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Abstract: In order to deal with strong nonlinearity and external interference in the braking process,
this paper proposes a robust self-learning PID algorithm based on particle swarm optimization,
which does not depend on a precise mathematical model of the controlled object. The self-learning
function is used to adapt to the diversity of the runway road surface friction, the particle swarm
algorithm is used to optimize the rate of self-learning, and robust control is used to deal with the
modeling uncertainty and external disturbance of the system. The convergence of the control strategy
is proved by theoretical analysis and simulation experiments. The superiority and accuracy of the
method are verified by NASA ground test results. The simulation results shows that the adverse
effect of the external disturbance is suppressed, and the ideal trajectory is tracked.

Keywords: aircraft anti-skid braking system; intelligent self-learning PID control; particle swarm
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1. Introduction to an Aircraft Anti-Skid Braking System

The aircraft anti-skid braking system (ABS) is important airborne equipment. Its
function is to stop the aircraft in the shortest distance without skidding or self-locking. It
can be seen in Figure 1 that, although the landing phase only accounts for 1% of the entire
aircraft operation phase, its accident rate accounts for 26% [1]. Almost every year at home
and abroad, there are aircraft accidents caused by brake system failures during takeoff or
landing. Data show that the takeoff and landing stages of the aircraft are stages in the flight
process with frequent safety accidents. Thus, in addition to good flight characteristics, the
aircraft must also have good ground motion characteristics [2,3]. For example, on 27 June
2017, a plane at Tenerife Airport in the United Kingdom suffered a tire puncture when it
landed. Some passengers were injured during the evacuation, resulting in the closure of
the airport for several hours and thousands of passengers stranded at the airport. Figure 2a
shows the incident. In December 2016, a domestic cargo plane ran off the runway when
landing at Hangzhou Xiaoshan Airport, as shown in Figure 2b. The front fuselage of the
plane was damaged, and some passengers were injured. Later, it was determined that
the accident occurred because the runway was slippery, and the brake anti-skid control
system did not work properly. It can be seen that the performance of the aircraft braking
system directly affects the safety of the aircraft and the people on board. It is required that
the brake anti-skid control system must work stably, quickly, and accurately to ensure the
safety of the aircraft.
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Figure 1. Percentage of fatal accidents and onboard fatalities—2010–2020.

(a) (b)

Figure 2. Major accidents due to brake failure. (a) A tire blows out during braking. (b) An aircraft
overruns a runway during braking.

The aircraft anti-skid braking system (ABS) was designed to maximize the friction
between the tires and the road surface by controlling braking pressure in real time, thereby
improving the braking efficiency and shortening the braking distance [4]. The early anti-
skid braking control algorithm of an aircraft was inertial anti-skid, which realized an anti-
skid operation by setting a threshold value for the wheel speed deceleration rate. In order
to deal with the unwanted impact of the estimated accuracy of automotive reference speed
on logic threshold control, aircraft reference speed was estimated using a correctional peak–
to–peak connection method, and a mixed slip rate and acceleration threshold control was
proposed [5]. However, it was difficult to design this kind of controller, as the performance
of this kind of method heavily depended on parameters to be determined by engineering
experience, and it was also difficult to evaluate the stability of such a controller. In recent
years, a slip-rate-based control algorithm has become the focus of the ABS for the improved
braking efficiency of this kind of control strategy. With the slip rate concept introduced
into the anti-skid control, the controller can control the slip rate operating near the optimal
value, so as to make full use of the friction between the road surface and the tire, thus
improving the braking efficiency and shortening the braking distance. Many scholars
have devoted themselves to researching the slip-rate-based control of the ABS, and have
proposed many high-performance anti-skid control algorithms, such as fuzzy control [6,7],
sliding mode control [8,9], switching control, and neural network control [10,11].

