
����������
�������

Citation: Saeed, F.; Hussain, M.;

Aboalsamh, H.A. Automatic

Fingerprint Classification Using Deep

Learning Technology (DeepFKTNet).

Mathematics 2022, 10, 1285.

https://doi.org/10.3390/

math10081285

Academic Editors: Florin Leon,

Mircea Hulea and

Marius Gavrilescu

Received: 27 February 2022

Accepted: 6 April 2022

Published: 12 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Automatic Fingerprint Classification Using Deep Learning
Technology (DeepFKTNet)
Fahman Saeed , Muhammad Hussain * and Hatim A. Aboalsamh

Department of Computer Science, King Saud University, Riyadh 11451, Saudi Arabia;
fahmanali@gmail.com (F.S.); hatim@ksu.edu.sa (H.A.A.)
* Correspondence: mhussain@ksu.edu.sa

Abstract: Fingerprints are gaining in popularity, and fingerprint datasets are becoming increasingly
large. They are often captured utilizing a variety of sensors embedded in smart devices such as
mobile phones and personal computers. One of the primary issues with fingerprint recognition
systems is their high processing complexity, which is exacerbated when they are gathered using
several sensors. One way to address this issue is to categorize fingerprints in a database to condense
the search space. Deep learning is effective in designing robust fingerprint classification methods.
However, designing the architecture of a CNN model is a laborious and time-consuming task. We
proposed a technique for automatically determining the architecture of a CNN model adaptive
to fingerprint classification; it automatically determines the number of filters and the layers using
Fukunaga–Koontz transform and the ratio of the between-class scatter to within-class scatter. It helps
to design lightweight CNN models, which are efficient and speed up the fingerprint recognition
process. The method was evaluated two public-domain benchmark datasets FingerPass and FVC2004
benchmark datasets, which contain noisy, low-quality fingerprints obtained using live scan devices
and cross-sensor fingerprints. The designed models outperform the well-known pre-trained models
and the state-of-the-art fingerprint classification techniques.

Keywords: multisensory fingerprint; interoperability; DeepFKTNet; deep learning; classification

MSC: 68T05

1. Introduction

A person can be recognized in security systems by a unique username and password,
but they can be readily stolen [1]. The fingerprint is one of the first imaging modalities
of biometric identification. It is more accurate and less expensive than other biometric
modalities [2,3]. A fingerprint’s surface has ridges and valleys, which do not change during
a lifetime [4]. Fingerprint recognition can be used for authentication or identifying purposes.
In verification, the fingerprint is compared to the templates of a particular subject in the
database, but in identification, the unknown fingerprint is compared to the templates of all
subjects in the database to ascertain the subject’s identity [5]. Fingerprints are gaining in
popularity and their datasets are becoming increasingly large. They are recorded utilizing a
variety of low-cost embedded sensors in smart devices such as smartphones and computers.
The high processing complexity of a fingerprint identification system is one of its primary
drawbacks. One way to address this issue is to categorize fingerprints in a database
to condense the search space. The existing classification methods are effective when
fingerprints are recorded using the same sensor. However, when fingerprints are collected
using various sensors (referred to as cross-sensor or sensor interoperability problem),
classification performance is deteriorated; even verification of the same person’s finger is
degraded [6–8]. While considerable research has been conducted on cross-sensor fingerprint
verification [8–12], there has been no study on cross-sensor fingerprint classification, which
motivates us to work on this topic.

Mathematics 2022, 10, 1285. https://doi.org/10.3390/math10081285 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10081285
https://doi.org/10.3390/math10081285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7319-8340
https://orcid.org/0000-0002-5847-8539
https://orcid.org/0000-0002-8000-5105
https://doi.org/10.3390/math10081285
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10081285?type=check_update&version=2

Mathematics 2022, 10, 1285 2 of 17

Numerous fingerprint categorization systems have been developed, some relying on
non-conventional approaches and others on convolutional neural networks. The references
provide an exhaustive overview of non-CNN methods [13,14]. The success rate of a finger-
print classification approach is highly dependent on the quality of the description of the
discriminating information of a fingerprint. Directional ridge patterns and singularities are
critical distinguishing characteristics of fingerprints, as demonstrated by the techniques
proposed in [15–20], which utilize this information in a variety of ways to classify finger-
prints. Gue et al. [15] employ the amount and kind of core points as fingerprint descriptors,
as well as rule-based categorization, to classify fingerprints. Additionally, this approach
classifies indistinguishable fingerprints using center-to-delta flow and balance arm flow.
Its categorization accuracy is 92.7% on average. Jung and Lee [21] split a fingerprint
into 16 × 16 pixel blocks, compute their representative directions, use Markov models to
identify the core block, and then divide the fingerprint into four areas, each of which is
represented using distributions of ridge directional values. This method has a classification
accuracy of 97.4%. Dorasamy et al. [17] employed a simplified rule-based technique and
two features: directional patterns and singular points for fingerprint description. The
classification accuracy of this scheme is 92.2%. Saeed et al. [18] proposed a modified
histogram of oriented gradients (HOG) fingerprint classification algorithm. The HOG
descriptor’s orientation field computation is not ridge pattern specific. In order to improve
the HOG descriptor’s ability to represent a fingerprint, we compute an orientation field
that is suited to the ridge pattern. This technique achieved an average accuracy of 98.70%
on the noisy fingerprint database FVC2004. Saeed et al. [19] suggested a new approach
for classifying noisy fingerprints from live scan devices using statistical features (mean,
standard deviation, kurtosis and skewness) from dense scale invariant feature transform
(d-SIFT). This method achieved 97.6% accuracy using FVC2004, a noisy, low-quality live
scanned fingerprint database. Sudhir et al. [22] employed GLCM, LBP, and SURF for feature
extraction, while SVM and BoF classifiers were used for classification. Based on FVC2004,
they got average accuracy of 74.50 using SVM and 84.75 using BoF.

