaptic
transmission efficiency and, hence, the dynamics of the accompanying neuronal networks.

Astrocytes display both triggered and spontaneous calcium signals. Spontaneous Ca2+

events are generated intrinsically without any external stimuli, whereas triggered calcium
events occur in response to changes in the astrocytic environment, such as synaptic or neu-
ronal activity and physiologically relevant internal and external triggers. The mechanisms
underlying the generation of spontaneous Ca2+ elevations in astrocytes are still poorly
understood [14]. In experiments, it was shown that astrocytes can generate spontaneous
calcium signals during blocking the neuronal activity [15], blocking vesicular release from
neurons and astrocytes [16,17] and, in the case of inositol 1,4,5-trisphosphate receptor type
2 (IP3R2), genetic deletion in astrocytes [18,19]. However, genetic knockout of IP3R2 leads
to a considerable reduction of spontaneous calcium events supporting the importance of
the endoplasmic reticulum (ER) and the IP3R.
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Many experimental works show complex behavior of spontaneous calcium signal-
ing in astrocytes which can vary from periodic pulses to irregular oscillations [16,20,21].
However, in these studies no mechanism was proposed for how the different modes of be-
havior emerged. The theoretical analysis of detailed biologically relevant models of calcium
activity in astrocytes similar to that carried out in the present work can help investigate
more precisely the principles of complex calcium oscillations emergence and characterize in
more detail the transitions between different regimes of dynamical behavior, i.e., periodic
oscillations, bursting, bistability, and chaos. In contrast to those for neuronal dynamics,
studies for astrocytic calcium activity were carried out to a much lesser extent. For example,
multistability in the dynamics of a single neuron is characterized by the coexistence of basic
signaling regimes, such as quiescent mode, regular spiking, and chaotic bursting [22]. The
phenomenon of the transition between the different dynamical modes under the influence
of noise is interpreted as a dynamic short-term memory [23]. Numerous diverse dynamical
regimes in neuronal interactions have also been examined both theoretically and experi-
mentally [24] and are thought to play an important role in neural system signaling [25].
It is believed that on the neural network level, multistability is the basic mechanism for
associative memory formation and pattern recognition [25]. The proposed mechanism
postulatesthat the neural network dynamical modes that correspond to different brain
states representing specific perception objects can be switched by applying some input
independently on changing parameters.

Recent experiments showed that spontaneous calcium transients are mediated by
stochastic Ca2+ fluxes through diverse pathways [14]. Calcium is able to enter the astrocyte
through the plasma membrane (via Na+/Ca2+ exchanger, Ca2+-permeable receptors and
channels) or can be released by mitochondria via a stochastic opening of IP3Rs on the
ER [19,26,27]. Acting together, these small Ca2+ fluxes result in oscillations of the cytosolic
Ca2+ concentration that can exceed the threshold for Ca2+-dependent Ca2+ release (CDCR)
through IP3Rs, leading to the gain of spontaneous Ca2+signals. Elevations of cytosolic
Ca2+ can also enhance IP3 production via activation of the delta-isoform of phospholipase
C (PLCδ) [28]. The cytosolic concentrations of IP3 and Ca2+ jointly control the opening
probability of IP3Rs [29], and a high IP3 level increases the chance of spontaneous Ca2+

transients becoming amplified through CDCR. Despite the experimental studies into this
area, cellular and molecular mechanistic details underlying spontaneous Ca2+ events in
astrocytes have not yet been fully clarified.

Several mathematical models have been proposed for the generation of this type
of Ca2+ oscillations. These computational studies offer different molecular mechanisms
of how spontaneous Ca2+ signals arise in astrocytes, such as the flux of extracellular
Ca2+ across the plasma membrane into the cytosol [27,30,31], spontaneous IP3 production
mediated by PLCδ [32], or the diffusion of IP3 through gap junctions [33–35]. For a recent
review of the state-of-the-art in computational modeling of calcium signaling and dynamics
in astrocytes see [36].

In this study, we investigated the impact of key intracellular Ca2+ and IP3 pathways on
the generation of spontaneous Ca2+ oscillations in astrocytes using bifurcation theory and
numerical simulation. For this, we investigated a mathematical model of spontaneous Ca2+

activity in astrocytes which displays physiologically plausible oscillatory behaviors [31].
Within this model, spontaneous Ca2+ events were triggered by small changes in cytosolic
Ca2+ levels that were caused by Ca2+ entry through the plasma membrane, Figure 1.
Ca2+ oscillations emerged due to interplay of two feedback loops involving changes in
intracellular Ca2+ and IP3 concentrations. The feedback loops control the release of Ca2+

from the ER to the cytosol through the IP3R2. The first feedback loop consists of IP3Rs open
probability modulation by cytosolic Ca2+. The other one is determined by the fact that
the Ca2+ dependent PLCδ activation results in IP3 production, which, in turn, enhances
the CDCR. We used modern tools of bifurcation theory to characterize the dynamics of
astrocytic IP3 and Ca2+ depending on variation of the key kinetics constants of the pathways
used by Ca2+ for entry and exit to the ER and IP3 production by PLCδ. We focused on
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key bifurcation scenarios of transitions between different dynamical modes of calcium
signaling including the appearance of multistability and chaotic calcium oscillations.

Figure 1. Schematic representation of the mechanisms involved in the emergence of spontaneous
calcium flows in astrocytes.

The outline of the paper is as follows. In Section 2, we describe the considered mathe-
matical model. In Section 3, we focus on the role of an input calcium flow and examine
the properties of the regimes observed for the spontaneous calcium concentration. The
coexistence of different regimes is discussed in Section 3.2. The role of the output calcium
flow in the emergence of complicated regular and irregular mixed-mode oscillations of
calcium concentration is studied in Section 4. In Section 5, compliance with experimental
data and astrocytic chemical activity contribution to information processing are discussed.
Finally, Section 6 summarizes the conclusion.