Based on regenerative, kinetic, and short-circuit braking mechanisms, a novel method
of realizing an anti-skid braking system (ABS) controller was proposed in [12]. In the paper,
a boundary layer speed control was used to guarantee the optimal track of the slip rate
between the tires and the road surface, and the braking performance of the controller was
addressed via real-world experiments. In [13], sliding mode control approaches were pro-
posed to realize the slip control of the vehicle, which can make the wheel slip rate follow a
desired value, while guaranteeing that the sliding mode control is stabilizing. Many model-
based control algorithms have been proposed, such as optimal control [14,15], sliding-
mode control [16–18], fractional order sliding-mode control [19,20], gray sliding-mode
control [21], and feedback linearization control [22]. To better design a model-based con-
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troller, a full-order dynamic model must be provided, which is fairly difficult for a system
such as an aircraft anti-skid braking system.

For a strong real-time and highly nonlinear system such as ABS, the unmodeled
dynamics and parametric uncertainty may lead to serious performance degradation [23].
Therefore, model-free control technology has gradually attracted the attention of anti-skid
system researchers. The model-free control techniques are also labeled as data-driven [24],
because a large amount of test data is needed to design the controller. Currently, a pressure-
bias-modulated (PBM) aircraft anti-skid braking system is the most commonly used braking
system, which is an improved algorithm of PID control. Figure 3 is a schematic diagram of
a slip-velocity-controlled, PBM control system, which demonstrates that the only difference
between the PBM and PID control algorithms is that the integration module of a PID
algorithm is replaced by a PBM module algorithm. It retains the advantages of a simple
and easy-to-understand PID controller and does not require an accurate system model
of the controlled object. Although a large number of new anti-skid control algorithms
have emerged in recent years, it is still the most widely used and installed anti-skid
control algorithm.

Figure 3. Schematic diagram of a slip-velocity-controlled PBM control system.

Although the PBM algorithm has a good braking effect under dry runway conditions,
when the runway is slippery or icy, it is prone to deep slippage, resulting in low braking
efficiency. Figure 4 is the curve of the PBM controller slipping on a slippery runway [25].
A deep skid not only accelerates tire wear and reduces tire life but also easily causes the
aircraft to overrun the runway with a braking distance that is too long.

Figure 4. Speed profile of a PBM controller on a slippery runway.
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In summary, although many new intelligent anti-skid braking algorithms have emerged
in the academic world, albeit limited by the computing power of the aircraft chip, there is
still a need for simple and easy-to-implement anti-skid controllers, such as PID algorithms
and their improved forms. Motivated by this, in this paper, we propose a robust self-
learning PID controller for optimum slip rate tracking during the aircraft braking process.

2. ABS Dynamics and Control Problem

Aircraft brake ground test costs are high and the experimental period is long; so, the
design of an aircraft anti-skid braking system usually uses computer simulation to assist
the design. Similar to an actual aircraft, the aircraft model used for simulation is also an
assembly of many unique subsystems. The relationship between the aircraft braking system
dynamics model and the controller model is shown in Figure 5.

Figure 5. Signal transmission relationship between various modules of aircraft anti-skid brakes.

2.1. Aircraft Dynamics during the Braking Process

In the process of landing braking, the aircraft is mainly affected by the supporting
force of the tire and the landing gear, the friction between the road surface and the tire, and
the friction between the air resistance and the lift. A schematic diagram of the aircraft force
is shown in Figure 6.

Figure 6. Schematic diagram of the force of the aircraft body.

The dynamics of the aircraft during braking can be formulated as

T0 − Fx − Ff − Fm = Mv̇x (1)

G− Fy − Fn f − Fnm = 0 (2)

hT0 − (h− y)
(

Ff + Fm

)
+ lbFn f − laFnm = 0 (3)

where T0 = T0 ini + kvvx, G = Mg, Fx = 1
2 ρCxSv2

x, and Fy = 1
2 ρCySv2

x.

The parameters of the aircraft ABS are illustrated in Table 1.
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Table 1. Aircraft parameters.