Deep CNN has shown remarkable results in many applications [23–26]; it has been
used to classify fingerprints [27–32] and has achieved encouraging results. Zia et al. [33]
introduced the Bayesian DCNNs (B-DCNNs) by incorporating Bayesian model uncertainty
to increase fingerprint categorization accuracy. They achieved 95.3% accuracy on FVC004
(5 class), showing a 0.8–1.0% improvement in model accuracy compared to the baseline
DCNN. In Nguyen et al. [34], the CNN approach is suggested for the noise reduction
stage of noisy fingerprint. Two main steps are involved in this procedure. Non-local
information is used to construct a pre-processing phase for noisy image. Fingerprints are
then separated into patches and utilized for CNN training, resulting in a model for CNN
de-noising of future noisy images, which can subsequently be smoothed using Gaussian
filtering to remove pixel artifacts. Fingerprints that have been pre-processed are separated
into overlapping patches during the CNN training step. To train the convolutional neural
network, they feed these patches into it. They’ve built a three-tiered network with distinct
filters and operators at each level. Third layer convolutional layer predicts enhancing
patches and reconstructs the output image. Using the Gaussian algorithm and a canny
algorithm they strength the information edge, this approach is able to filter out noise.
When all images have been processed by the morphological procedure, the result will
be improved. They extracted features from pre-processed fingerprints (arch, loop and
whorl) and classified them using for classifiers: random forest, SVM, CNN, and K-NN and
obtained accuracies of 97.78%, 95.83%, 96.11%, and 92.05%, respectively.

Nahar et al. [35] designed CNN models based on the LeNet-5 design for fingerprint
classification. They evaluated their method using the augmented subset (DB1) from the
FVC2004 dataset. They got an accuracy of 99.1%. In deep models, layers and filters are
defined by experiments, and no special rule is used to choose them; tuning the hyper-
parameters is tiring and time-consuming. Motivated by the difficulty in the design of
CNN architectures, we propose a technique that determines automatically and adaptively

Mathematics 2022, 10, 1285 3 of 17

the architecture of a CNN model using the fingerprints dataset. To begin, we use the
LGDBP description Saeed, et al. [36] and K-medoid clustering algorithm [37] to choose
representative fingerprints, and then we derive the layers filters using Fukunaga–Koontz
Transform (FKT) [38]. To control the depth of a CNN model, we compute the ratio between
traces of between-class scatter matrix Sb and within-class scatter matrix Sw.

The proposed fingerprint CNN classification system was evaluated against the state-
of-the-art fingerprint classification schemes utilizing the benchmark multi-sensor datasets
FingerPass and FVC2004. Specifically, the contributions of this work are as follows:

• We developed an efficient automatic method for classifying cross-sensor fingerprints
based on a CNN model.

• We proposed a technique for the custom-designed building of a CNN model, which
automatically determines the architecture of the model using the class discriminative
information from fingerprints. The layers and their respective filters of an adaptive
CNN model are customized using FKT, and the ratio of the traces of the between-class
scatter matrix, and the within-class scatter matrix.

• We thoroughly evaluated the proposed method on two datasets. The proposed finger-
print classification scheme is quick, accurate, and performs well with noisy fingerprints
obtained using live scan devices as well as cross-sensor fingerprints.

The rest of the paper is organized as follows. Section 2 presents the details of the
proposed technique. The experimental results have been given in Section 3. Section 4
discusses the performance of the proposed method in detail. Section 5 concludes the article.

2. Proposed Method

The convolutional neural network (CNN) is one of the most widely used and popular
deep learning networks [39]. Its general structure comprises different types of layers,
including the CONV layer with different filters, pooling layer, activation function layer,
fully connected layer, and loss function [40]. It has been used for a wide range of tasks,
including image and video recognition [41], classification of images [42], medical image
analysis [43], computer vision [44], and natural language processing [45].

Many advancements in CNN learning methods and architecture have a place, allow-
ing the network to handle larger, diverse, more complicated, and multiclass issues [46].
Following AlexNet’s outstanding performance on the ImageNet dataset in 2012, many
applications used CNNs [47]. A layer-wise representation of CNN reversed the trend
toward extraction of features at low spatial resolution in deep architecture, as achieved in
VGG [48]. Most modern architectures follow VGG’s simple and homogeneous topology
idea. The Google deep learning group introduced the divide, transform, and merge concept
with the inception block. The inception block introduced the concept of branching within
a layer, allowing for feature abstraction at various spatial scales [49]. Skip connections,
developed by ResNet [50] for deep CNN training, gained popularity in 2015. Others, like
Wide ResNet, are exploring the influence of multilevel transformations on CNN’s learning
capacity by increasing cardinality or widening the network [51]. So, the research turned
from parameter optimization to network architecture design. Thus, new architectural
concepts like channel boosting, spatial and feature-map exploitation, and attention-based
information processing emerged [52]. The main issue in the design of CNN models is to
tune the architecture of CNN for a specific application.

2.1. Problem Formulation

The fingerprints are categorized into four types: arch, left loop, right loop, and whorl.
Identifying the type of a fingerprint is a multiclass classification problem. Let there be N sub-
jects, and K fingerprints are captured from each subject with M different sensors; these fin-
gerprints are categorized into C classes. Let F =

{
F s

ij

∣∣∣1 ≤ i ≤ K, 1 ≤ j ≤ N, 1 ≤ s ≤ M
}

,
where F s

ij represents the ith fingerprint of the jth subject captured with sth sensor, be the
set of fingerprints, and C ={1, 2, . . . , C}, where C is the number of classes, be the set of

Mathematics 2022, 10, 1285 4 of 17

fingerprint labels (classes). The problem of predicting the type of a fingerprint F s
ij is to

build a function ψ : F → C that takes a fingerprint F s
ij ∈ F and assigns it a label c ∈ C, i.e.,

ψ
(

F s
ij; θ

)
= c, where θ are the parameters. We design the function ψ using a CNN model,

in this case θ represents the weights and biases of the model. The model is built adaptively.
Its design process is shown in Figure 1, and the detail is given in the rest of the section.