2. Description of the Mathematical Model

The Lavrentovich–Hemkin [31] model describes the dynamics of the intracellular
calcium concentration and Ca2+-dependent concentration of inositol-1,4,5-triphosphate
(IP3), by the following three-dimensional dynamical system:

d[Ca2+]cyt

dt
= Jin − kout[Ca2+]cyt + JCICR − Jserca + k f ([Ca2+]ER − [Ca2+]cyt),

d[Ca2+]ER
dt

= Jserca − JCICR + k f ([Ca2+]cyt − [Ca2+]ER), (1)

[IP3]cyt

dt
= JPLC − kdeg([IP3]cyt),

where the expressions for Jserca, JCICR and JPLC are:
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Jserca = vM2

(
[Ca2+]2cyt

[Ca2+]2cyt + k2
2

)
,

JCICR = 4vM3

(
k2

CaA[Ca2+]ncyt(
[Ca2+]ncyt + kn

CaA
)(
[Ca2+]ncyt + kn

CaI
))( [IP3]

m
cyt

[IP3]
m
cyt + km

ip3

)(
[Ca2+]ER − [Ca2+]cyt

)
,

JPLC = vp

(
[Ca2+]2cyt

([Ca2+]2cyt + k2
p)

)
.

Dynamical variables include the intracellular calcium concentration [Ca2+]cyt, the
calcium concentration in the internal storage endoplasmic reticulum (ER), [Ca2+]ER and
the concentration of the secondary messenger inositol-1,4,5-triphosphate [IP3]cyt, which
controls the ionic channels and removes calcium into the cytosol. Most of the param-
eters of the system (1) were chosen according to the data of [31]: vM2 = 15 µM/s,
vM3 = 40 s−1, vp = 0.05 µM/s, k2 = 0.1 µM, kCaA = 0.15 µM, kCaI = 0.15 µM,
kip3 = 0.1 µM, kp = 0.3 µM, kdeg = 0.08 s−1, kout = 0.5 s−1, k f = 0.5 s−1, n = 2.02,
m = 2.2. Note that in [31], the authors provided the computational simulation of conditions
carried out in real experimental studies and illustrated the dynamics that were qualitatively
similar to the experimental data. With this aim, the authors demonstrated the impact of the
influx of the Ca2+ ions from the extracellular matrix on both (i) the period change of the
regular spontaneous calcium oscillations in astrocytes and (ii) the complicated dynamics
appearance. In [30], the authors expanded this system of nonlinear differential equations
by combining it with different types of voltage-gated calcium channels. At the same time,
the mechanisms responsible for the change of the regimes still remained incomprehen-
sible. To our knowledge, refs. [37–39] are the first works with the strict analysis of the
Lavrentovich–Hemkin model. Independently, the authors of both groups were interested
in the bifurcation mechanisms of the spontaneous calcium oscillatory dynamics emergence
and studied the peculiarities of Andronov–Hopf bifurcations in the model. Furthermore,
for both scientific groups, the chaotic dynamics in spontaneous calcium oscillations had
become the subject of close attention. As a result, in [40], the authors studied ways to
control such complicated behavior as well as in [41], the authors demonstrated that even
small changes in the parameters of the system can significantly modify the bifurcation
diagram, revealing the absence of complicated oscillations.

In this work, particular attention was paid to the influence of the parameters control-
ling transmembrane calcium transport. In particular, we focused on the role of extracellular
calcium flow Jin and the rate of the calcium escape kout on the change of calcium dynamics.
Additionally, the following parameters were also varied: the rate of calcium flow through
serca to the ER from the cytosol, vM2, the rate of calcium flow through IP3 from the ER to
the cytosol, vM3, and the amount of feedback between calcium in the cytosol and IP3 and
vp, Figure 1. In contrast to previous works, in this study, we focused on the emergence of
bistable behavior in spontaneous calcium dynamics and on the ways for the emergence of
various types of chaotic dynamics. In our calculations, the system of nonlinear differential
equations (1) was numerically solved by the fourth order Runge–Kutta integration scheme
with a time step of 0.005 s. To study the peculiarities of transition from the steady state so-
lution to the oscillatory mode, different one- and two-parametric diagrams were calculated.
In all calculations to obtain more accurate results; the transients were discarded. To study
various chaotic regimes, we calculated the largest Lyapunov exponent by the use of the
numerical method introduced by Wolf et al. [42].

3. Input Calcium Flow

Let us start from the parameter set considered in the original paper by Lavrentovich
and Hemkin in [31]. For this case, weak flow of an extracellular calcium through the
astrocytic membrane leads to a steady state regime at which the concentration of calcium in
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the ER can exceed the concentration of calcium in the cytosol by tens of times. As illustrated
in Figure 2a, for Jin = 0.02 µM/s, for instance, at the time t = 1000 s the concentration of
[Ca2+]cyt ≈ 0.0397 µM and [Ca2+]ER ≈ 3.6175 µM. Meanwhile, IP3 concentration in the cell
approaches [IP3]cyt ≈ 0.01 µM. The increase of Jin leads to the appearance of oscillations in
the system dynamics. Particularly, from the data obtained for Jin = 0.05 µM/s, Figure 2b,
it follows that decreasing the phase of [Ca2+]ER during the oscillatory mode provokes
a sharp increase in both [Ca2+]cyt and [IP3]cyt up to the values of 0.65 µM and 0.33 µM,
respectively. Following the increase of Jin leads to another steady state regime at which the
concentrations of calcium in the ER and in the cytosol weakly differ. For Jin = 0.07 µM/s,
Figure 2c, at the time t = 1000 s these concentrations differ by four times only, 0.14 µM and
0.57 µM, respectively.

Figure 2. Time series of [Ca2+]cyt (green curves), [Ca2+]ER (blue curves), and [IP3]cyt (brown curves)
obtained for three values of the calcium flow from the extracellular space into the cytosol of the
astrocyte: (a) Jin = 0.02 µM/s; (b) Jin = 0.05 µM/s; and (c) Jin = 0.07 µM/s. For (a–c) the parameters
are vM2 = 15 µM/s, vM3 = 40 s−1, vp = 0.05 µM/s. For (d–f) the parameters are vM2 = 15 µM/s,
vM3 = 20 s−1, vp = 0.05 µM/s. For (g–i) the parameters are vM2 = 15 µM/s, vM3 = 20 s−1,
vp = 0.01 µM/s. Initial conditions: [Ca2+]0cyt = 0.1 µM, [Ca2+]0ER = 1.5 µM, [IP3]

0
cyt = 0.1 µM.

