
����������
�������

Citation: Rawa, M. Towards

Avoiding Cascading Failures in

Transmission Expansion Planning of

Modern Active Power Systems Using

Hybrid Snake-Sine Cosine

Optimization Algorithm. Mathematics

2022, 10, 1323. https://doi.org/

10.3390/math10081323

Academic Editor: Gheorghe Grigoras

Received: 30 March 2022

Accepted: 12 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Towards Avoiding Cascading Failures in Transmission
Expansion Planning of Modern Active Power Systems Using
Hybrid Snake-Sine Cosine Optimization Algorithm
Muhyaddin Rawa 1,2

1 Smart Grids Research Group, Center of Research Excellence in Renewable Energy and Power Systems,
King Abdulaziz University, Jeddah 21589, Saudi Arabia; mrawa@kau.edu.sa

2 Department of Electrical and Computer Engineering, Faculty of Engineering, K. A. CARE Energy Research
and Innovation Center, Jeddah 21589, Saudi Arabia

Abstract: In this paper, a transmission expansion planning (TEP) model is proposed to guarantee the
resilience of power systems and mitigate cascading failures’ impacts. The energy storage systems and
fault current limiters’ planning models are integrated into the TEP problem to minimize cascading
outages and comply with short-circuit current reliability constraints. Most studies in the literature
adopt a single strategy to simulate power systems’ cascading failures that may not be enough to
guarantee networks’ resilience. This work elaborates on two scenarios for initiating cascading failures
to study the impact of various initiating events on the planned system’s strength and the projects
required. The TEP problem is formulated as a non-linear, non-convex large-scale problem. To avoid
linearization issues and enhance meta-heuristics performance, a hybridization of two meta-heuristic
techniques, namely snake optimizer and sine cosine algorithm (SO-SCA), is proposed to solve the
problem. Two hybridization strategies are suggested to improve the exploration and exploitation
stages. Defining future loads growth is essential for TEP. Hence, a load forecasting technique based
on SO-SCA is investigated and compared with some methods reported in the literature. The results
obtained proved the efficiency of the proposed approach in predicting load growth. TEP’s calculations
were carried out on the Garver and the IEEE 24-bus system. The results demonstrated the superiority
of the hybrid SO-SCA in solving the TEP problem. Moreover, the projects required to expand
networks differed according to the type of cascading failures’ initiating scenario.

Keywords: transmission expansion planning; cascading failures; meta-heuristic technique; load forecasting
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1. Introduction

The transmission expansion planning (TEP) problem corresponds to allocating differ-
ent power facilities, such as transmission lines, energy storage systems (ESSs), thyristor-
controlled series compensators (TCSC), and fault current limiters (FCLs), to satisfy the
expected load growth and fulfill operational and reliability constraints [1]. TEP is a well-
studied problem in the literature; however, there are still many challenges related to
solution methods and offering a mathematical model that can accommodate the power
system’s uncertainties and ensure reliability constraints [2].

Several mathematical, heuristic and meta-heuristic methods were reported in the
literature to solve TEP models [2]. Some of these works are introduced below as follows.
In Hamidpour et al. [3], the AC power flow-based model (ACTEP) was adopted. The
non-linear and non-convex constraints were linearized through Taylor’s expansion and
polygon approaches. The CPLEX solver solved the linearized model within GAMS. The
suggested strategy was conducted on the IEEE 6-bus and 30-bus test systems. The numerical
results verified the efficiency of the proposed solution. Esmaili et al. [4] presented a
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Benders’ decomposition approach that included a successive linearization technique to
solve a multi-stage TEP problem and deal with non-linear constraints. The integration
of thyristor TCSCs and FCLs’ allocation problem with the TEP problem increased the
problem’s complexity and non-linearity. The proposed method was tested on the IEEE 39-
and 118-bus systems. Solvers like GUROBI and CONOPT were used to solve the proposed
model. The suggested strategy demonstrated its superiority in terms of linearization error
and execution time measured. Franken et al. [5] developed an approach based on the DC
power flow-based(DCTEP) model for the simultaneous incorporation of TEP and planning
problems of TCSCs, phase-shifting transformers, and high voltage direct current systems
(HVDC). The problem was translated into a mixed-integer linear programming model
(MILP), and the solver CPLEX within the MATLAB platform was used to solve the problem.
In Moradi-Sepahvand et al. [6], a MILP was investigated to formulate TEP integrated
HVDC, HVACs, and ESSs in the presence of renewable energy sources. The problem was
divided into a master problem and sub-problems and was solved using the CPLEX solver
in GAMS. To validate the suggested approach, different test cases were carried out on the
Garver network, IEEE 24-bus system, and IEEE 118-bus system.

Regarding the implementation of meta-heuristic techniques, sine cosine algorithm (SCA),
Levy flight optimizer (LFO), and the linear population size reduction—success-history-based
differential evolution with semi-parameter adaptation hybrid—covariance matrix adaptation
evolution strategy algorithm (LSHADE-SPACMA) were tested in Refaat et al. [7] to solve the
TEP problem and FCLs allocation problem. DCTEP was formulated, and SCA proved
its superiority in obtaining high-quality solutions with a reasonable execution time. In
Abdi et al. [8], different algorithms, such as a genetic algorithm, an orthogonal crossover-
based differential evolution, grey wolf optimizer, moth–flame optimization, exchange
market algorithm, SCA, and imperialistic competitive algorithm, were examined to solve
the TEP problem. A comparative analysis was done using the 24 and 118 benchmark
systems. The numerical results of different scenarios showed that the grey wolf optimizer
was recommended for solving the TEP problem. The non-dominated sorting genetic
algorithm II-based Pareto approach was investigated by Abbasi et al. [9] to solve a multi-
objective DCTEP problem. The obtained results over two test systems proved the efficiency
of the applied technique in dealing with non-linearity in the adopted model.