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 18

Figure 1. Design procedure of DeepFKTNet; (a) design of main DeepFKTNet architecture and (b)

addition of global pooling and softmax layers and fine‐tuning the model.

2.2.1. Selection of Representative Fingerprints

We extract discriminative information from fingerprints to specify the CONV layers

and the depth of a CNN model adaptively. To do this, we cluster the training set to iden‐

tify the most representative fingerprints of each class. For determining the representative

fingerprints, discriminative features from fingerprints are extracted using the LGDBP de‐

scriptor [36] K‐medoids [37] is used for clustering since it selects the instances as cluster

centers and is suitable for finding the representative subset of the training set. The finger‐

prints corresponding to the cluster centers are chosen as the representative subset. The

number of clusters for each class in the K‐medoids algorithm is specified using the silhou‐

ette analysis [54]. Using this procedure, we select the set X = {X1, X2, …, XC}, where Xi =

{RFj, j = 1, 2, 3, …, ni} is the set of representative fingerprints of ith class.

2.2.2. Design of the Main DeepFKTNet Architecture

The architectures of the state‐of‐the‐art CNN models are usually not drawn from the

data and are fixed and highly complex. On the contrary, we define a data‐dependent ar‐

chitecture of DeepFKTNet. Its primary architecture is based on the answers to two ques‐

tions: (i) how many CONV layers should be in the model and (ii) how many filters must

be in each layer. These questions are addressed by an iterative algorithm that computes

the number of filters in a CONV layer, adds it iteratively to the model, and terminates

when a criterion is satisfied. We use the discriminative structural information embedded

in fingerprints to determine the number of filters in a CONV layer and their initialization.

Figure 1. Design procedure of DeepFKTNet; (a) design of main DeepFKTNet architecture and
(b) addition of global pooling and softmax layers and fine-tuning the model.

2.2. Adaptive CNN Model

The main constituent of a CNN model is a convolutional (CONV) layer. It extracts
discriminative features from the input signal, applying convolution operation with filters
of fixed size. CONV layers are stacked in a CNN model to extract a hierarchy of features.
The number of filters in each CONV layer and the number of CONV layers in a CNN
model are hyper-parameters, and finding the best configuration of a model for a specific
application is a hard optimization problem; it entails the search of huge parameter space.
In addition, the initialization of learnable parameters of a CNN model has a significant
effect on the performance of the model when it is trained with an iterative optimization
algorithm like Adam optimizer. Leveraging the discriminative content of fingerprints, we
propose a simple method to find the best configuration of the model adaptively. Initially,
we select the representative fingerprints from each type to guide the design process of a
CNN model. The discriminative information in these fingerprints is used to determine the
width (the number of filters) of each CONV layer and the depth (the number of CONV
layers) of the model; it is also used for data-dependent initialization of the filters of CONV

Mathematics 2022, 10, 1285 5 of 17

layers. An overview of the design process is shown in Figure 1. We employ clustering to
select the representative fingerprints, the Fukunaga–Koontz Transform (FKT) [38], which
exploits class-discriminative information, to determine the number of filters in a CONV
layer, and the ratio of the between-class scatter matrix Sb to the within-class scatter matrix
Sw to adjust the depth (i.e., the number of CONV layers) of the CNN model. Finally,
to minimize the number of learnable parameters and avoid overfitting, global pooling
layers are introduced. By decreasing the resolution of the feature maps, the pooling layer
seeks to achieve shift-invariance, and the pooling layer’s feature map is linked directly to
SoftMax [53]. The design process is worked out in detail and discussed in the following
subsections, and its overview is shown in Figure 1.

2.2.1. Selection of Representative Fingerprints

We extract discriminative information from fingerprints to specify the CONV lay-
ers and the depth of a CNN model adaptively. To do this, we cluster the training set
to identify the most representative fingerprints of each class. For determining the repre-
sentative fingerprints, discriminative features from fingerprints are extracted using the
LGDBP descriptor [36] K-medoids [37] is used for clustering since it selects the instances as
cluster centers and is suitable for finding the representative subset of the training set. The
fingerprints corresponding to the cluster centers are chosen as the representative subset.
The number of clusters for each class in the K-medoids algorithm is specified using the
silhouette analysis [54]. Using this procedure, we select the set X = {X1, X2, . . . , XC}, where
Xi = {RFj, j = 1, 2, 3, . . . , ni} is the set of representative fingerprints of ith class.

2.2.2. Design of the Main DeepFKTNet Architecture

The architectures of the state-of-the-art CNN models are usually not drawn from
the data and are fixed and highly complex. On the contrary, we define a data-dependent
architecture of DeepFKTNet. Its primary architecture is based on the answers to two
questions: (i) how many CONV layers should be in the model and (ii) how many filters must
be in each layer. These questions are addressed by an iterative algorithm that computes
the number of filters in a CONV layer, adds it iteratively to the model, and terminates
when a criterion is satisfied. We use the discriminative structural information embedded
in fingerprints to determine the number of filters in a CONV layer and their initialization.
The detail is given in Algorithm 1. We discuss the algorithm with motivation in the
following paragraphs.