Note that, a twofold decrease of vM3 (20 s−1 instead of 40 s−1), Figure 2d–f, had little
effect on the dynamical regimes observed in the system. This just led to a slight change in
the period and the amplitude of the oscillatory mode, Figure 2e, and to a slight change of the
concentrations of [Ca2+]ER at the steady states, Figure 2d,f in comparison with Figure 2a,c,
respectively. As we will strictly demonstrate further, any changes of vM3 do not impact the
concentrations of [Ca2+]cyt and [IP3]cyt at the steady states.

An additional fivefold decrease of vp (0.01 µM/s instead of 0.05 µM/s) led to the shift
of oscillatory mode appearance to larger values of Jin. Similar to the previous cases for
Jin = 0.02 µM/s, the steady state was observed. For this steady state, both [Ca2+]ER and
[IP3]cyt were changed in comparison with Figure 2a, while the value of [Ca2+]cyt was not
changed for the constant Jin. For Jin = 0.05 µM/s, the system demonstrated the oscillatory
mode with a large period. Moreover, for this oscillatory regime, more than a twofold
increase of the maximal calcium concentration in the endoplasmic reticulum [Ca2+]ER was
observed. For example, Jin = 0.07 µM/s approached the value 12.15 µM as shown in
Figure 2i (for instance, in Figure 2b, [Ca2+]ER increased only up to the value 4.68 µM, and
in Figure 2e, up to 5.49 µM). Note that the period of oscillations shown in Figure 2i was
even larger than in Figure 2e.
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3.1. Steady States and Oscillatory Modes

To illustrate the peculiarities of the transition from steady state mode to oscillatory
regime, Figure 3a–i show the two-parametric bifurcation diagrams. To present the whole
dynamical picture, all three variables of the considered system were studied. The diagrams
shown in the first column of Figure 3 were obtained for [Ca2+]cyt, the results for [Ca2+]ER
are presented in the middle column, and the right column shows the diagrams obtained for
[IP3]cyt. The calculations were carried out for the parameters Jin, vM2, vM3, and vp. Different
shades of blue show the values of the system variables within the quiescent modes. The
darker tone of blue corresponds to larger values of the corresponding concentrations. As
seen from the diagrams, the concentration of calcium in the cytosol [Ca2+]cyt is always
increased with the growth of extracellular calcium flow through the astrocytic membrane.
In Figure 3a,d,g, the darker tone of blue is observed for larger values of Jin. The law for this
growth can be obtained analytically by equating the right parts of the system (1) to zero
(see Appendix A for details): [

Ca2+
]∗

cyt
=

Jin
kout

, (2)

[
Ca2+

]∗
ER

=
Jin

kout
+

vM2 J2
in

(k f + k∗)
(

J2
in + k2

2k2
out
) , (3)

where

k∗ =
4vM3kn

CaAkn
outv

m
p Jn+2m

in(
Jn
in + kn

CaA
)(

Jn
in + kn

CaI
)[

vm
p J2m

in + km
IP3km

deg

(
J2
in + k2

pk2
out

)m] (4)

[IP3]
∗
cyt =

vp J2
in(

J2
in + k2

pk2
out

)
kdeg

. (5)

As follows from (2), the steady state concentration of calcium in the cytosol depends
on only two parameters, Jin and kout. Thus, the increase of Jin leads to the linear growth of[
Ca2+]∗

cyt as seen in Figure 3a,d,g.
A similar change in the dynamics of [IP3]cyt concentration can also be observed in

Figure 3c,f, where the increase of Jin provides the monotonous growth of the [IP3] steady
state concentration for any values of vM2 and vM3, respectively. Indeed, it follows from (5),
that the nonlinear law for this growth is: [IP3]

∗
cyt(Jin) ∼ αJ2

in/(β+ J2
in), where α, β > 0. Since

its derivative 2αβJin/(β + J2
in)

2 is positive for any Jin > 0, equality (5) is the monotonously
increasing function. Similar analysis of the Formula (5) allows us to explain the diagram
shown in Figure 3i. Here, the increase of vp leads to the corresponding scaling only: larger
values of vp give larger values of [IP3]

∗
cyt.

From the diagrams shown in Figure 3b,e,h, it follows that, for [Ca2+]ER, a more
complicated behavior is observed. As expected, the larger values of vM2 (the rate of calcium
flow through serca to the ER from the cytosol) lead to larger concentrations of [Ca2+]ER. In
contrast, for a larger value of vM3 (the rate of calcium flow through IP3 from the ER to the
cytosol), the smaller steady state value of [Ca2+]ER is observed. Indeed, from equality (3),
it follows that [Ca2+]∗ER ∼ vM2 and [Ca2+]∗ER ∼ 1/vM3.

Note that for small input calcium flow Jin, particularly, for Jin < 0.005 µM/s, it seems
that the level of the calcium concentration in the endoplasmic reticulum does not depend
on Jin, especially for the diagrams shown in Figure 3e,h. However, that is not the case. It
can easily be shown that for small Jin, k∗ is small enough, and equality (5), therefore, yields

[
Ca2+

]∗
ER
≈ Jin

kout
+

vM2 J2
in

k f
(

J2
in + k2

2k2
out
) , (6)
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revealing that (i) [Ca2+]ER(Jin)-dependence increases nonmonotonously (its derivative
increases with the increase of Jin) and (ii) both parameters, vM3 and vp do not change the
value of calcium concentration in the endoplasmic reticulum.

Figure 3. Two-parametric diagrams obtained for three variables of the system (1), namely, for
[Ca2+]cyt (a,d,g); [Ca2+]ER (b,e,h); and [IP3]cyt (c,f,i); and for (a–c)—(vM2, Jin) parameter space; (d–f)—
(vM3, Jin) and (g–i)—(vp, Jin) space. Domains shown in blue correspond to steady state solution. The
intensity of the color demonstrates the change of the corresponding variable in equilibrium. The
difference between the minimal and the maximal value of the corresponding variable in the oscillatory
regime is shown by the red-to-yellow gradient.