Parameter Description

y Vertical displacement of the center of gravity of the fuselage
vx Aircraft speed
la Distance from center of gravity to main wheel
lb Distance from center of gravity to front wheel
h Height of center of gravity
nm Number of mainwheels
T0 Residual thrust
M Mass of aircraft
ρ Airport air density
Cx Resistance coefficient
Cy Lift coefficient
S Aircraft windward area

The deceleration of the aircraft mainly depends on the friction between the main wheel
and the ground, and the relationship can be given as

Fm = µ
((

lb − µ f (h− y)
)(

mg− Fy
)
+ T0h

)
(4)

Therefore, the dynamic model of the aircraft fuselage can be characterized as

v̇x =
1
M
(
T0 − Fx − µ

(
mg− Fy

)
− Fm

)
(5)

2.2. Dynamics of Wheel and Tire

Figure 7 is a schematic diagram of the main wheel of the aircraft, from which we can
see that the wheel is mainly subjected to the ground support force, braking force, and the
ground friction during the braking process. The rotational dynamics of the main wheel can
be described by

Jωω̇ =
1

nm
Fmrk − Tb (6)

where Jω is the moment of inertia of the braking wheel, and rk is the effective rolling radius
of the braking wheel. Tb is the brake torque generated by the actuator.

Figure 7. Force analysis of the main wheel during the braking process.
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In order to describe the slip state of the braked wheel, a new variable slip rate is
proposed. The slip rate of ABS is defined as follows:

λ =
vx −ωrk

vx
(7)

During braking, the slip rate λ ranges from 0 to 1, with λ = 0 representing free rolling,
and λ = 1 representing tire lock. Taking the derivation of λ yields

λ̇ =
v̇xωrk

v2
x
−

r2
k

Jωvx
Fm +

rkkb
Jωvx

PA (8)

From Equation (4), it can be seen that the friction between the tire and the ground
is related to the load in the vertical direction of the tire and the road surface adhesion
coefficient. In this paper, the friction model proposed by Burckhardt [26,27] is adopted, and
the parameters of the tire model are shown in Table 2.

µ(λ, vx) = [c1(1− e−c2λ)− c3λ]e−c4λvx (9)

The friction characteristics under different runway conditions and the optimal slip
rate corresponding to the system are shown in Figure 8, the red dots represent the optimal
slip rate values on different runways.

Table 2. Parameters of several types of runways.

Runway c1 c2 c3 c4

Dry asphalt 1.2801 23.99 0.52 0.03
Dry concrete 1.1973 25.168 0.5373 0.03
Wet asphalt 0.857 33.822 0.347 0.03

Snow 0.1946 94.129 0.646 0.03
Ice 0.05 306.39 0 0.03

Figure 8. Different kinds of runway given by Burckhardts.

2.3. Brake Actuator Dynamics

During the braking process, the function of the brake actuator is to convert the current
output by the braking system into the corresponding braking force. During the braking
process, the torque of the brake actuator is applied to the brake device mounted on wheels.
The dynamics of the actuator can be expressed by the following equations:
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Tb = Kωωm
Imω̇m = Ktim − TL
U = Lmim + Rim + Es

(10)

2.4. Overall Dynamics of the Aircraft Anti-Skid Braking Process

For anti-skid braking control, the variable we are most concerned with is the slip rate
of the system, and according to its definition, it is related to the speed of the body and the
linear speed of the braked wheel; so, in order to obtain the slip rate dynamic characteristics,
Equation (6) is substituted into Equations (1) and (3) to calculate V̇x and ω̇. We then obtain

V̇x =
T0 − Fx − Fs

m
− µ(λ, Vx)

m
mgb− Fyb + Fshs − T0ht

a + b + H(λ, Vx)hc
(11)

ω̇w =
−Bωωw + N1Rgµ(λ, Vx)

Iw
− Tb

Iw
(12)

From the above equations, we observe that the aircraft speed Vx is not directly con-
trolled by Tb. However, the wheel slip rate λ can be controlled by Tb, i.e., depending on Vx
and ω. Taking the time derivative of Equation (7), we obtain