Initially, the set X = {X1, X2, . . . , XC} is used to determine the number of filters of the
first CONV layer and initialize them. Inspired by the filter size of the first CONV layer in
the state-of-the-art CNN models like ResNet [50], DenseNet [55], and Inception [49], we
fixed the size of filter size of the first layer to 7 × 7. We extract patches of size w × h from
the representative fingerprints (steps 2–3 of Algorithm 1) and formulate the problem of
determining the filters (fi, i = 1, 2, . . . N) as finding the optimal projection direction vectors
ui, i = 1,2, . . . d, which are determined by solving the following optimization problem:

U∗ = arg max
U

tr
(
UTSbU

)
tr(UTSwU)

(1)

where Sb and Sw are the between-class and within-class scatter matrices (as computed
in step 4 of the Algorithm 1). According to Fukunaga Koontz Discriminant Analysis
(FKT) [38], the optimal projection direction vectors ui are the eigenvectors of Ŝb i.e.,

Ŝbu = λu (2)

where Ŝb = PTSbP, P = QD−1/2 and Q & D are obtained by the diagonalization of the sum
Sb + Sw i.e., Sb + Sw = QDQT (steps 5–6 of Algorithm 1). The Equation (2) gives the optimal
vectors, which simultaneously maximize tr

(
UTSbU

)
and minimize tr

(
UTSwU

)
. Unlike

Linear Discriminant Analysis (LDA) [56], the inversion of Sw is not needed in this approach,

Mathematics 2022, 10, 1285 6 of 17

so it can tackle very high-dimensional data. Additionally, this approach seeks to find
optimal vectors that are orthogonal. As the dimension of the patch vectors bi related to the
intermediate CONV layers is usually very high, and we need filters that are independent,
so this approach is suitable for our design process. The problem of selecting the number of
filters in the convolutional layer is to select the eigenvectors uk, k = 1, 2, . . . L so that the
ratio γk = Trace(SFb)

Trace (SFw)
attains maximum value. Here the between-class scatter matrix SFb

and within-class matrix SFw are computed for each uk by projecting all activations ai
j in the

space spanned by uk (steps 7–8 of the Algorithm 1). It ensures to select the filters which
extract discriminative features. After selecting uk, k = 1, 2, . . . L, the CONV block with L
filters fk, k = 1, 2, . . . , L initialized with uk is introduced in DeepFKTNet. Then, a pooling
layer is added if needed (step 8–10 of the Algorithm 1).

Using the current architecture of DeepFKTNet, the set of activations Z = {Z1, Z2, . . . , ZC}
of X = {X1, X2, . . . , XC} is computed. These activations are used to determine whether to add

more layers to the net. It is decided by calculating the trace ratio TR =
Trace(S′b)
Trace (S′w)

, where S′b
and S′w are the between-class and within-class scatter matrices of the activations Z. If TR is
greater than the previous TR (PTR), it means that the addition of the current block of layers
introduced the discriminative potential to the network. This criterion ensures that the features
generated by DeepFKTNet have large inter-class variation and small intra-class scatter. To add
another CONV block, the steps 3–10 are repeated with Z. To reduce the size of feature maps for
computational effectiveness, pooling layers are added after the first and second CONV blocks.
As the kernels and their number are determined from the fingerprint images, each layer can
have a different number of filters.

It is to be noted that the eigenvector uk, which are used to specify the kernels of a
CONV layer, have the maximum γk and capture most of the variability in input fingerprint
images without redundancy in the form of independent features. The depth of a CNN
model (number of layers) and the number of kernels for each layer are important factors
that determine the model complexity. Step 7 of Algorithm 1 determines the best kernels that
ensure the preservation of maximum energy of the input image, and step 8 initializes these
kernels to be suitable for the fingerprint domain. The selected kernels extract the features
from fingerprint images so that the variability of the structures in fingerprint images is
maximality preserved. It is also important that the features must be discriminative (i.e.,
have large inter-class variance and small intra-class scatter as we go deeper in the network).
It is ensured using the trace ration TR = Trace(Sb)

Trace (Sw)
, the larger the value of the trace ratio,

the larger the inter-class variance and the smaller the intra-class scatter [57]. Step 11 in
Algorithm 1 allows adding CONV layers as long as TR is increasing and determines the
data-dependent depth of DeepFKTNet, as shown in Figure 2.

Mathematics 2022, 10, 1285 7 of 17

Algorithm 1: Design of the main DeepFKTNet Architecture

Input: The set X = {X1, X2, . . . , XC}, where Xi = {RFj, j = 1, 2, 3, . . . , ni} is the set of representative fingerprints of ith class.
Output: The main DeepFKTNet Architecture.

Step 1:
Initialize DeepFKTNet with input layer and set w = 7, h = 7, d = 1, and m (the number of filters) = 0 for the first layer;
PTR (previous TR) = 0.

Step 2: For i = 1, 2, 3, . . . , C
Compute Zi = {ai

j = RFj, for each RFj ∈ Xi

}
Step 3: For i = 1, 2, 3, . . . , C

Ai = ∅
For each ai

j ∈ Zi

Extract patches pj
1, pj

2, . . . , pj
m of size w × h with stride 1 from ai

j, vectorize them
into vectors of dimension D = w× h× d and append to Ai.

Step 4: Using A = [A1, A2, . . . , AC], compute

-between-class scatter matrix Sb =
C
∑

i=1
(1

ni
Ai Ji − 1

n AJ)(1
ni

Ai Ji − 1
n AJ)

T
, where Ji is an ni × ni matrix with all ones.

-within-class scatter matrices Sw =
C
∑

i=1
(Ai − 1

ni
Ai Ji)(Ai − 1

ni
Ai Ji)

T

Step 5: Diagonalize the sum ∑ = Sb + Sw i.e., ∑ = QDQT and transform the scatter matrices
using the transform matrix P = QD−

1
2 . i.e., Ŝb = PTSbP, Ŝw = PTSwP.