Thus, the analysis of the steady state domains shows that two ranges in Jin can be
contingently highlighted: One range is for Jin before the oscillatory mode (for small Jin),
and the other is after it (for large Jin). Within these ranges, the intracellular calcium
[Ca2+]cyt and IP3 concentrations are different. Moreover, within these ranges, the ER
calcium concentration [Ca2+]ER even changes differently.

In the oscillatory regime, the difference between the minimal and the maximal value
of the corresponding variable is shown by shades of red. Thus, the domains with a red-
to-yellow gradient present the parameter-dependent evolution of ∆cyt = [Ca2+]max

cyt −
[Ca2+]min

cyt , ∆ER = [Ca2+]max
ER − [Ca2+]min

ER , and ∆IP3 = [IP3]
max
cyt − [IP3]

min
cyt , respectively. In

this case, the darker tone of red corresponds to larger values of the corresponding difference.
From Figure 3a–c, it follows that the increase of vM2 leads to an increase of all the considered
differences ∆cyt, ∆ER, and ∆IP3 . Moreover, an analysis of the oscillatory solutions calculated
for various vM2 showed that the increase of this parameter also leads to the increase of
the maximal values of all variables and to the significant growth of the oscillations period.
For the considered range of the parameter vM3, the difference ∆cyt (together with the
maximal value of the corresponding variable) monotonously grows with the increase of
vM3. Meanwhile, ∆ER and ∆IP3 demonstrate nonmonotonous behavior with the increase
of vM3, Figure 3e,f. Analysis of the solutions calculated for various vp showed that the
increase of this parameter leads to the increase of ∆IP3 (as well as the maximal values of
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[IP3]cyt), while ∆cyt and ∆ER are decreased. Moreover, with the increase of vp, the period of
oscillations is also decreased.

Note that for small values of the considered parameters vM2, vM3, and vp, for any
value of the external calcium concentration Jin, only a steady state regime can be observed.
Thus, only for the parameters exceeding certain threshold values vM2 > vth

M2, vM3 > vth
M3,

and vp > vth
p , the emergence of an oscillatory mode is possible.

Particular attention should be paid to the analysis of the system behavior near the bound-
aries between the regions with steady states and oscillatory modes, i.e., between the domains
shown in Figure 3 by the gradients of blue and red(yellow). It was shown that the nature of
the equilibrium point stability change can be different near the different parts of this boundary.
To further show the peculiarities, we consider Figure 3a in more detail.

3.2. Bistability Emergence: Coexistence of Steady State and Oscillatory Mode

Examining the diagram shown in Figure 4a, we focus on a particular value of the
parameter vM2. Namely, for vM2 = 15 µM/s, we have two values of Jin defining the
transition from one domain to another. Figure 4b,c present time series calculated for
all three variables of the system and parameter Jin taken close to the upper bound-
ary of the oscillatory domain, i.e., for Jin = 0.0605 µM/s. Figure 4b was obtained for
initial conditions ([Ca2+]0cyt, [Ca2+]0ER, [IP3]

0
cyt) = (0.1, 0.6, 0.1), Figure 4c is for initial

([Ca2+]0cyt, [Ca2+]0ER, [IP3]
0
cyt) = (0, 0.6, 0.1). In Figure 4d,e, the coexisting solutions near

the lower boundary (for Jin = 0.0238 µM/s) are demonstrated. Figure 4d was obtained for
initial conditions ([Ca2+]0cyt, [Ca2+]0ER, [IP3]

0
cyt) = (0.05, 3.96, 0.015), Figure 4e is for initial

([Ca2+]0cyt, [Ca2+]0ER, [IP3]
0
cyt) = (0.05, 3.96, 0.01). Thus, for spontaneous calcium dynamics,

the multistability being the crucial in sudden switchings of the dynamical regimes [43–47],
is also possible.

To show the change of amplitude in oscillatory mode, we calculated the differences
∆cyt = [Ca2+]max

cyt − [Ca2+]min
cyt (blue solid line) and ∆IP3 = [IP3]

max
cyt − [IP3]

min
cyt (green dashed

line) with the change of Jin, Figure 4g. In comparison with Figure 3a,c, such differences
in oscillatory mode are observed for the section considered at vM2 = 15 µM/s with the
change of the parameter Jin.

To obtain the width of the ranges with bistable dynamics, we focused on ∆cyt only.
Near both boundaries of the oscillations-to-quiescence transition, the calculations were
performed twice. Namely, for the lower boundary, the calculations of ∆cyt with the increase
of the parameter Jin were carried out using the initials in a vicinity of the steady state
(blue solid line in Figure 4f). These initials can be obtained automatically because for small
Jin, the steady state is globally stable (due to its uniqueness). Therefore, in numerical
calculations, small changes in Jin with taking the initials in the steady state observed for
the previous value of Jin, provide the initials within the small vicinity of the shifted steady
state. The calculations of ∆cyt with the decrease of the parameter Jin were carried out by
using the initials in a vicinity of the limit cycle (orange dashed line in Figure 4f). Here,
for large enough values of Jin (but still close to the boundary), the limit cycle is a unique
attracting set in the phase space of the system. Thus, the initials near the limit cycle with
the small change of Jin can be obtained automatically.

Similarly, for the upper boundary, the calculations of ∆cyt with the increase of the
parameter Jin were carried out using the initials in a vicinity of the limit cycle (blue solid
line in Figure 4h). In contrast, the calculations of ∆cyt with the decrease of the parameter
Jin were carried out using the initials in the vicinity of the steady state (orange dashed
line in Figure 4h). Thus, the width of the ranges with the bistable type of behavior is
≈0.0001 µM/s and ≈0.002 µM/s for the lower and upper boundaries, respectively.