Meta-heuristic algorithms perform differently in different types of problems. One
may perform slightly better than the other in a particular problem and worse in other sets
of problems [2]. Further, the success of meta-heuristics mainly hinges on the encoding of
candidate solutions and thus the search space. Nowadays, many studies encourage the hy-
bridization of several techniques in one algorithm to overcome these issues. Refaat et al. [7]
suggested an approach that combined mathematical and meta-heuristic techniques to solve
TEP. A stochastic planning model that considered short-circuit constraints and N-1 security
was adopted. The problem was translated into a three-level problem. In the first level, a
meta-heuristic algorithm was applied to place new circuits and FCLs such that short-circuit
current constraint was achieved. Two mathematical techniques were employed in the
second and third stages to decide the best location for new generation units to meet power
flow constraints during steady-state operation and define the load shedding to satisfy
N-1 reliability during contingencies. The results proved the suggested strategy for han-
dling non-linear constraints and improving the performance of meta-heuristic techniques.
Ramachandran et al. [10] proposed an algorithm combining the modified grasshopper
optimizer and the improved Harris hawks optimization algorithm to balance the global
search and global convergence phases. The results ascertained the capability of the pro-
posed algorithm in providing promising results compared with some algorithms presented
in the literature. The hybrid Harris hawks optimizer-arithmetic optimization algorithm
was proposed by Cetinbas et al. [11] for autonomous micro-grids design and sizing. The
results proved the efficiency of the algorithm suggested. A hosting capacity planning
model was developed by Almalaq et al. [12] to increase the use of RESs. A hybrid of two
meta-heuristic techniques was employed to deal with non-convexities within the search
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space. The results showed the effectiveness of the suggested approach in enhancing the
exploration and exploitation stages and getting high-quality solutions.

A heuristic approach based on fuzzy logic was developed by Sousa et al. [13] for
TEP. The simulation results carried out on different test systems confirmed the proposed
technique’s effectiveness in finding high-quality solutions. In Armaghani et al. [14], an
analytical multi-stage TEP approach combined with a forward pseudo-dynamic planning
method was proposed for finding critical transmission lines that may initiate and propagate
the cascading failure.

Recently, cascading failures’ impacts during TEP have been taken into account in
several studies [15–17]. Mehrtash et al. [15] contributed to a risk-based planning model
that minimizes cascading failures’ effects. The suggested problem was modeled as a mixed-
integer second-order cone programming problem. Risk indices were considered in the
developed model to measure the non-identical probability and individual contingencies’
consequences. The results obtained from the IEEE 24-bus system demonstrated that the
system planned was more robust against high-risk contingencies that may have resulted
in cascading failures. Qorbani et al. [16] developed a resilient TEP model to mitigate
cascading outages’ effects and ensure N-1 security. The outage of two-connected lines to
each node was the triggering event for cascading failures. Gjorgiev et al. [17] proposed
a risk-informed TEP method. An AC-based cascading failure model was developed to
simulate post contingencies power systems’ responses. A multi-objective optimization
was investigated and solved using a meta-heuristic algorithm. The suggested procedure
succeeded in mitigating the effects of cascading failures.

Calculation of future peak loads is essential for TEP; hence the accuracy of the load
forecasting tool implemented is necessary to guarantee the accuracy of the planning process.
The hyper-parameters of the forecasting models play an essential role in improving the
model’s performance [18–21]. A long-term load prediction-based particle swarm optimiza-
tion was implemented by AlRashidi et al. [21]. The results demonstrated the superiority of
the applied optimizer in estimating forecasting models’ parameters compared to the least er-
ror square method. An adaptive neural fuzzy system was recommended by Fathy et al. [22]
and Refaat et al. [23] as an efficient tool for load forecasting. However, it had a problem
selecting the type and the number of membership functions. Hong et al. [24] applied the
support vector machines method to forecast future loads growth; however, it has param-
eters selection problems. In this work, a load forecasting approach based on a hybrid of
two-meta heuristic techniques is proposed and compared with some methods presented in
the literature.

Based on all the above discussion, the existing research gaps are illustrated as follows:

• The mathematical methods efficiently solve linear and simple TEP problems. How-
ever, they need a high computational burden for solving large-scale non–linear TEP
problems with a vast search space. These methods have difficulty finding the op-
timal solution, mainly if non-convexities exist with the search space. Most of the
existing works apply a linearization scheme and a decomposing strategy to sim-
plify the problem, but it may result in linearization errors that affect the accuracy of
obtained solutions.

• As known, the meta-heuristics are not transparent algorithms. They are time-consuming
and challenging to reach the optimal solution in a single run [2]. Much effort is
still needed for improving the performance of meta-heuristic techniques in solving
TEP problems.

• Although heuristic methods need a lower computational burden compared to mathe-
matical and meta-heuristic algorithms, they cannot guarantee the optimal solution or
high-quality solutions.

• The hybridization of several optimization algorithms is recommended for solving the
TEP problems. However, most current studies proposed it for solving the DCTEP
problem that is simple compared to the AC models. Testing the performance of the
hybrid algorithms in solving the ACTEP problems is rarely discussed in the literature.
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• Most existing works simulate a single strategy to avoid cascading failures of power sys-
tems that may not be enough to ensure the electrical networks’ resilience and security.

• Most current research adopts a single optimization algorithm to calculate future loads
in the long term. However, the hybrid implementation of several meta-heuristic
algorithms is rarely examined in the literature.

This work corresponds to introducing a robust TEP model and investigating a long-
term load forecasting method to address the mentioned shortcomings. The ACTEP is
adopted in this work. It handles short-circuit current constraints and cascading failures
impacts. The proposed model is non-linear and non-convex. To avoid linearization, a
hybrid of two meta-heuristic algorithms is developed. The main contributions of this study
can be outlined as follows:

• The meta-heuristic algorithm, Snake optimizer (SO) [25], is combined with the sine
cosine algorithm (SCA) [26] to solve the proposed TEP problem and calculate the
long-term load forecasting. Two combination approaches are adopted to enhance both
algorithms’ exploration and exploitation phases.