λ̇ =
(1− λ)V̇x − Rgω̇w

Vx
(13)

Substituting Equation (12) into Equation (13) yields

λ̇ =
(1− λ)

Vx

(
T0 − Fx − Fs

m
− µ(λ, Vx)

m
mgb− Fyb + Fshs − T0ht

a + b + µ(λ, Vx)hc

)
−

Rg

Vx Iw

(
−Bwωw + N1Rgµ(λ, Vx)− Tb

)
= f (λ) +

Rg

Vx Iw
Tb

(14)

where

f (λ) = 1−λ
Vx

(
T0−Fx−Fs

m − µ(λ,Vx)
m

mgb−Fyb+Fshs−T0ht
a+b+µ(λ,Vx)hc

)
− Rg

Vx Iw

[
−Bwωw + N1Rgµ(λ, Vx)

]
= 1−λ

Vx

{
(T0− ini+ktVx)− 1

2 ρCxSxV2
x− 1

2 ρCsxSsxV2
x

m

− [mgb− 1
2 ρCySyV2

x b+ 1
2 ρCsxSsxV2

x hs−(T0− ini+ktVx)ht]
a+b+µ(λ,Vx)hc

µ(λ,Vx)
m

}
− Rg

Vx Iw

[
−Bwωw + N1Rgµ(λ, Vx)

]
(15)

Therefore, considering the actuator dynamics, the overall aircraft braking model can
be rewritten as

λ̇ = f (λ) + Rg
Vx Iw

Tb
Ṫb = Kωωm

ω̇m = Kt
Im

im − TL
Im

i̇m = − R
L im − Ke

L ωm + U
L

(16)

The aircraft landing braking system has strong nonlinearity and model uncertainty,
which can be seen from the above equation. There are two main sources of nonlinearity
and uncertainty. The first factor is the nonlinear relationship between the wheel slip rate λ
and the longitudinal speed of the wheel ω. In addition, the measurement of the aircraft
speed usually has errors. All of these characteristics make the design of an ABS control law
difficult [28].
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3. Problem Formulation

According to the above formula, we can see that, in order to improve the braking
performance of the aircraft ABS, the anti-skid control system needs to track the optimal
slip rate signal. It is well known that when the system is at the optimum slip rate value,
the bonding force between the tire and the ground is the largest, and the aircraft braking
efficiency is the highest. The optimum slip rate will vary due to changes in runway
conditions, aircraft speed, wheel speed, etc. However, most of the existing ABSs are
designed to track a constant value set in advance based on engineering experience, rather
than the real-time optimal slip rate [28–30]. To simplify the controller design process,
without a loss of generality, the controller design adheres to the following assumptions:

1. The aircraft should maintain a straight taxiing direction.
2. The fuselage and landing gear are ideal rigid bodies. The aircraft fuselage has no

vertical and pitch displacement.
3. The vertical load is evenly distributed, and the friction between the left and right

wheels is symmetrical.

To facilitate the controller design, let x1 = λ, x2 = λ̇ and x3 = vx, i.e., ẋ3 = f (µ, x2)
The expression of aircraft dynamics can then change to the following form:

ẋ1 = x2
ẋ2 = x3
ẋ3 = f (µm, x2)
y = x(t)

(17)

where f (µm, x2) is the derivative of the aircraft longitudinal acceleration, and by neglecting
unmodeled dynamics and external disturbance, System (17) can be rewritten as

x(n)(t) = fn(x(t)) + Gnu(t) (18)

By assuming system external disturbances and modeling errors as functions of state
variables and time [31], System (17) can change into the following form:

x(n)(t) = fn(x(t)) + Gnu(t) + L(x(t), t) (19)

where L(x(t), t) represents system uncertainty and external disturbance.

4. Robust Self-Learning PID (RSPID) Control System Design

According to Equation (19), the design of an anti-skid control system is to find a
suitable algorithm under which the output x(t) of the system can track optimal trajectory
xd(t) closely [32].