Obviously, the equilibrium point stability is lost via subcritical Andronov–Hopf bifurca-
tions leading to the birth of unstable limit cycles near the red points depicted in Figure 4f,h.
Note that this result is consistent with theoretical studies reported in [38]. For the lower
boundary, the increase of the unstable cycle amplitude with the decrease of Jin occurs, while
for the upper boundary, the unstable cycle amplitude is increased with the increase of Jin.
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Approaching the stable limit cycles, both unstable cycles collide with the latter and disappear
via fold limit cycle bifurcations at Jin ≈ 0.02374 µM/s and Jin ≈ 0.0615 µM/s, respectively.

Figure 4. (a) Two-parametric diagram obtained for [Ca2+]cyt and various values of vM2 and Jin

parameters. As in Figure 3a, the intensity of the blue demonstrates the change of [Ca2+]cyt in the
equilibrium. The difference between the minimal and the maximal value of [Ca2+]cyt in the oscillatory
regime is shown by the red-to-yellow gradient. For vM2 = 15 µM/s, the coexisting regimes observed
near the upper boundary of the oscillations-to-quiescence transition are shown in (b,c), near the lower
boundary—in (d,e). In (g), the difference between the minimal and the maximal value of [Ca2+]cyt

is shown by a blue curve, and the difference between the minimal and maximal value of [IP3]cyt is
shown by a dashed green curve. In (f,h), the widths of the bistable ranges are presented for lower
and upper boundaries, respectively. The blue curve shows the data obtained with the increase of Jin,
while the dashed orange curve was calculated with the decrease of Jin.

Taking into account the numerical results presented above, we can summarize the
following proposition.

Proposition 1. For the Lavrentovich–Hemkin model with the parameters taken as in [31]:

(a) The change of extracellular calcium flow reveals the existence of two Jin-values where the
Andronov–Hopf bifurcation occurs;

(b) Both the Andronov–Hopf bifurcations are subcritical, i.e., the change of the equilibrium
stability occurs with an unstable limit cycle emergence;

(c) These unstable limit cycles coalesce with the stable cycles and disappear via the fold limit
cycle bifurcations with further change of extracellular calcium flow. The Jin-parameter ranges
between the Andronov–Hopf and the fold limit cycle bifurcations define the ranges of bistability,
where the coexistence of an oscillatory and steady state modes is observed.

Note that for small values of vM2, the transition from the steady state mode to the
oscillatory regime occurs via the supercritical Andronov–Hopf bifurcation [48]. Here,
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the emergence of small amplitude oscillations is observed, and the boundary crossing
corresponds to a transition from one monostable regime to another.

4. Output Calcium Flow

Similarly to the analysis given in Section 3, the peculiarities of transition from steady
state mode to oscillatory regime were also examined for the parameters kout, and vM2, vM3
and vp.

4.1. Steady States and Oscillatory Modes

Figure 5a–i present two-parametric bifurcation diagrams calculated for all three vari-
ables of the considered system: [Ca2+]cyt, [Ca2+]ER, and [IP3]cyt. Different shades of blue
show the values of the system variables within the quiescent modes. The domains with the
red-to-yellow gradient show the differences ∆cyt = [Ca2+]max

cyt − [Ca2+]min
cyt (Figure 5a,d,g),

∆ER = [Ca2+]max
ER − [Ca2+]min

ER (Figure 5b,e,h), and ∆IP3 = [IP3]
max
cyt − [IP3]

min
cyt (Figure 5c,f,i).

Here, for ∆cyt, the darker tone of color is observed for smaller values of kout because from
equality (2), it follows that [Ca2+]cyt ∼ 1/kout.

Figure 5. Two-parametric diagrams obtained for [Ca2+]cyt (a,d,g); [Ca2+]ER (b,e,h); and [IP3]cyt

(c,f,i); and for (a–c)—(vM2, kout) parameter space; (d–f)—(vM3, kout); and (g–i)—(vp, kout) parameter
space. Domains shown in blue correspond to a steady state solution. The intensity of the color
demonstrates the change of the corresponding variable in equilibrium. The difference between the
minimal and the maximal value of the corresponding variable in the oscillatory regime is shown by a
red-to-yellow gradient.

For [IP3]cyt, in Figure 5c,f, the increase of kout provides the monotonous decrease of
the [IP3] steady state concentration for any values of vM2 and vM3, respectively. Indeed,
it follows from (5) that the nonlinear law for this decrease is [IP3]

∗
cyt(kout) ∼ α/(β + k2

out),
where α, β > 0. This means that for any values of parameters α and β, equality (5)
defines the monotonously decreasing function because its derivative−2αkout/(β + k2

out)
2 is

negative for any kout > 0. A similar analysis of Formula (5) allows us to explain the diagram
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shown in Figure 5i. Here, the increase of vp leads to the corresponding scaling only; larger
values of vp give larger values of [IP3]

∗
cyt.

From the diagrams shown in Figure 5b,e,h, it follows that for [Ca2+]ER, more compli-
cated behavior is observed. As expected, the larger values of vM2 lead to larger concentra-
tions of [Ca2+]ER, while the larger values of vM3, in contrast, lead to a smaller steady state
value of [Ca2+]ER. Indeed, from (3), it follows that [Ca2+]∗ER ∼ vM2 and [Ca2+]∗ER ∼ 1/vM3.
For small values of kout, a high level of the calcium concentration in the endoplasmic
reticulum is observed.

In an oscillatory regime, as in Section 3, the difference between the maximal and the
minimal value of the corresponding variable is shown by the gradient of red-to-yellow. The
darker tone of the red in the two-parametric diagrams Figure 5a–i corresponds to larger
values of the corresponding difference. From Figure 5a–c, it follows that the increase of
vM2 leads to an increase of all the considered differences ∆cyt, ∆ER, and ∆IP3 . Moreover,
analysis of the oscillatory solutions calculated for various vM2 showed that the increase of
this parameter also leads to the increase of the maximal values of all variables and to the
significant growth of the oscillation period. For the considered range of the parameter vM3,
the difference ∆cyt = [Ca2+]max

cyt − [Ca2+]min
cyt (together with the maximal value of [Ca2+]cyt)

monotonously grows with the increase of vM3. Meanwhile, ∆ER and ∆IP3 demonstrate
nonmonotonous behavior with the increase of vM3, Figure 5e,f. Analysis of the solutions
calculated for various vp showed that the increase of this parameter leads to the increase of
∆IP3 (as well as the maximal values of [IP3]cyt), while ∆cyt and ∆ER are decreased. Moreover,
with the increase of vp, the period of oscillations is also decreased.