Step 6: Compute eigenvectors uk, k = 1, 2, . . . , D of Ŝb such that Ŝbu = λu
Step 7: For each eigenvector uk, k = 1, 2, . . . , D

-Reshape uk to a filter fk of size w× h× d
-Compute Y = {Y1, Y2, . . . , YC}, where Yi =

{
fk ∗ ai

j, j = 1, 2, . . . , ni

}
-Compute the between scatter matrix SFb and within scatter matrix SFw from Y.
-Compute the trace ratio γk = Trace(SFb)

Trace (SFw)

Step 8: Select L filters fk, k = 1, 2, . . . , L corresponding to γk > 0 (as shown in Figure 2 for layer 1).
Step 9: Add the CONV block to DeepFKTNet with filters fk, k = 1, 2, . . . , L. Update m = m + 1.
Step 10: If m = 1 or 2, add a max pool layer with pooling operation of size 2 × 2 and stride 2 to

Deep FKTNet.
Step 11: Compute Z = {Z1, Z2, . . . , ZC}, where Zi = {ai

j = DeepFKTNet(RFj), for each RFj ∈ Xi

}
Step 12: Using Z = {Z1, Z2, . . . , ZC}, compute the ratio TR =

Trace(S′b)
Trace (S′w)

If PTR ≤ TR, set PTR = TR, w = 3, h = 3, d = L and go to Step 3, otherwise stop.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 18

Figure 2. Selection of best filters for layer1 of DeepFKTNet model for FingerPass dataset.

It is to be noted that the eigenvector 𝑢𝑘, which are used to specify the kernels of a

CONV layer, have the maximum 𝛾𝑘 and capture most of the variability in input finger-

print images without redundancy in the form of independent features. The depth of a

CNN model (number of layers) and the number of kernels for each layer are important

factors that determine the model complexity. Step 7 of Algorithm 1 determines the best

kernels that ensure the preservation of maximum energy of the input image, and step 8

initializes these kernels to be suitable for the fingerprint domain. The selected kernels ex-

tract the features from fingerprint images so that the variability of the structures in finger-

print images is maximality preserved. It is also important that the features must be dis-

criminative (i.e., have large inter-class variance and small intra-class scatter as we go

deeper in the network). It is ensured using the trace ration 𝑇𝑅 =
𝑇𝑟𝑎𝑐𝑒(𝑆𝑏)

𝑇𝑟𝑎𝑐𝑒 (𝑆𝑤)
, the larger the

value of the trace ratio, the larger the inter-class variance and the smaller the intra-class

scatter [57]. Step 11 in Algorithm 1 allows adding CONV layers as long as TR is increasing

and determines the data-dependent depth of DeepFKTNet.

2.2. Problem Formulation

The fingerprints are categorized into four types: arch, left loop, right loop, and whorl.

Identifying the type of a fingerprint is a multiclass classification problem. Let there be N

subjects, and K fingerprints are captured from each subject with M different sensors; these

fingerprints are categorized into C classes. Let ℱ = {𝐹 𝑖𝑗
𝑠 |1 ≤ 𝑖 ≤ 𝐾, 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑠 ≤

𝑀}, where 𝐹 𝑖𝑗
𝑠 represents the ith fingerprint of the jth subject captured with sth sensor,

be the set of fingerprints, and ℂ ={1, 2, …, C}, where C is the number of classes, be the set

of fingerprint labels (classes). The problem of predicting the type of a fingerprint 𝐹 𝑖𝑗
𝑠 is

to build a function 𝜓: ℱ→ℂ that takes a fingerprint 𝐹 𝑖𝑗
𝑠 ∈ ℱ and assigns it a label c ∈ ℂ,

i.e., 𝜓(𝐹 𝑖𝑗
𝑠 ; ) = 𝑐, where  are the parameters. We design the function 𝜓 using a CNN

model, in this case  represents the weights and biases of the model. The model is built

adaptively. Its design process is shown in Figure 1, and the detail is given in the rest of

the section.

2.3. Addition of Global Pool and Softmax Layers

Activation of the last CONV block is with dimension h × w × L, and after flattening,

it is fed to FC layers; the number of parameters is huge and leads to overfitting. To reduce

the number of parameters and spatial dimensions of the last CONV block activation, we

feed it to global average pooling (GAP) and global max-pooling (GMP) layers [58]. The

Figure 2. Selection of best filters for layer1 of DeepFKTNet model for FingerPass dataset.

2.3. Addition of Global Pool and Softmax Layers

Activation of the last CONV block is with dimension h × w × L, and after flattening,
it is fed to FC layers; the number of parameters is huge and leads to overfitting. To reduce
the number of parameters and spatial dimensions of the last CONV block activation, we

Mathematics 2022, 10, 1285 8 of 17

feed it to global average pooling (GAP) and global max-pooling (GMP) layers [58]. The
GAP average all the hw values, whereas the GMP takes into account the contributions of
the neurons of maximum response; the number of neurons in the FC layer is h × w × L,
and it is reduced to 1 × 1 × L when only GMP or GAP is introduced. We concatenate the
output of GMP and GAP layers to overcome the shortcoming of each and then feed it to
the FC layer, followed by the SoftMax layer.

2.4. Fine-Tuning the Model

The DeepFKTNet model is evaluated using the challenge multisensory FingerPass
dataset [59], and it is compared to the well-known deep models: ResNet [50] and DenseNet [55]
pre-trained on the ImageNet dataset and fine-tuned using the same dataset as DeepFKTNet.
For further validation, we evaluated our method using the challenge FVC2004 dataset [60] and
compared it to the state-of-the-art methods. For each dataset, we select the most representative
fingerprint images from the training set using K-medoids and LGDBP descriptor and then
built its adaptive DeepFKTNet architecture using Algorithm 1.

2.4.1. Datasets and the Adaptive Architectures

To verify the performance of the DeepFKTNet model on benchmark datasets, we used
FingerPass and FVC2004 datasets. The FingerPass is a multi-sensor dataset; it was collected
using nine different optical and capacitive sensors and two interaction types, i.e., press
and sweep. The FingerPass contains a total of fingers separated into nine subsets based on
sensors; each subset contains 12 impressions of 8 fingers from 90 persons.