In order to design the control algorithm, the tracking error is defined as

e(t) , xd(t)− x(t) ∈ Rm (20)

Therefore, the error vector of the system can be expressed as

E =
[
e(t), ė(t), . . . , e(n−1)(t)

]T
∈ <mn (21)

If the uncertainty of the system and external disturbances can be accurately obtained,
then an ideal controller can be designed as

u∗(t) = G−1
n

[
x(n)d (t)− fn(x(t))− l(x(t), t) + HTe(t)

]
(22)

where H = [Hn, . . . , H2, H1]
T ∈ <mn×m is the feedback gain matrix. We can then obtain a

dynamic system error equation by substituting Equation (21) into Equation (17):

en + HTe = 0 (23)
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If the Hurwitz polynomial is used to generate the corresponding coefficients in the H
matrix, it means that limt→∞ ‖e(t)‖ = 0. However, in the design of the actual controller,
the uncertainty, nonlinearity, and external disturbance of the system are usually unknown
and unpredictable, which makes the ideal controller (22) unobtainable. Therefore, the SPID
controller is adopted to simulate the output of the ideal controller, and a robust controller
based on the H∞ method is then designed to compensate for the track error between the
SPID controller and the ideal controller, thereby improving the robustness of the system.
The RSPID control system is assumed to take the following form:

uRS(t) = uS(t) + uR(t) (24)

where uS(t) is the output of the SPID controller, and uR(t) is the output of the robust
controller designed to suppress the influence of the residual error between the SPID
controller and the ideal controller. The block diagram of the nonlinear control system is
shown in Figure 9.

Figure 9. Block diagram of the nonlinear control system.

4.1. The Design of an SPID Controller

The expression of the SPID controller can be described as

uS(t) = KPe(t) + KI

∫ t

0
e(t)dt + KD

de(t)
dt

(25)

where KP (proportional gain), KI (integral gain), and KD (derivative gain) are the
adaptive tuning parameters of the proposed controller.

The system integrated error function is then defined as

s(e, t) = e(n−1) + H1e(n−2) + · · ·+ Hn

∫ t

0
e(t)dt (26)

where s(e, t) = [s1(t), s2(t), and . . . , sm(t)]
T .

The control law Equation (23) can then be rewritten as

uRS(t) = us(KP, KI , KD, t) + uR(t) (27)
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Taking the time derivative of Equation (26) and using Equation (18) yields

ṡ(e, t) = e(n) + HTe
= − fn(x(t))− Gnu(t) + x(n)d − I(x(t), t) + HTe

(28)

Substituting Equation (25) into Equation (28) and multiplying both sides by sT(e, t) yields

sT(e, t)ṡ(e, t) = −sT(e, t) fn(x(t))− sT(e, t)Gn
[
ûSPID

(
K̂P, K̂I , K̂D, t

)
+ uR(t)

]
+ sT(e, t)

(
x(n)d − l(x(t), t) + HTe

) (29)

By defining 1
2 sT(e, t)s(e, t) as a cost function, its derivative is sT(e, t)ṡ(e, t). According

to the gradient descent method, the gains of KP, KI , and KD are updated by the following
tuning laws:

˙̂kPi = −ηp
∂sT(e, t)ṡ(e, t)

∂uSi (t)
∂uSi (t)

∂k̂Pi
= ηPsi(t)gniei(t) (30)

˙̂kIi = −ηI
∂sT(e, t)ṡ(e, t)

∂uSi (t)
∂uSi (t)

∂k̂Ii
= ηIsi(t)gni

∫ t

0
ei(t)dτ (31)

˙̂kDi = −ηD
∂sT(e, t)ṡ(e, t)

∂uSi (t)
∂uSi (t)

∂k̂Di
= ηDsi(t)gni

dei(t)
dt

(32)

where uSi is the output value of uS at the ith time, and ηP, ηI , and ηD are the learning rates,
which are determined by the PSO algorithm in real time.