• The use of renewable energy sources (RESs) threatens the modern power systems’
resilience and may be a trigger to cascading failures and rolling blackouts [27,28].
Therefore, the adopted model deals with RESs’ stochastic behavior.

• Two scenarios for initiating cascading failures are suggested to ensure the planned sys-
tem’s strength and study the impact of various initiating events on the projects required.

• The impact of ESSs and FCLs in minimizing cascading outages and fulfilling short-
circuit current constraints is also investigated. In this regard, Sodium sulfur batteries
(NaS) and FCLs’ sizing and placing problems are included in the TEP problem.

The remainder of this paper is systematized as follows. The problem’s formulation
is presented in Section 2, while the hybrid of SO-SCA is explained in Section 3. Section 4
shows and discusses the results obtained. Finally, in Section 5, the main remarks derived
from this work are presented.

2. Problem Formulation

The TEP problem is modeled as an optimization problem to expand power networks,
increase networks’ resilience and achieve reliability constraints in the presence of RESs.
The proposed objective function targets to minimize the cost of installed circuits, FCLs,
generation units and ESSs.

The AC model is adopted in this study to formulate the proposed problem. It is
superior to the DC model in terms of the accuracy of the results obtained and the ability to
integrate many problems into a single model, such as combining the problem of reactive
power units’ allocation and the TEP into a single problem [27]. A clustered data of wind
speed and load consumed over the year simulate power systems’ stochastic behavior.

As mentioned before, TEP is always linked to future loads; therefore, implementing
an accurate load forecasting technique is essential to improve the planning process. In this
regard, the load forecasting problem is formulated as an estimation process, and the hybrid
of SO-SCA is applied to minimize the error associated with the estimated model.

2.1. Mathematical Model of TEP

The proposed TEP model has a single objective function and is subjected to normal
and security constraints, as illustrated in (1)–(29). Equation (1) provides the proposed
cost function. The first term concerns the cost of installed circuits, while the second and
third terms cover the cost of FCLs and NaS batteries required to achieve security and
short-circuit current constraints. The fourth term covers the cost of new generation units
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installed. The reminder terms present the operating cost of NaS batteries and thermal units
and RESs, respectively.

OF = min

{
hmax
∑

h=1

i = n,j=n,i 6=j
∑

i=1,j=1,i 6=j

λ(1+λ)y

(1+λ)y−1 Cij(Nij
h − Nij

h−1)

+
hmax
∑

h=1

i = n,j=n,i 6=j
∑

i=1,j=1,i 6=j

λ(1+λ)y

(1+λ)y−1 CFCL(Zij
FCL,h − Zij

FCL,h−1)

+
hmax
∑

h=1

i = n
∑

i=1

λ(1+λ)y

(1+λ)y−1 Cinv
ESS(PESS,i

h − PESS,i
h−1)

+
hmax
∑

h=1

i = n
∑

i=1

λ(1+λ)y

(1+λ)y−1 Cinv
G (PG,i

h − PG,i
h−1)

+
hmax
∑

h=1

i = n
∑

i=1

λ(1+λ)y

(1+λ)y−1 Cop
ESSEESS,i

h

+
hmax
∑

h=1

i = n
∑

i=1

λ(1+λ)y

(1+λ)y−1 Cop
G PG,i

h

}

(1)

where the recovery factor
(

λ(1+λ)y

(1+λ)y−1

)
is inserted in the cost function to consider the money’s

time value [29], where λ and y are the discount rate and the lifetime of the project in years,
respectively. The problem constraints are provided in (2)–(29). The steady-state constraints
are shown in (2)–(24), whereas reliability constraints are given in (25)–(29). Constraints (2)
and (3) are related to active and reactive powers injected at each node. Ph

ESS,i is negative if
an ESS is in the discharging mode, and it is positive if an ESS is in the charging mode.

Ph
g,i + Ph

R,i − Ph
d,i − Ph

ESS,i = Ph
i (2)

Qh
g,i −Qh

d,i = Qh
i (3)

So that Ph
i and Qh

i i are calculated as follows [30]:

Ph
i = Vi

h
N

∑
j=1

Vj
h
[

Gijcos
(

θi
h − θj

h
)
+ Bijsin

(
θi

h − θj
h
)]

(4)

Qh
i = Vi

h
N

∑
j=1

Vj
h
[

Gijsin
(

θi
h − θj

h
)
− Bijcos

(
θi

h − θj
h
)]

(5)

Constraints (6) and (7) ensure that active and reactive powers generated from thermal
stations do not violate their limits. For RESs, it is assumed that they generate active
power only, and the output power must be within the permissible bounds, as shown in
(8). Constraints (9) and (10) guarantee that the buses’ voltage and angle do not surpass
their limits.

Pmin
g,i ≤ Ph

g,i ≤ Pmax
g,i (6)

Qmin
g,i ≤ Qh

g,i ≤ Qmax
g,i (7)

Pmin
R,i ≤ Ph

R,i ≤ Pmax,h
R,i (8)

θmin
i ≤ θh

i ≤ θmax
i (9)

Vmin
i ≤ Vh

i ≤ Vmax
i (10)

Equation (11) explains that any circuit built in any previous scenario will be present in
the following scenarios. It also ensures that the number of circuits between any two nodes
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should be less than the maximum. Equations (12) and (13) show that the power flows in
new and existing circuits do not exceed the thermal limits.