4.2. Chaotic Spontaneous Calcium Dynamics

From the experimental data, it follows that a peculiarity of astricytic chemical activity is
in the presence of peaks with different amplitudes of calcium concentration. In accordance
with terminology given in [49], blips are short and weak peaks that correspond to the
opening of one IP3R channel (or one tetramer in an IP3R channel), while the puffs are longer
and higher peaks resulting from the coordinated opening of a group of neighboring IP3R
channels (or their tetramers) through the calcium-induced calcium release principle (CICR).
The emergence of complicated alternations of such peaks is possible within the framework
of the Lavrentovich–Hemkin mathematical model [31]. Furthermore, we present three
types of chaotic spontaneous elevation of astrocytic calcium.

4.2.1. Burst-Type Dynamics: Small-Peaks Irregularity

Note that in [31], the authors presented an example of complicated calcium dynam-
ics that can emerge with the change of an extracellular calcium level. To obtain such
complicated chemical activity, few parameters were changed in the model. Namely,
the authors considered the case when kp = 0.164 µM (instead of kp = 0.3 µM) and
kCaA = kCaI = 0.27 µM (instead of kCaA = kCaI = 0.15 µM). Physically, these changes of the
parameters correspond to the situation where the PLCδ1 dynamics have a faster response
to Ca2+ in astrocytic cytoplasm, while the rate of calcium release via the IP3R (through
the CICR) occurs at a higher concentration of cytosolic calcium, and this rate would not
drop off as quickly. Using the same assumptions, we consider the parameters as in [31] and
study the role of the output calcium flow in the emergence of chaotic chemical activity.

Figure 6a,b show an example of irregular time series numerically obtained for the
concentration of the cytoplasmic calcium [Ca2+]cyt and 3D pictures of the corresponding
attractor in the phase space of the system (1), respectively. As seen from the time series,
being on this attractor, the phase point returns on a large amplitude loop after different
time intervals defined by the time spent in the region of low-amplitude oscillations. Such
activity looks like bursts with various durations of small-amplitude, during which the
amplitude is chaotically varied. It is remarkable that such types of bursting or mixed-
mode oscillations are quite widespread in nonlinear neurodynamical systems [50–58].
Note that for the parameters taken in Figure 6a,b, the equilibrium state being a saddle
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with the eigenvalues λ1 ≈ −0.169, λ2 ≈ 8.752 and λ3 ≈ 0.36, is located in the point
([Ca2+]cyt, [Ca2+]ER, [IP3]cyt) = (0.1, 0.663, 0.171).

Figure 6. (a) Time series of [Ca2+]cyt; and (b) corresponding phase portraits obtained for
Jin = 0.05 µM/s, vM2 = 15 µM/s, vM3 = 40 s−1, vp = 0.05 µM/s, kCaA = 0.27 µM, kCaI = 0.27 µM,
kp = 0.164 µM, kip3 = 0.1 µM, kdeg = 0.08 s−1, kout = 0.49668 s−1, k f = 0.5 s−1; (c) One-parametric
bifurcation diagram shows the local maxima of [Ca2+]cyt obtained for various values of the parameter
kout within the time interval t ∈ [10,000, 15,000]; for each value of kout, the initial conditions are
(0.1, 1.5, 0.1); (d) Enlargement of the squared part of the one-parametric bifurcation diagram given
in (c); (e) The maximal Lyapunov exponent as function of the parameter kout.

To study the dynamical mechanism leading to emergence of the attractor shown in
Figure 6a, the one-parametric bifurcation diagram was obtained. As a control parameter,
the rate of the output calcium flow kout was considered. For each value of kout taken from
the interval kout ∈ [0.42; 0.8] s−1, the local maximums of [Ca2+]cyt(t)-dependence were
plotted on the diagram, Figure 6c. It should be noted that, simple limit cycle with local
maximum located near ≈ 0.2 µM (for small kout), disappears with the following decrease
of kout (for kout < 0.439 s−1 the steady state can be obtained).

As seen from the enlarged part of the diagram, Figure 6d, with the increase of kout, the
period-doubling cascade is observed. As a result of such a bifurcation scenario, a chaotic
small-amplitude attractor emerges in the phase space of the system (not shown, but similar
oscillations were observed, for instance, with the change of vp in [37] or vM2 in [41]). A
further increase of kout leads to the appearance of a large-amplitude loop, and the attractor
becomes similar to that shown in Figure 6a. On the bifurcation diagram, this corresponds
to the appearance of an upper line for kout > 0.49 s−1. As seen from the enlarged part
shown in Figure 6d, the change of kout within the interval kout ∈ [0.4967; 0.4992] s−1 leads to
the appearance of several alternating periodic windows and chaotic bands. The observed
transitions are well characterized by the maximal Lyapunov exponent shown in Figure 6e.



Mathematics 2022, 10, 1337 13 of 20

With a further increase of kout, only periodic mixed-mode oscillations take place. The
evolution of such oscillations can be described by the use of the αβ notation with α and
β being the integers indicating the numbers of large (puffs) and small (blips) maximum
values of oscillations in one period, respectively. Thus, for kout > 0.5 s−1, the following
sequence can be written: 16 → 15 → 14 → 13 → 12 → 11. Note that contrasting similar
transitions can be obtained with the decrease of the input calcium flow [31].

4.2.2. Small-Amplitude Chaotic Chemical Activity

Considering the smaller value of the parameter kp, e.g., kp = 0.133 µM, here we
examine the peculiarities of astrocytic chemical activity when the PLCδ1 dynamics have an
even faster response to Ca2+ in astrocytic cytoplasm than it was assumed in the previous
case. For kout = 0.62 s−1, Figure 7a,b show an example of irregular time series numerically
obtained for [Ca2+]cyt and 3D pictures of the corresponding attractor in the phase space
of the system, respectively. The one-parametric bifurcation diagram was obtained for
kout ∈ [0.61; 0.72] s−1, Figure 7c.