4.2. The Design of the Robust Controller

Because of the model uncertainty and outside disturbance, there is always a tracking
error between the output of the controller and the output of the ideal controller, and the
error can be expressed by the following expression:

ε(t) = [ε1(t), ε2(t), . . . , εm(t)]
T ∈ <m (33)

Substituting Equation (24) into Equation (18) yields

x(n)(t) = fn(x(t)) + Gn[uS(t) + uR(t)] + l(x(t), t) (34)

Equation (23) can be converted into the following form:

e(n) + HTe = Gn[u∗(t)− uSPID(t)− uR(t)] = ṡ(e, t) (35)

In case of the existence of ε(t), a specified H∞ tracking performance is considered [33]:

m

∑
i=1

∫ T

0
s2

i (t)dt ≤
m

∑
i=1

[
s2

i (0)/gni

]
+

m

∑
i=1

r2
i

∫ T

0
ε2

i (t)dt (36)

where ri is a prescribed attenuation constant. The robust controller is designed as

uR(t) =
(

2R2
)−1(

R2 + I
)

s(e, t) (37)

where R = diag(r1, r2, . . . , rm) ∈ <m×m.

4.3. The Design of the Particle Swarm Optimization Algorithm

The concept of a PSO algorithm was initially proposed by Kennedy and Eberhart [34]
in 1995, and it has been shown to be effective in solving optimization problems [35].
According to Kennedy and Eberhart, each particle represents a candidate solution to the
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optimization problem. Each particle tracks the optimal solution by moving its position;
acceleration is weighted by a random term where separate random numbers are generated
for acceleration towards the local best and global best positions [36]. In order to achieve a
better learning speed and spare the trial and error process of selecting a suitable learning
rate, the particle swarm optimization (PSO) algorithm is used to track the optimal learning
rates in real time. The flowchart of the PSO used to adjust the learning rate is shown in
Figure 10. In this paper, the particle swarm algorithm is used to find the optimal learning
rate of the PID algorithm; so, we chose the learning rate as the coordinate of the example.
The optimization goal is to track the optimal slip rate of the system. Thus, the fitness
function is constructed using the tracking error between the actual slip rate and the optimal
slip rate. The fitness function was chosen as follows:

f it = 1/(1 + e(t)2) (38)

This means that the fitness value ranges from 0 to 1; the larger the fitness value, the
better the optimization effect.

Figure 10. Flow chart of the particle swarm algorithm for adjusting the learning rate.

The velocity and position update law of particles is adopted as{
Vij(t + 1) = Vij(t) + c1r1

(
Pij − Xij

)
+ c2r2

(
Pgj − Xij

)
Xij(t + 1) = Xij(t) + Vij(t + 1)

(39)

5. Simulation Results and Discussion

In order to verify the control scheme proposed in this paper, this study builds an
aircraft anti-skid brake model on the Matlab/Simulink platform. The model used is shown
in Figure 11.

The simulation model is mainly composed of several submodules: a fuselage dynamics
module, a tire and ground friction module, a controller module, and a brake device module.
The airframe dynamics module is mainly used to simulate the dynamic characteristics of
Equations (1)–(3). Its main input is the braking torque information output by the braking
device, and its main output is the aircraft pitch angle, speed, and other information. The
tire ground friction module mainly simulates the dynamic characteristics of the wheel
described by Equations (6)–(9). Its main input information is aircraft body speed, pitch
angle, and other information, and its output is information such as the ground friction
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force and the system slip rate. The controller module mainly simulates the robust self-
learning algorithm proposed in this paper. The main input variable is the system slip rate,
and the main output is the anti-skid current. The anti-skid current is converted into the
braking torque through the braking device module, and then transmitted to the airframe
dynamics module.

Figure 11. The Simulink model established in this research.