Nh−1
ij ≤ Nij

h ≤ Nmax
ij (11)

Ss,h
ij ≤ Nij

h Smax
ij (12)

Sr,h
ij ≤ Nij

h Smax
ij (13)

where Ss,h
ij and Sr,h

ij are calculated as follows:

Ss,h
ij =

√(
Pij

s,h
)2

+
(
Qij

s,h
)2 (14)

Sr,h
ij =

√(
Pij

s,h
)2

+
(
Qij

r,h
)2 (15)

The other parameters are calculated as follows [30]:

Pij
s,h = Vh2

i Gij −Vh
i Vh

j

[
Gijcos

(
θh

i − θh
j

)
+ Bijsin

(
θh

i − θh
j

)]
(16)

Qij
r,h = −Vh2

i
(

Bij + Bsh
)
−Vh

i Vh
j

[
Gijsin

(
θh

i − θh
j

)
− Bijcos

(
θh

i − θh
j

)]
(17)

Pij
r,h = Vh2

i Gij −Vh
i Vh

j

[
Gijcos

(
θh

i − θh
j

)
− Bijsin

(
θh

i − θh
j

)]
(18)

Qij
r,h = −Vh2

i
(

Bij + Bsh
)
+ Vh

i Vh
j

[
Gijsin

(
θh

i − θh
j

)
+ Bijcos

(
θh

i − θh
j

)]
(19)

Constraints related to ESSs’ planning are given in (20)–(24). Equation (20) restricts
ESSs’ number at each bus, whilst (21)–(23) maintain ESSs’ power and capacity during
charging and discharging modes to be lower than nominal values. ESSs’ storage capacity
at each hour is calculated using (24).

Nh−1
ESS,i ≤ Nh

ESS,i ≤ Nmax
ESS,i (20)

0 ≤ Ph
dch,i ≤ Pmax

ESS,i (21)

0 ≤ PS
ch,i ≤ Pmax,S

ch,i (22)

0 ≤ ES
ESS,i ≤ Emax

ESS,i (23)

Eh
ESS,i = Eh−1

ESS,i + ηch
ESSPS

ch,i − PS
dch,i/ηdch

bat (24)

Short-circuit current constraints are provided in (25) and (26). While (27) ensures that
FCLs’ size required is lower than the maximum value [4,7].

0 ≤ ISC,s
i ≤ ISC

max (25)

ISC
i =

Vi(0)
Zii

(26)

Nij
s−1 ZFCL,s−1

ij ≤ ZFCL,s
ij ≤ Nij

new,sZFCL
ij,max (27)

Two security scanning matrices, L1 and L2, are suggested as triggering events for the
initiation of cascading failures. L1 simulates a power system under a single circuit’s outage
between two nodes. In comparison, L2 regards the outage of all circuits between any two
nodes as the triggering event for cascading failures. Nn represents total circuits installed
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at route number n. Systems planned must be able to fulfill the constraints (2)–(27) after
contingencies L1 and L2.

L1 =



N1 − 1 N2 · · ·
N1 N2 − 1 · · ·
...

...
. . .

· · · Nn−1 Nn
· · · Nn−1 Nn

...
...

...
...

...
...

N1 N2 · · ·
N1 N2 · · ·

. . .
...

...
· · · Nn−1 − 1 Nn
· · · Nn−1 Nn − 1



n×n

(28)

L2 =



0 N2 · · ·
N1 0 · · ·
...

...
. . .

· · · Nn−1 Nn
· · · Nn−1 Nn

...
...

...
...

...
...

N1 N2 · · ·
N1 N2 · · ·

. . .
...

...
· · · 0 Nn
· · · Nn−1 0



n×n

(29)

2.2. Long-Term Load Forecasting Model

The proposed load forecasting problem is modeled as an estimation process, and the
hybrid of SO-SCA is applied to find the optimal coefficients to reduce estimation errors.
Linear, quadratic models are commonly used in the literature for forecasting load growth
in the long term, and they are adopted in this work.

The historical data used in the forecasting process is a matrix (D) that comprises m
rows and two columns. The first column represents the input data, whilst the second
column represents the output data. This work uses the input data of historical years (y),
and peak loads (P) are the output data. For m rows, the discrete state-space form represents
the forecasting system is formulated as follows [21]:

P(y) = H(y) ϕ + ε(y) (30)

where P(y) is a vector (m × 1) that represents calculated outputs, while ϕ is a vector
(n× 1) that represents estimated parameters. H(y) is a row vector representing the relation
between P(y) and ϕ. ε(y) is the error vector results in the estimation process.

In this study, the linear and the quadratic models are adopted. For the linear model:

H(y) =
[

Y 1
]
, Y = 1, 2, . . . .m and ϕ =

[
α β

]T (31)

while for the quadratic models:

H(y) =
[

Y 2 Y 1
]
, Y = 1, 2, . . . .m and ϕ =

[
α β γ

]T (32)

3. The Hybrid Snake-Sine & Cosine-Based Optimization Algorithm

The proposed problem is a large-scale non-linear optimization problem, and to solve
it, a hybrid of two meta-heuristic techniques, namely SO-SCA, is developed. SO is recom-
mended for solving several complex and challenging engineering problems. It is capable
of converging fast to the global optimum. While, SCA is superior in solving unimodal,
multi-modal, and composite test functions compared to other algorithms. SO and SCA
have some issues finding optimal or high-quality solutions in one run. Moreover, it is
challenging to decide on suitable design parameters for all problems because well-defined
algorithm parameters for one situation may not be ideal for solving another problem.
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The hybrid SO-SCA is employed in this work to overcome these issues. Two combina-
tion approaches are proposed to enhance the exploration and exploitation stages and get
high-quality solutions in as few runs as possible.

3.1. Snake Optimizer

SO was developed by Hashim et al. [25]. It is based on the idea of imitating snakes’
mating behavior. Snakes commonly fight to get the best partners if they have enough food
and a low ambient temperature. Like any meta-heuristic technique, SO initializes with
a randomly generated population, and then the updating process is carried out in two
phases: exploration and exploitation. During the updating process, it is assumed that the
number of males equals the number of females. This process goes on until the maximum
number of iterations (T) is reached.