FVC2004 dataset contains noisy images acquired by live scan devices. It has 4 sets: DB1
collected using optical V300 sensor, DB2 collected using optical U 4000, DB3 collected using
thermal sweeping sensor, and DB4 is a synthetic fingerprint dataset. Each one contains
880 fingerprint images [60]. We categorized FVC2004 fingerprints into four categories: arch,
left loop, right loop, and whorl. We merge the 4 sets of FVC2004 into one set of four classes;
it is now a multi-sensor fingerprint dataset.

To setup best parameters for each DeepFKTNet model, the hyperparameter opti-
mization software framework Optuna [61] is used to select the best hyperparameters for
fine-tuning the DeepFKTNet model. Using Algorithms 1, the DeepFKTNet architecture
obtained for the FVC2004 dataset consists of 5 CONV blocks, as shown in Figure 3a,
whereas the architecture constructed for the FingerPass dataset has11 blocks, as depicted
in Figure 3b. The number of filters for each CONV block and the depth of each model for
each fingerprint dataset are determined using Algorithm 1. Using the Optuna optimization
algorithm, we fine-tuned the hyperparameters and tested three optimizers (Adam, SGD,
and RMSprop), learning rate between 1 × 10−1, and 1 × 10−5, patch size (5, 10, 15, 20,
30, 50), activation functions (Relu, LRelu, and Sigmoid), and dropout between 0.25 and
0.50. After training for 10 epochs, the best hyper-parameters for each dataset are shown
in Table 1.

Table 1. The optimized hyperparameters using Optuna algorithm.

Dataset Activate
Function

Learning
Rate Pach’s Size Optimizer Dropout

FingerPass Relu 0.0005 16 RMSprop 0.45
FVC2004 Relu 0.0008 10 RMSprop 0.38

Mathematics 2022, 10, 1285 9 of 17Mathematics 2022, 10, x FOR PEER REVIEW 9 of 18

Figure 3. (a) FVC2004 FKTNET architecture. (b) Fingerprint FKTNET architecture.

2.4.2. Evaluation Procedure

For evaluation, we manually separated the FingerPass dataset into four classes (arch,

left loop, right loop, and whorl). We divided the FingerPass dataset into three sets (80%

training, 10% validation, and 10% testing) using two different scenarios. In scenario-1, the

fingers from each sensor were divided into training, validation, and test sets. In scenario-

2, fingers in the training, validation, and test sets are from different sensors.

For the FVC2004 dataset, we divided the dataset into training (80%), validation (10%),

and testing (10%), keeping the balance. For performance evaluation, we used four com-

monly used metrics: accuracy (ACC), true positive rate (TPR), true negative rate (TNR),

and Kappa [62-65]. The overall average of metrics has been computed. The used metrics

[66,67] to evaluate the proposed system are:

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4)

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5)

𝐾𝑎𝑝𝑝𝑎 =
𝑃0 − 𝑃𝑒

1 − 𝑃𝑒

 (6)

where TP, TN, FP, and FN are the numbers are true positives, true negatives, false posi-

tives, and false negatives; PO and PE are calculated from the confusion matrix; the detail is

given in [68]. To compute TP, TN, FP, and FN, one class, in turn, is taken as positive, the

other classes are assumed to be negative, and the TPR and TNR are calculated. Finally,

mean TPR and TNR are calculated by averaging TPR and TNR over all classes. In the

results, the mean TPR and TNR are reported.

3. Experimental Results

This section presents the experimental results of the DeepFKTNet models designed

for the two datasets.

We designed the DeepFKTNet model for each dataset and fine-tuned it using the

training sets. We validated its performance on FingerPass and FVC2004 datasets and com-

pared it with the widely used CNN models ResNet [50] and DenseNet [55], which were

LRelu

Batch
normalization

3x3 conv

CONV block

So
ft

m
ax

 l
ay

er

cl
as

si
fi

ca
ti

o
n

In
p

u
t

C
o

n
v

b
lo

ck
 1

C
o

n
v

b
lo

ck
 2

C
o

n
v

b
lo

ck
 3

C
o

n
v

b
lo

ck
 4

C
o

n
v

b
lo

ck
 1

0

M
ax

 B
o

o
lin

g

M
ax

 B
o

o
lin

g

7
 x

 7
 c

o
n

v

(a
)

So
ft

m
ax

 l
ay

er

C
la

ss
if

ic
at

io
n

In
p

u
t

C
o

n
v

b
lo

ck
 1

C
o

n
v

b
lo

ck
 2

C
o

n
v

b
lo

ck
 3

C
o

n
v

b
lo

ck
 4

M
ax

 B
o

o
lin

g

M
ax

 B
o

o
lin

g

7
 x

 7
 c

o
n

v

(b
)

(a
)

(b
)

24 12 92 46 23 11 90 45 22 11 11

25 12 95 47 23

C
o

n
v

b
lo

ck
 5

C
o

n
v

b
lo

ck
 6

C
o

n
v

b
lo

ck
 7

C
o

n
v

b
lo

ck
 8

C
o

n
v

b
lo

ck
 9

Figure 3. (a) FVC2004 FKTNET architecture. (b) Fingerprint FKTNET architecture.

2.4.2. Evaluation Procedure

For evaluation, we manually separated the FingerPass dataset into four classes (arch,
left loop, right loop, and whorl). We divided the FingerPass dataset into three sets (80%
training, 10% validation, and 10% testing) using two different scenarios. In scenario-1, the
fingers from each sensor were divided into training, validation, and test sets. In scenario-2,
fingers in the training, validation, and test sets are from different sensors.