5.1. Model Verification

In order to verify the accuracy of the established model, the simulation results were
compared with the ground test results provided by FAA and NASA. As described in [25],
the FAA and NASA working together conducted extensive runway friction tests with two
instrumented aircraft for a wide variety of runway surface types and conditions. The
controller used in the experiment and simulation was a traditional PBM controller, which is
the most commonly used braking controller in aircraft braking systems. Thus, in this paper,
a PBM controller was also designed. The following results show the simulation results
compared with the ground test results provided by FAA and NASA on three different
runways. Some of the ground test results are given in Table 3. Figure 12 shows the test
track and friction device of the NASA Langley Experiment Center, and the data in Table 3
are the experimental data on the test bench.

Table 3. Some of the brake test data provided by NASA and FAA.

Road
Surface

Vertical
Load Initial Speed Brake

Pressure
Average Slip

Rate

Total
Braking
Energy

Dry 60 54 15.1 0.11 835
Dry 60 74 18.1 0.09 1342
Dry 65 70 13.2 0.12 1342

Damp 120 55 11 0.07 872
Damp 120 76 8.2 0.06 1037
Damp 120 102 7.9 0.05 1104

Flooded 59 53 5.6 0.11 289
Flooded 59 75 3.7 0.33 239
Flooded 78 53 6.2 0.12 533
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(a) (b)

Figure 12. NASA Langley Aircraft Brake Experiment Center and tribosystem schematic diagram.
(a) NASA Langley Aircraft Brake Experiment Center; (b) Aircraft landing tribosystem.

Figures 13–15 are the results of comparisons between the simulation data and
the ground test data on three commonly used runways. The controllers used in the
simulation and the ground test were both PBM controllers. As indicated in the following
figures, the simulation results were basically consistent with the experimental results,
which indicate that the simulation model built in this paper was suitable for the test
of the proposed controller. It is worth mentioning that, though no ice runway results
were provided, we can use the experimental results of the flooded runway, because
the maximum bonding coefficient and friction characteristics of the road surface were
similar to those of the ice runway under the condition of water accumulation.

Figure 13. Comparison of ground test aircraft speed data and simulation aircraft speed data.
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Figure 14. Comparison of ground test wheel speed data and simulation wheel speed data.

Figure 15. Comparison of ground test brake torque and simulation brake torque.

5.2. Simulation Results of the Proposed Controller

In order to verify the performance of the designed controller, a series of simulation
tests was carried out in this study on the basis of the above-mentioned verified model.
The initial parameters of the PSO were as follows: population size PS = 20; acceleration
factor Ac1 = 1; Ac2 = 3.2; Ac3 = 0.5; maximum iteration number Ni = 30. Without a loss
of generality, the test was performed under the harshest runway conditions, i.e., an ice
runway. The simulation results of the proposed controller are as follows.



Mathematics 2022, 10, 1290 15 of 18

Figure 16 shows the simulation results under the conditions of an ice runway. For the
aircraft anti-skid braking control system, the main control goal was to make full use of the
friction between the tire and the ground, improve the braking efficiency, and prevent the
tire from slipping and locking. Therefore, for the aircraft anti-skid system, the variables we
were most concerned about were the speed of the aircraft body, the speed of the wheels,
the slip rate, and the braking torque. From the above simulation results, it can be seen that,
despite the harshest braking environment, the controller still showed good performance. It
can be seen in Figure 16a that, during the entire braking process, there was no deep skid
as shown in Figure 4, nor was there any tire lockup. Because the simulation conditions
represent the most severe conditions in the industry (i.e., ice runways), we believe that,
for the vast majority of logarithmic runway conditions, the controller proposed in this
paper can avoid the problem of deep skid or tire locking during the braking process of
the aircraft. Furthermore, as can be seen in Figure 16b, the controller can quickly adjust
the output braking pressure according to the state of the runway, which means that the
particle swarm optimization algorithm we designed can quickly adjust the PID parameters,
and its performance can meet the real-time requirements of the anti-skid braking system.
Figure 16c depicts that the slip rate of the system can quickly reach 0.12–0.15, which is the
optimal slip rate interval, according to [37].