In the exploration phase, it is assumed that there is not enough food, and snakes
randomly move toward searching for food. The food’s quantity (Q) is calculated by
0.5 exp

(
t−T

T

)
.The exploration’s behavior is modeled as follows:

Xt+1
i,m = Xt

rand,m ± C2 × Am × ((Xmax − Xmin)× rand + Xmin) (33)

Xt+1
i, f = Xt

rand, f ± C2 × A f × ((Xmax − Xmin)× rand + Xmin) (34)

where Xt+1
i,m and Xt+1

i, f indicate to the ith male and female positions. Xt
rand,m and Xt

rand, f
are the positions of random males and females selected from the population. t is the
current iteration. rand is a random value and C2 is a constant that set to 0.05. Am and A f
measure respectively the male and female abilities to get food, and they are calculated

by exp
(− frand,m

fi,m

)
and exp

(− frand, f
fi, f

)
; respectively. frand,m and frand, f are the fitness values

of Xt
rand,m and Xt

rand, f ; respectively. While fi,m and fi, f are the fitness values of ith male
and female.

In the exploitation phase, it is assumed that the food is available, and the next positions
are defined according to the ambient temperature (TEMP). TEMP is defined by exp

(−t
T
)
.

If the temperature is high and exceeds the threshold value, the new position for males and
females is located using (35). Where Xt

f ood is the best individuals position and C3 equals 2.

Xt+1
i, f ,m = Xt

f ood ± C3 × TEMP× rand×
(

X f ood − Xt
i, f ,m

)
(35)

Otherwise, the snakes are in the fighting or mating modes and are randomly switched
between both modes. The new positions are calculated using (36) and (37) for the fighting
mode and using (38) and (39) for the mating mode.

Xt+1
i,m = Xt

i,m ± C3 × FM× rand×
(

Xbest, f − Xt
i,m

)
(36)

Xt+1
i, f = Xt+1

i, f ± C3 × FF× rand×
(

Xbest,m − Xt+1
i, f

)
(37)

Xt+1
i,m = Xt

i,m ± C3 ×Mm × rand×
(

Q× Xt
i, f − Xt

i,m

)
(38)

Xt+1
i, f = Xt

i, f ± C3 ×M f × rand×
(

Q× Xt
i,m − Xt

i, f

)
(39)

where FM and FF are males’ and females’ fighting abilities and calculated by exp
(− fbest, f

fi

)
and exp

(− fbest,m
fi

)
; respectively. While Mm and M f are the mating abilities of males and

females fighting and calculated by exp
(− fi, f

fi,m

)
and exp

(
− fi,m

fi, f

)
; respectively.
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3.2. Sine Cosine Algorithm

SCA was proposed by Mirjalili et al. [26]. It is based on the use of sine and cosine
functions to vary new positions outward and toward the best positions in the hope of
enhancing the exploitation and explorations phases. SCA starts with a randomly generated
population, and then the updating scheme given in (40) is employed to define the new
position of each individual in the population. Where r2, r3 and r4 are randomly defined,
and r1 is calculated by C− C t

T . C is constant.

Xt+1
i =

 Xt
i + r1sin(r2)

∣∣∣r3 × Xt
best,i − Xt

i

∣∣∣, i f r4 < 0.5

Xt
i + r1cos(r2)

∣∣∣r3 × Xt
best,i − Xt

i

∣∣∣, i f r4 ≥ 0.5
(40)

3.3. Proposed Hybrid Scheme

Two combination approaches for SO-SCA are proposed. The pseudo-code of the first
approach is presented in Algorithm 1. SO and SCA operate in parallel to calculate new
variables in this approach. According to Algorithm 1, candidate solutions are randomly
generated, and their corresponding finesses are calculated. Individuals who violate the
steady-state and security constraints are penalized by adding additional costs. After that,
the best solution and best fitness value are defined. In the beginning, the population is
divided into two groups that have the same number of individuals. New solutions for the
first group are calculated using SO‘s updating scheme provided in (33)–(39). While new
positions of individuals in the second group are obtained using SCA’s updating scheme
given in (40). The best solution for both groups is decided. If the SO gives the best solution,
more individuals will be assigned for SO in the next iteration, relying on the switching rate
(Nrate). Otherwise, more individuals will be assigned for SCA.

Algorithm 1: Pseudo-code of SO-SCA algorithm (the first approach)

1: Define the problem’s dimension, population size (Np), stop criterion (T), and upper and
lower bounds.

2: Set SO and SCA parameters.
3: Define switching rate (Nrate).
4: Initialize the population (X).
5: Calculate the cost function and check the problem’s constraints.
6: Add a penalty cost to solutions that violate the constraints.
7: Define the best and the worst solutions.
8: Define SO’s population size (NSO

p ) = 0.5 Np.
9: Define SCA’s population size (NSCA

p ) = 0.5 Np.
10: For t = 2:T

11: Assign SO’s population (XSO) = X
(

1 : NSO
p

)
.

12: Assign SCA’s population (XSCA) = X
(

1 : NSCA
p

)
.

13: For i = 1 : NSO
p

14: Define the new position of each individual (Xt+1
i,SO) in XSO using (33)–(39).

15: Calculate the fitness value of each new solution ( f SO
i ).

16: Check the problem constraints and add a penalty cost if the new solution violates
the constraints.

17: end for
18: For i = 1 : NSCA

p

19: Define the new position of each individual (Xt+1
i,SCA) in XSCA using (40).

20: Calculate the fitness value of each new solution ( f SCA
i ).
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Algorithm 1: Pseudo-code of SO-SCA algorithm (the first approach)

21: Check the problem constraints and add a penalty cost if the new solution violates
the constraints.

22: end for
23: Define the minimum of in the vector f SO ( f SO

min) and its corresponding solution (XSO
Best).