Figure 7. (a) Time series of [Ca2+]cyt; and (b) corresponding phase portraits obtained for
Jin = 0.05 µM/s, vM2 = 15 µM/s, vM3 = 40 s−1, vp = 0.05 µM/s, kCaA = 0.27 µM, kCaI = 0.27 µM,
kp = 0.133 µM, kip3 = 0.1 µM, kdeg = 0.08 s−1, kout = 0.618 s−1, k f = 0.5 s−1; (c) One-parametric
bifurcation diagram shows the local maxima of [Ca2+]cyt obtained for various values of the parameter
kout within the time interval t ∈ [10,000, 15,000]; for each value of kout, the initial conditions are
(0.1, 1.5, 0.1); (d) Enlargement of the squared part of the one-parametric bifurcation diagram given
in (c); (e) The maximal Lyapunov exponent as function of the parameter kout.

In this case, for all the considered interval of kout, the large amplitude loop does not
appear. As seen from Figure 7d, the increase of the control parameter leads to the period-
doubling cascade resulting in the emergence of chaos. Positive values of the maximal
Lyapunov exponent shown in Figure 7e confirm the observed transitions. Distinctive fea-
tures of the observed chaos are relatively small maximal values of [Ca2+]cyt and chaotically
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changed values for all its maximums. For the enlarged part of the diagram, three relatively
wide periodic windows alternating with chaotic bands were obtained. In the widest win-
dow kout ∈ [0.629; 0.62967] s−1, a sequence of reverse period-doubling bifurcations yields a
period-7 attractor which is later destroyed at kout ≈ 0.62967 s−1 in a crisis event. A period-5
attractor observed for the large kout in Figure 7d, is also destroyed in a crisis event that
occurs for kout ≈ 0.631 s−1. For kout > 0.635 s−1, similar to the notation used before, the
following sequence can be written: 14 → 13 → 12.

4.2.3. Burst-Type Dynamics: All-Peaks Irregularity

Finally, we consider the case where vM2 = 30 µM/s, vM3 = 60 s−1, kCaA = 0.35 µM,
kCaI = 0.35 µM, kp = 0.124 µM. For kout = 0.475 s−1, Figure 8a,b show an example of irreg-
ular time series numerically obtained for [Ca2+]cyt and 3D pictures of the corresponding
attractor in the phase space of the system, respectively. The one-parametric bifurcation
diagram was obtained for kout ∈ [0.4; 0.8] s−1, Figure 8c. As for the previous case, for all the
considered intervals of kout, the large amplitude loop does not appear. Contrary to the pre-
vious case, both an increase (from kout = 0.465 s−1) and a decrease (from kout = 0.485 s−1)
of the control parameter, as seen from Figure 8d, lead to the period-doubling cascade
resulting in the emergence of chaos. Positive values of the maximal Lyapunov exponent
shown in Figure 8e confirm the observed transitions. For kout > 0.485 s−1, similar to the
notation used before, the following sequence can be written: 12 → 11.

Figure 8. (a) Time series of [Ca2+]cyt; and (b) corresponding phase portraits obtained for
Jin = 0.07 µM/s, vM2 = 30 µM/s, vM3 = 60 s−1, vp = 0.05 µM/s, kCaA = 0.35 µM, kCaI = 0.35 µM,
kp = 0.124 µM, kip3 = 0.1 µM, kdeg = 0.08 s−1, kout = 0.475 s−1, k f = 0.5 s−1; (c) One-parametric
bifurcation diagram shows the local maxima of [Ca2+]cyt obtained for various values of the parameter
kout within the time interval t ∈ [10,000, 15,000]; for each value of kout, the initial conditions are
(0.1, 1.5, 0.1); (d) Enlargement of the squared part of the one-parametric bifurcation diagram given
in (c); (e) The maximal Lyapunov exponent as function of the parameter kout.
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Taking into account the numerical results presented above, we can summarize the
following proposition.

Proposition 2. Within the framework of the Lavrentovich–Hemkin mathematical model, various
scenarios of chaos emergence can be realized, and therefore, various types of chaotic spontaneous
calcium oscillatory dynamics in astrocytes can be simulated.

5. Discussion

Small variations in the Ca2+ entry through plasma membrane and regimes of IP3
production in astrocytes can display a surprisingly rich dynamical repertoire of spontaneous
Ca2+ signaling. Keeping in mind that the astrocytic calcium induces modulations of
synaptic transmission and neuronal activity, such variety of different calcium dynamics,
from simple periodic oscillations to complex chaotic bursts, opens possibilities to control
neuronal signaling indirectly through the neuron–astrocyte interaction.

Our study suggested several biophysical mechanisms underlying the emergence of
spontaneous Ca2+ oscillations with various amplitudes, frequencies, shapes, and other
crucial features. Two important predictions follow from the model analysis hitherto dis-
cussed. The first one concerns the spontaneous Ca2+ signal emergence in the certain range
of transmembrane Ca2+ flux values. This result is consistent with experimental findings
that discovered that most spontaneous Ca2+ events start in an optimal range of thin distal
processes [27]. It was shown that the mechanism underlying such subcellular distribution
of the Ca2+ events is that the level of Ca2+ entry through plasma membrane in astrocytic
branchlets depends on their surface-to-volume ratio. Surface-to-volume ratio is highest
in the distal branchlets, where Ca2+ entry into the cytosol therefore produces the largest
Ca2+ level elevations, which then can induce CICR by activating IP3Rs. Second is the
observation that it is sufficient to slightly vary IP3 production rates by PLCδ to induce
dramatic changes in the subsequent Ca2+ dynamics. This could result in the emergence of
regular, self-sustained stable oscillations, bursting or chaotic. Note that chaotic oscillations
of different types combining irregular pulse sequences with variable amplitudes further
provide different levels of modulations of neuronal activity, both in time and in space in the
context of neuron–astrocyte interaction. Consequently, they facilitate or depress particular
signal transmission pathways in neuronal nets, and chaos can be viewed as a tool to en-
hance degrees of freedom in astrocytic modulation of neuronal signal transmission. We also
note that our results are consistent with other recent theoretical studies reporting on chaotic
astrocyte signaling [38,39]. In this context, the dependencies of Ca2+ and IP3 oscillatory
dynamics on the regime of IP3 production suggested different modes of stimuli encoding
by astrocytes. Periodic Ca2+ oscillations could represent a mechanism of frequency encod-
ing. In turn, chaotic Ca2+ signaling could perform more complex encoding, employing
frequency, phase, and amplitude encoding characteristics. It follows from our analysis that
chaotic oscillations are more likely to appear for large rates of IP3 production by PLCδ.
Experimental studies show that the proteins PLCδ tether to the plasma membrane and var-
ious intracellular structures and mainly associate with the cell periphery [59]. Thus, there
is overlapping in subcellular distributions of PLCδ and values of surface-to-volume ratio
parameter, which determine the optimal level of Ca2+ entry through the plasma membrane
for the emergence of the spontaneous Ca2+ activity in astrocytes. This evidence supports
the hypothesis of the key role of PLCδ in the generation of the spontaneous Ca2+ signals
mediated by the Ca2+ flux through the plasma membrane. On the other hand, our results
confirm that Ca2+ dynamics in individual astrocytes may be significantly dependent on the
astrocytic morphology and spatial distribution of the cellular and subcellular components.