For the FVC2004 dataset, we divided the dataset into training (80%), validation (10%),
and testing (10%), keeping the balance. For performance evaluation, we used four com-
monly used metrics: accuracy (ACC), true positive rate (TPR), true negative rate (TNR), and
Kappa [62–65]. The overall average of metrics has been computed. The used metrics [66,67]
to evaluate the proposed system are:

ACC =
TP + TN

TP + FP + TN + FN
(3)

TPR =
TP

TP + FN
(4)

TNR =
TN

TN + FP
(5)

Kappa =
P0 − Pe

1− Pe
(6)

where TP, TN, FP, and FN are the numbers are true positives, true negatives, false positives,
and false negatives; P0 and Pe are calculated from the confusion matrix; the detail is given
in [68]. To compute TP, TN, FP, and FN, one class, in turn, is taken as positive, the other
classes are assumed to be negative, and the TPR and TNR are calculated. Finally, mean
TPR and TNR are calculated by averaging TPR and TNR over all classes. In the results, the
mean TPR and TNR are reported.

3. Experimental Results

This section presents the experimental results of the DeepFKTNet models designed
for the two datasets.

We designed the DeepFKTNet model for each dataset and fine-tuned it using the
training sets. We validated its performance on FingerPass and FVC2004 datasets and
compared it with the widely used CNN models ResNet [50] and DenseNet [55], which were
pre-trained on the ImageNet dataset and fine-tuned on the same training set that was used
for the DeepFKTNet model. In the rest of the paper, we name the DeepFKTNet models as

Mathematics 2022, 10, 1285 10 of 17

DeepFKTNet-11 and DeepFKTNet-5, designed for the FingerPass and the FV2004 datasets,
respectively.

The results of the three models DeepFKTNet-11, ResNet152, and DenseNet121 for
scenario-1 are shown in Figure 4a and Table 2a. The DeepFKTNet-11 model generated
adaptively on the FingerPass dataset outperforms the state-of-the-art ResNet152 and
DenseNet121 models in terms of all metrics. Though DenseNet121 is not better than
DeepFKTNet-11, it outperforms ResNet152 in terms of all metrics. Figure 4b and Table 2b
show the results for scenario-2 on the FingerPass dataset. In this scenario, the results
obtained with the DeepFKTNet-11 are almost similar to those obtained in scenario-1. The
DeepFKTNet-11 outperforms ResNet152 and DenseNet121. Figure 5 illustrates the con-
fusion matrices for both scenarios. These give insights into the system performance for
different classes.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 18

pre-trained on the ImageNet dataset and fine-tuned on the same training set that was used

for the DeepFKTNet model. In the rest of the paper, we name the DeepFKTNet models as

DeepFKTNet-11 and DeepFKTNet-5, designed for the FingerPass and the FV2004 da-

tasets, respectively.

The results of the three models DeepFKTNet-11, ResNet152, and DenseNet121 for

scenario-1 are shown in Figure 4a and Table 2a. The DeepFKTNet-11 model generated

adaptively on the FingerPass dataset outperforms the state-of-the-art ResNet152 and

DenseNet121 models in terms of all metrics. Though DenseNet121 is not better than Deep-

FKTNet-11, it outperforms ResNet152 in terms of all metrics. Figure 4b and Table 2b show

the results for scenario-2 on the FingerPass dataset. In this scenario, the results obtained

with the DeepFKTNet-11 are almost similar to those obtained in scenario-1. The Deep-

FKTNet-11 outperforms ResNet152 and DenseNet121. Figure 5 illustrates the confusion

matrices for both scenarios. These give insights into the system performance for different

classes.

Figure 4. Comparison between FKTNET-11 and pre-trained ResNet-152 and DensNet-121 on Fin-

gerprint dataset (4 classes) using scenario 1 (a) and scenario 2 (b).

Table 2. Comparison between FKTNET-11 and pre-trained ResNet-152 and DensNet-121 on Finger-

print dataset scenario 1 (a) and scenario 2 (b).

(a)
 ACC% SE% SP% AUC% Kappa%

FKTNet-11 97.84 93.25 98.28 95.21 93.05

ResNet152 91.22 78.22 92.05 86.11 80.32

DensNet121 93.55 80.22 94.44 87.55 82.11

(b)
 ACC% SE% SP% AUC% Kappa%

FKTNet-11 98.9 93.6 98.5 96.12 93.93

ResNet152 92.22 80.22 93.05 86.5 81.62

DensNet121 94.85 84.22 96.12 90.21 84.55

Figure 4. Comparison between FKTNET-11 and pre-trained ResNet-152 and DensNet-121 on Finger-
print dataset (4 classes) using scenario 1 (a) and scenario 2 (b).

Table 2. Comparison between FKTNET-11 and pre-trained ResNet-152 and DensNet-121 on Finger-
print dataset scenario 1 (a) and scenario 2 (b).

(a)

ACC% SE% SP% AUC% Kappa%

FKTNet-11 97.84 93.25 98.28 95.21 93.05
ResNet152 91.22 78.22 92.05 86.11 80.32

DensNet121 93.55 80.22 94.44 87.55 82.11

(b)

ACC% SE% SP% AUC% Kappa%

FKTNet-11 98.9 93.6 98.5 96.12 93.93
ResNet152 92.22 80.22 93.05 86.5 81.62

DensNet121 94.85 84.22 96.12 90.21 84.55

Mathematics 2022, 10, 1285 11 of 17Mathematics 2022, 10, x FOR PEER REVIEW 11 of 18

Figure 5. Confusion matrix based on FKTNET-11 model for scenario 1 and scenario 2.

The DeepFKTNet-5 model was adaptively designed for the challenge FVC2004 da-

taset; it was evaluated using the above evaluation procedure. We fine-tuned the devel-

oped DeepFKTNet-5 model and the pre-trained models ResNet152 and DenseNet121 us-

ing the same dataset. The results are shown in Figure 6; the DeepFKTNet-5 model outper-

forms the state-of-the-art ResNet152 and DenseNet121 models in terms of all metrics. Fig-

ure 7 illustrates the confusion matrices for the FVC2004 dataset. These give insights into

the system performance for different classes.