24: Define the minimum of in the vector f SCA ( f SCA
min ) and its corresponding solution (XSCA

Best ).
25: If f SO

min ≤ f SCA
min

26: NSO
p = Nrate ∗ Np

27: NSCA
p =

(
1− Nrate) ∗ Np

28: fmin = f SO
min

29: Xmin = XSO
Best

30: else
31: NSCA

p = Nrate ∗ Np

32: NSO
p =

(
1− Nrate) ∗ Np

33: fmin = f SCA
min

34: Xmin = XSCA
Best

35: end if
36: If fmin ≤ f t

Best
37: f t+1

Best = fmin

38: Xt+1
Best = Xmin

39: else
40: f t+1

Best = f t
Best

41: Xt+1
Best = Xt

Best
42: end if
43: end for

In the second approach, a series combination is applied, as given in Algorithm 2. The
population is first updated using SCA’s updating scheme. Then, the position of the best
solution and its fitness is updated regarding the output of SCA. After that, the SO updating
scheme is applied to calculate the position of new variables, and the best solution’s position
is defined based on the output of SO.

Algorithm 2: Pseudo-code of SO-SCA algorithm (the second approach)

1: Define the problem’s dimension, population size (Np), stop criterion (T), and upper and
lower bounds.

2: Set SO and SCA parameters.
3: Initialize the population (X).
4: Calculate the cost function and check the problem’s constraints.
5: Add a penalty cost to solutions that violate the constraints.
6: Define the best and the worst solutions.
7: For t = 2:T
8: For i = 1 : Np

9: Define the new position of each individual (Xt+1
i,SCA) in XSCA using (40).

10: Calculate the fitness value of each new solution ( f SCA
i ).

11: Check the problem constraints and add a penalty cost if the new solution violates
the constraints.

12: end for
13: Find the best and the worst solutions obtained using SCA (XSCA

Best , f SCA
Best ).

14: Update the positions of the candidate solution (Xt
i = Xt+1

i,SCA);
15: Update the best solution and the best fitness.
16: If f SCA

Best ≤ f t
Best

17: f t
Best = f SCA

Best
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Algorithm 2: Pseudo-code of SO-SCA algorithm (the second approach)

18: Xt
Best = XSCA

Best
19: else
20: f t

Best = f t
Best

21: Xt
Best = Xt

Best
22: end if
23: For i = 1: Np

24: Define the new position of each individual (Xt+1
i,SO) in XSO using (33)–(39).

25: Calculate the fitness value of each new solution ( f SO
i ).

26: Check the problem constraints and add a penalty cost if the new solution violates
the constraints.

27: end for
28: Find the best solution and the best fitness.
29: If f SO

Best ≤ f t
Best

30: f t+1
Best = f SO

Best
31: Xt+1

Best = XSO
Best

32: else
33: f t+1

Best = f t
Best

34: Xt+1
Best = Xt

Best
35: end if
36: end for

4. Numerical Results
4.1. Test Systems

The proposed model and solution method were examined on the Garver network
and the IEEE 24-bus system. A data set introduced in [21] was used to investigate the
adopted load forecasting algorithm. The wind speed and load consumed depicted in
Figure 1 were used to validate the proposed TEP model. Investment and operating factors
of different facilities used are given in Table 1. The results were obtained using the MATLAB
r2017a platform.
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Table 1. Investment and operating factors of components used.

Component Capital Cost
Operating Cost

Fixed
(×106 $/MW)

Variable
(×106 $/MWh)

Wind unit [31] 0.139 × 106 $/MW 0.232 0
Thermal units [31] 0.536 × 106 $/MW 0.123 0.144

FCL 0.5 × 106 $/p.u NA NA
NaS [29] 0.446 × 106 $/MW NA 0.2981

The Garver network is a benchmark system and is widely used for investigating
the efficiency of TEP’s models. It has six buses, three-generation units, and five load
buses [22], [32]. Bus 5 was suggested as a candidate position for new wind units, and buses
2, 5, and 6 were suggested for new ESSs. The network’s initial configuration is shown in
Figure 2. New candidate routes are presented in dash lines.
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The IEEE-24 bus system has 24 buses, eleven generation units, and seventeen load
buses. Some modifications to the system were made in [32] to make congestions. The
candidate locations for new wind units were buses 3, 10, and 19. While the candidate
locations for ESSs were buses 2, 6, 8, 14, 20, 21, 22, and 24. The initial configuration of the
system is depicted in Figure 3.
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4.2. Testing the Performance of SO-SCA

Figures 4–7 show the convergence curves of the hybrid algorithm using the two
approaches, SO and SCA, over ten runs. Noteworthy, all the simulations in this section were
carried out without embedding L1 and L2 securities. The population size was 30 for SO-
SCA #2 and 40 for SO-SCA #1, SO, and SCA. It is shown that the series approach effectively
solved the Garver network in terms of standard deviation and quality of solutions compared
to the parallel approach, as shown in Table 2. For the IEEE 24-bus system, SO-SCA #1 gave
a lower standard deviation than SO-SCA #2, as illustrated in Table 3. Regarding SO and
SCA, SCA achieved better performance than SO for the 24-bus system, but SO was superior
to SCA in solving the Garver network.
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Table 2. Simulation results of SO-SCA #1, SO-SCA #2, SO, and SCA for the Garver network.

Optimizer Best Cost
(×106 $)

Worst Cost
(×106 $)

Mean Value
(×106 $) Standard Deviation Execution Time (S)

SO-SCA 1 * 58.27 66.31 60.64 2.99 227.15
SO-SCA 2 * 58.27 58.62 58.58 0.02 426.25

SO 58.27 66.03 62.05 2.93 251.08
SCA 58.27 70.23 60.96 4.08 144.18

* SO-SCA #1: the hybrid of SO and SCA using the first approach, SO-SCA #2: the hybrid of SO and SCA using the
second approach.
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Table 3. Simulation results of SO-SCA #1, SO-SCA #2, SO, and SCA for the 24-bus system.