Spontaneous Ca2+ events can be modulated by different external stimuli correspond-
ing, for example, to neuronal activity and changes in the cell environment [14]. Experi-
mental studies reveal that Ca2+ dynamics do not simply replicate synaptic activity but are
actually much more complex [60]. This may indicate that the properties of spatiotemporal
Ca2+ dynamics both spontaneous and triggered by neuronal inputs are likely to be gov-
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erned by the interplay of intrinsic astrocytic cellular properties, characteristics of neuronal
inputs, and environmental changes. Understanding the complex dynamic mechanisms
of intracellular Ca2+ activity has remained a major challenge and is required due to re-
cently identified roles of astrocytic signaling in synaptic, neural network, and memory
functions [13,61]. Astrocytic Ca2+ activity contribution to information processing remains
unclear. Computational models can help with this issue. It was shown that astrocytes
can induce neuronal firing synchronicity and synaptic coordination [62–65], can enhance
generation of information in neuronal ensembles [66–70], and can contribute to memory
formation [71–75].

Abnormal astrocytic signaling can indicate pathological conditions and cause synap-
tic and network imbalances, leading to cognitive impairment [61]. Understanding the
mechanisms underlying calcium activity in astrocytes and their role in physiological and
pathological neuronal activity will open up a perspective of new therapeutic opportuni-
ties [76–78].

6. Conclusions

In this work, we present a variety of dynamical regimes available within the framework
of the Lavrentovich–Hemkin model in a wide and meaningful region of its parameter space.
We have shown that the system has a unique equilibrium point and, for this steady state,
the parameter dependent laws of the variables changes were analytically obtained. We
numerically determined the domains where the dynamics fall to the unique equilibrium
point of the system, where the simple limit cycles are observed, and where the bistability
can emerge. We have shown the variety of the observed bursting regimes of calcium
oscillations and demonstrated the attractors corresponding to various types of chaotic
chemical astrocytic activity. For complicated periodic bursting activity, the parameter
regions with different oscillatory dynamical behaviors were classified using the αβ notation
with α and β being the integers indicating the numbers of large and small maximum
values of chemical activity in each period, respectively. Such classification according
to the periodicity of the observed mixed-mode oscillations, allows illustrating possible
dynamical transitions. These transformations in chemical activity might be crucial elements
used in astrocytic coding and, therefore, implied the mechanisms modifying the neuronal
activity. Providing useful background information about the mechanisms of possible
astrocytic activity-based coding, the results obtained in this study can be used in further
simulation of neuron–astrocytic networks and might be helpful in understanding their
complicated interplay.
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Appendix A

Definition A1. A solution of an ordinary differential equation is called a steady state if it is
time independent.

Proposition A1. For any values of the parameters, Lavrentovich-Hemkin mathematical model
introduced in [31], has the unique steady state solution:[

Ca2+
]∗

cyt
=

Jin
kout

, (A1)

[
Ca2+

]∗
ER

=
Jin

kout
+

vM2 J2
in

(k f + k∗)
(

J2
in + k2

2k2
out
) , (A2)

where

k∗ =
4vM3kn

CaAkn
outv

m
p Jn+2m

in(
Jn
in + kn

CaA
)(

Jn
in + kn

CaI
)[

vm
p J2m

in + km
IP3km
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(
J2
in + k2

pk2
out

)m] (A3)

[IP3]
∗
cyt =

vp J2
in(

J2
in + k2

pk2
out

)
kdeg

. (A4)

Proof. Equating the right parts of the system (1) to zero yields:

Jin − kout[Ca2+]cyt + JCICR − Jserca + k f ([Ca2+]ER − [Ca2+]cyt) = 0, (A5)

Jserca − JCICR + k f ([Ca2+]cyt − [Ca2+]ER) = 0, (A6)

vp

(
[Ca2+]2cyt

([Ca2+]2cyt + k2
p)

)
− kdeg([IP3]cyt) = 0, (A7)

where the expressions for Jserca([Ca2+]cyt) and JCICR([Ca2+]cyt, [Ca2+]ER, [IP3]cyt) were
given in Section 2. Taking into account the equality (A6), the Equation (A5) can be rewritten
in the form:

Jin − kout[Ca2+]cyt = 0, (A8)

that gives the value for the calcium concentration in the cytosol at the steady state:

[Ca2+]cyt =
Jin

kout
. (A9)

Substituting (A9) into (A7) yields

[IP3]cyt =
vp J2

in(
J2
in + k2

pk2
out

)
kdeg

. (A10)

Finally, taking into account both (A9) and (A10), one can obtain the equality for the
obtaining the calcium concentration in the endoplasmic reticulum, i.e., [Ca2+]ER, at the
steady state:

[Ca2+]ER =
Jin
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+
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