(a) (b)

(c)

Figure 16. Braking test of the proposed controller on an ice runway. (a) Aircraft velocity and wheel
velocity. (b) Brake torque of the controller. (c) Slip rate of the system.

5.3. Algorithm Robustness Proof and Simulation Verification

The proof of the robustness of the controller (Equation (36)) is as follows:

Theorem 1. Consider the nonlinear systems represented by Equation (15). The RSPID control law
is designed as Equation (26). The desired H∞ tracking performance in Equation (35) can then be
achieved for the specified attenuation levels ri, i = 1, 2, . . . , m.

Proof. The Lyapunov function used in this paper is as follows:

V(s(e, t)) = 1
2 sT(e, t)s(e, t) (40)
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Taking the derivative of Equation (40) yields

V̇(s(e, t)) = sT(e, t)ṡ(e, t)

= sT(e, t)Gn

[
ε(t)−

(
2R2

)−1(
R2 + I

)
s(e, t)

]
=

m

∑
i=1

gni

[
si(t)εi(t)− s2

i (t)
r2

i + 1
2r2

i

]

=
m

∑
i=1

gni

[
si(t)εi(t)−

s2
i (t)
2
−

s2
i (t)
2r2

i

]

=
m

∑
i=1

gni

[
−

s2
i (t)
2
− 1

2

(
si(t)

ri
− riεi(t)

)2

+
r2

i ε2
i (t)
2

]

≤
m

∑
i=1

gni

[
−

s2
i (t)
2

+
r2

i ε2
i (t)
2

]

(41)

Assuming εi(t) ∈ L2[0, T], ∀T ∈ [0, ∞), integrating the above equation from t = 0
to t = T, yields

V(T)−V(0) ≤
m

∑
i=1

gni

[
−1

2

∫ T

0
s2

i (t)(t)dt +
r2

i
2

∫ T

0
ε2

i (t)dt

]
(42)

Because V(T) ≥ 0, Equation (42) implies the following inequality:

1
2

m

∑
i=1

gni

∫ T

0
s2

i (t)dt ≤ V(0) +
1
2

m

∑
i=1

gnir2
i

∫ T

0
ε2

i (t)dt (43)

Considering Equation (40), Equation (43) is equivalent to the following inequality:

m

∑
i=1

∫ T

0
s2

i (t)dt ≤
m

∑
i=1

[
s2

i (0)/gni

]
+

m

∑
i=1

r2
i

∫ T

0
ε2

i (t)dt (44)

Thus, the proof is complete. In addition, to further prove the trace performance,
the closed-loop trajectory of the system under control is drawn as in Figure 17. It can
be seen in Figure 17 that the brake torque converged to the extreme point of ψ(λ) (the
expression of ψ(λ) can be found in [38]), which indicates that, under the control action
of the proposed controller, the braking system converged to an optimal operating point,
despite the existence of model uncertainty and disturbance.

Figure 17. Closed-loop trajectory on ice runways.
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6. Conclusions

The aircraft anti-skid braking system is a very important subsystem, and its perfor-
mance determines the safety of the aircraft landing process to a large extent. In this paper,
a robust self-learning PID algorithm was proposed in order to make full use of the fric-
tion between the tire and the road surface, improve the braking efficiency, and prevent
the tire from deep skidding or locking. The robustness of the controller was proved by
the Lyapunov method. At the same time, in order to verify the overall performance of
the controller in anti-skid control, a simulation model of the aircraft braking process was
established based on MATLAB/Simulink. The model was validated by comparisons with
NASA ground test data.

The final simulation results in Figure 17 show that the designed controller could quickly
adjust the value of the system slip rate to near the optimal value, and there was no deep slippage
or tire locking during the entire anti-skid process, showing favorable control performance.

This paper mainly focused on the dynamic characteristics of fuselage speed, slip rate,
and braking torque in the process of anti-skid braking, but there are many characteristics
worthy of study in anti-skid control, such as the characteristics of servo valves and hydraulic
pipelines. Runway state identification would also be an interesting research direction.
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