Optimizer Best Cost
(×106 $)

Worst Cost
(×106 $)

Mean Value
(×106 $) Standard Deviation Execution Time (S)

SO-SCA 1 73.32 87.32 78.89 4.84 348.81
SO-SCA 2 73.32 89.32 79.56 6.18 551.45

SO 77.79 106.98 84.67 11.15 370.12
SCA 77.79 84.47 81.09 2.01 261.59

Tables 2 and 3 explain that SCA converged faster than other algorithms. The time
required by SCA to execute one run was about 144.18 s for the Garver network and 261.59
for the IEEE 24-bus system. While SO-SCA #1 ranked second in the convergence speed. It
consumed 227.15 s to do one run on the Garver network and 348.81 s on the 24-bus system.
SO-SCA #2 was the slowest. It needed 426.25 s to solve the Garver network and 551.45 s to
solve the 24-bus system.

Based on all results, it can be concluded that the hybrid algorithm is efficient at solving
TEP problems compared to the individual algorithms like SO and SCA. Both hybridization
frameworks moved SO and SCA in each iteration to a better search area exploiting the
best solution obtained by one of them. The results revealed that the series approach is
recommended for solving small-scale systems, while the parallel process is preferred in
solving larger systems.

4.3. Testing the Performance of SO-SCA-Based Load Forecasting Technique

The performance of SO-SCA-the based load forecasting technique was compared with
PSO-, SCA-, SO, and least error squares (LES) estimation-based methods. The estimated
parameters are given in Tables 4 and 5. The predicted load using all algorithms is depicted
in Figure 8.

Table 4. The linear model estimated parameters based on different techniques.

Coefficients
Linear Model

SO-SCA #1,2 SCA SO PSO [21] LES [21]

α 383.00 377.875 377.841 377.841 363.16
β 1683.00 1713.750 1714.226 1714.226 1874.8
γ - - - - -

Average error (%) 3.803074 3.832615 3.8336 3.8336 4.2103

Table 5. The quadratic model estimated parameters based on different techniques.

Coefficients
Quadratic Model

SO-SCA #1,2 SCA SO PSO [21] LES [21]

α −7.3939 −8.283216 −8.2818 −8.2818 −7.1169
β 494.0909 507.43006 508.4816 508.4816 491.27
γ 1490.3939 1467.2727 1455.493 1455.493 1469.1

Average error (%) 3.323598 3.3375 3.3488 3.3488 3.3873

Tables 4 and 5 show that SO-SCA#1 and SO-SCA#2 gave the least average error of
3.803074% for the linear model and 3.323598% for the quadratic model. The results also
illustrated that SCA was superior to SO, PSO and LES in terms of average error. The
linear model was 3.832615% for SCA, 3.8336% for SO, and 3.8336% and 4.2103 for PSO-and
LES-based techniques. While for the quadratic model, it was 3.3375%, 3.3488%, 3.3488%,
and 3.3873% for SCA-, SO-, PSO-, LES-based techniques.
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The results demonstrated that the quadratic model was more suitable for fitting the
testing data than the linear model because the minimum average error was 3.803074% for
the linear model and 3.323598% for the quadratic model.
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4.4. Testing Results of Garver Network

Table 6 details the results obtained using the proposed planning scheme. The results
showed a significant change for projects required to achieve the L1 and L2 security con-
straints. The maximum number of circuits built in each route did not exceed 2 when the
triggering event L2 was applied. In contrast, it did not surpass 3 for the triggering event
L1. The total number of circuits installed was 7 for the event L1 and 10 for the event L2.
The results emphasized that to achieve L1 security, there was a need for a new circuit at
routes 3-5 and 5-6, two circuits at route 4-6, and three circuits at route 2-6. While meeting
L2 security required new circuits at routes 2-3, 1-6, 3-4, 3-6, 4-6, and 5-6.

Table 6. TEP’s projects for Garver network.

New Projects L1 Security L2 Security

TEP 3-5 (1), 2-6 (3), 4-6 (2), 5-6 (1) 2-3 (1), 1-6 (2), 3-4 (1), 3-6 (2),
4-6 (2), 5-6 (2)

Total ESS (MWh) 198.53 192.79
Total FCLs (p.u) 1.24 + 12.4i 0.59 + 5.9i

Total cost (×106 $) 149.72 175.78
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The results showed that the use of ESSs was essential to maintain power continuity
and avoid cascading failures. The results indicated that NaS’s capacities required for the
events L2 and L1 were 198.35 and 192.79, respectively. The best locations for the ESSs, to
achieve L1 security were at nodes 2 and 5. Whilst the locations of ESSs needed to achieve
L2 security were at buses 2, 5, and 6.

Figure 9 shows the short circuit current at scenario number24 as an example to verify
that it did not exceed the maximum limit (6.5 p.u) and that the short-circuit constraints
were achieved in each scenario. It is worth mentioning that the total size of FCLs required
ranged between 0.59 + 5.9i p.u and 1.24 + 12.4i p.u. The results also illustrated that the
buses’ voltage did not violate their limits (0.9–1.1 p.u). Figure 10 points to the voltage at
each bus for scenario number 24 as an example.
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The previous results imply that the triggering event L2 was the worst, and the proba-
bility of occurring complete blackouts was high. The cost of projects needed for fulfilling
L2 security exceeded 17.41 % compared to the cost of L1 projects.

4.5. Testing Results of the IEEE 24-Bus System

Similar to the Garver network, simulations on the 24-bus system confirmed the gravity
of the L2 event compared to the L1 event. This is clearly shown in the size of ESSs required
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and the planning cost. There was an increase of about 108% in the size of ESSs to meet L2
security. The results pointed to the size of NaS batteries required for ensuring L1 security
was MWh 29.43 at bus 6. Whilst 60.123 and 1.172 MWh of NaS batteries at buses 6 and 21
were needed to fulfil L2 security.

According to Table 7, new circuits were installed at the routes 1-2, 1-3, 2-4, 2-6, 7-2, 7-5,
and 7-8 to guarantee L1 and L2 securities. It is worth emphasizing that the reliance on the
location of new circuits was not enough to achieve the short circuit-current constraints. The
use of FCLs was necessary. The short-circuit current at scenario number 24, as an example,
is depicted in Figure 11. The results indicated that the planning model was able to maintain
the buses’ voltage within their limits. They did not violate the upper and lower bounds
(0.9–1.1 p.u), as shown in Figure 12.

Table 7. TEP’s projects for the 24-bus system.

New Projects L1 Security L2 Security

TEP 1-2 (1), 1-3 (1),2-4 (1), 2-6 (1),
7-2 (1), 7-5 (1), 7-8 (1)

1-2 (1), 1-3 (1), 2-4 (1), 2-6 (1),
7-2 (1), 7-5 (1), 7-8 (1)

Total ESS (MWh) 29.43 61.29
Total FCLs (p.u) 4.1 + 23.89i 5.36 + 28.85i

Total cost (×106 $) 575.36 579.12
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Based on all previous findings, it can be concluded that relying on a single strategy to
avoid the cascading failures of the electrical networks does not guarantee their security and
resilience. Two simple strategies were applied in this work, which significantly affected
the size and number of projects required and hence the cost. For the Garver network, the
impact was clearly shown in the number and the location of new circuits. While for the
24-bus system, the size of ESSs was affected by the type of cascading failures

The TEP problem is complex, and the hybrid of two meta-heuristic algorithms ef-
fectively solved TEP models compared to individual algorithms. The two hybridization
frameworks were superior in terms of standard deviation and quality of solutions. Further,
the hybrid algorithm was more accurate in forecasting the electrical loads in the long term
than some methods introduced in the literature.

5. Conclusions

In this work, a resilience TEP model was suggested to ensure networks’ reliability
and supply the future electrical demands. The short-circuit current and the cascading
failure constraints were considered to achieve the resilience requirements. NaSs and FCLs’
planning models were incorporated into the proposed TEP model to achieve these targets.
Two simple scanning matrices, L1 and L2, were modeled as triggering events for cascading
failures. L1 simulated a power system under a single circuit’s outage between two nodes.
L2 focused on the outage of all circuits between two nodes as the triggering event for
cascading failures. The results showed that simulating a single strategy for cascading
failures of power systems does not guarantee their security and resilience. The triggering
event L2 was the worst. The probability of occurring complete blackouts was high. The
impact was clearly shown in the number and the location of new circuits for the Garver
network, while it affected the size of ESSs installed for the IEEE 24-bus system.

The proposed TEP problem was a large-scale non-linear optimization problem, and
a hybrid of two meta-heuristic techniques, namely SO and SCA, was adopted. Two
hybridization approaches were applied to enhance the exploration and exploitation stages.
SO and SCA operated parallel in the first approach to calculate new variables in each
iteration. While in the second approach, SO and SCA operated in a series mechanism. The
results revealed that the second approach effectively solved small-scale systems, whereas
the first approach efficiently solved larger systems.

Further, the results proved that both approaches were superior in terms of standard
deviation and quality of solutions compared to individual algorithms. A long-term load
forecasting technique based on SO-SCA was proposed. It was shown that the suggested
method gave accurate results compared to PSO, SO, SCA, and LES.

This work is only concerned with investigating two simple cascading failure events,
but more events that pose a greater threat to the network should be considered to get a
secure network. More studies are required to evaluate the impact of including the transient
stability constraints on enhancing power systems’ securities and resilience. In addition, the
planning model needs to be extended to study the effects of the optimal mix of transmission
lines, distributed generators, FCLs, ESSs, reactive source compensators, demand response,
and thyristor-controlled series compensators on improving power systems’ securities and
avoiding cascading failures. The performance of the hybrid SO-SCA should also be tested
on larger systems with an extensive search space.
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Nomenclature

ESS Energy storage system
FCL Fault current limiter
SCA Sine cosine algorithm
SO Snake optimizer
SO-SCA #1 The hybrid of SO and SCA using the first approach
SO-SCA #2 The hybrid of SO and SCA using the second approach
SOC State of charge
NaS Sodium-Sulfur batteries
RESs Renewable and sustainable energy sources
TCSCs Thyristor-controlled series compensators
TEP Transmission expansion planning
Input Data and Indices
Gij, βij Conductance and susceptance of the route between bus i and j
Cij Cost of circuits installed between bus i and bus j
CFCL Cost of FCL installed
Cinv

ESS Capital cost of NaS built
Cop

ESS Operating cost of NaS
Cinv

G , Cop
G Capital cost of new generation unit built

Cop
G Operating cost of generation units

hmax Maximum number of scenarios

Nh
ESS,i, Nmax

ESS,max
Number of batteries installed at scenario h, and maximum number of
batteries can be installed at bus i

Nh
G,i Number of generation units at bus i and scenario h

Ph
G,i Power produced from the generation units in MW

Ph
g,i, Ph

R,i
Output active power in MW of thermal unit and RSES at scenario
h, respectively

Ph
d,i Active power consumed by the load at bus i (MW)

PS
ch,i, PS

dch,i Charging and discharging power of an ESS at bus i (MW)
Pmax

ESS Rated power of the selected ESS
Qh

g,i Output reactive power in MVAR of thermal unit at scenario h
Qh

d,i Reactive power consumed by the load at bus i (MVAR)

SS,h
ij , Sr,h

ij
Apparent power flow in a route between bus i and j in both
terminals (MVA)

Smax
ij maximum rated of power flow in a route between bus i and j (MVA)

SOCh
ESS,i SOC of ESS at bus i and scenario h

Vh
i , θh

i Voltage magnitude and angle at bus i (p.u)
ηch

ESS, ηdch
ESS Charging and discharging efficiencies of ESS

λ, y Discount rate and the lifetime of the project
Zij

FCL,h−1 Size of FCL installed in the route i-j
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