Figure 6. Comparison between FKTNET-5 and pre-trained ResNet-152 and DensNet-121 on

FV

C

2004 dataset (four classes).

Figure 7. Confusion matrix based on FKTNET-5 model for FVC2004 dataset.

4. Discussions

We addressed the multi-sensor fingerprint classification problem and proposed a

novel method for automatically generating a custom-designed DeepFKTNet model from

the target fingerprint dataset. The number of layers and filters for each layer are not spec-

60

70

80

90

100

ACC SE SP Kappa

FVC2004

FKTNet-5 ResNet152 DensNet121

Figure 5. Confusion matrix based on FKTNET-11 model for scenario 1 and scenario 2.

The DeepFKTNet-5 model was adaptively designed for the challenge FVC2004 dataset;
it was evaluated using the above evaluation procedure. We fine-tuned the developed
DeepFKTNet-5 model and the pre-trained models ResNet152 and DenseNet121 using the
same dataset. The results are shown in Figure 6; the DeepFKTNet-5 model outperforms
the state-of-the-art ResNet152 and DenseNet121 models in terms of all metrics. Figure 7
illustrates the confusion matrices for the FVC2004 dataset. These give insights into the
system performance for different classes.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 18

Figure 5. Confusion matrix based on FKTNET-11 model for scenario 1 and scenario 2.

The DeepFKTNet-5 model was adaptively designed for the challenge FVC2004 da-

taset; it was evaluated using the above evaluation procedure. We fine-tuned the devel-

oped DeepFKTNet-5 model and the pre-trained models ResNet152 and DenseNet121 us-

ing the same dataset. The results are shown in Figure 6; the DeepFKTNet-5 model outper-

forms the state-of-the-art ResNet152 and DenseNet121 models in terms of all metrics. Fig-

ure 7 illustrates the confusion matrices for the FVC2004 dataset. These give insights into

the system performance for different classes.

Figure 6. Comparison between FKTNET-5 and pre-trained ResNet-152 and DensNet-121 on

FV

C

2004 dataset (four classes).

Figure 7. Confusion matrix based on FKTNET-5 model for FVC2004 dataset.

4. Discussions

We addressed the multi-sensor fingerprint classification problem and proposed a

novel method for automatically generating a custom-designed DeepFKTNet model from

the target fingerprint dataset. The number of layers and filters for each layer are not spec-

60

70

80

90

100

ACC SE SP Kappa

FVC2004

FKTNet-5 ResNet152 DensNet121

Figure 6. Comparison between FKTNET-5 and pre-trained ResNet-152 and DensNet-121 on FVC2004
dataset (four classes).

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 18

Figure 5. Confusion matrix based on FKTNET-11 model for scenario 1 and scenario 2.

The DeepFKTNet-5 model was adaptively designed for the challenge FVC2004 da-

taset; it was evaluated using the above evaluation procedure. We fine-tuned the devel-

oped DeepFKTNet-5 model and the pre-trained models ResNet152 and DenseNet121 us-

ing the same dataset. The results are shown in Figure 6; the DeepFKTNet-5 model outper-

forms the state-of-the-art ResNet152 and DenseNet121 models in terms of all metrics. Fig-

ure 7 illustrates the confusion matrices for the FVC2004 dataset. These give insights into

the system performance for different classes.

Figure 6. Comparison between FKTNET-5 and pre-trained ResNet-152 and DensNet-121 on

FV

C

2004 dataset (four classes).

Figure 7. Confusion matrix based on FKTNET-5 model for FVC2004 dataset.

4. Discussions

We addressed the multi-sensor fingerprint classification problem and proposed a

novel method for automatically generating a custom-designed DeepFKTNet model from

the target fingerprint dataset. The number of layers and filters for each layer are not spec-

60

70

80

90

100

ACC SE SP Kappa

FVC2004

FKTNet-5 ResNet152 DensNet121

Figure 7. Confusion matrix based on FKTNET-5 model for FVC2004 dataset.

4. Discussions

We addressed the multi-sensor fingerprint classification problem and proposed a novel
method for automatically generating a custom-designed DeepFKTNet model from the
target fingerprint dataset. The number of layers and filters for each layer are not specified
randomly; they are determined from the best representative fingerprints selected using
the K-medoids clustering algorithm and LDGBP descriptor from the fingerprint datasets.

Mathematics 2022, 10, 1285 12 of 17

The generated DeepFKTNet models are shallower than the state-of-the-art models, robust,
involve a small number of learnable parameters, and suitable for fingerprint classification.

The results of the DeepFKTNet models on the FingerPass and FVC2004 datasets
(Figures 4 and 6) indicate that they outperform the famous deep models ResNet152 and
DenseNet121, which were pre-trained on the ImageNet dataset and fine-tuned using the
same fingerprint datasets. The architecture of a DeepFKTNet model is drawn directly from
the dataset; the internal structures of the data determine its design. For this reason, the
DeepFKTNet model has a compact size and yields better classification results. Further, it
does not suffer from the overfitting problem (see Table 3) since it involves a small number
of learnable parameters (see Table 4), which is comparable with the number of training
examples. If the number of learnable parameters is huge as compared to the training
examples, the overfitting problem cannot be avoided. The training and testing accuracies
shown in Table 3 indicate that the models do not suffer from overfitting. In addition,
DeepFKTNet models are trained using the available training data, and the pre-training is
not needed, unlike ResNet152 and DenseNet121.

Table 3. The train and test accuracy of DeepFKTNet-11 models for two scenarios.

Model Train ACC Test ACC

Scenarios 1 98.65 97.84
Scenarios 2 99.11 98.9

Table 4. The comparison between generated DeepFKTNet models from the two datasets and pre-
trained ResNet152 and DenseNet121. K is for kilobyte and G is for Gigabyte.

Model DeepFKTNet-5 DeepFKTNet-11 ResNet152 DenseNet121

number of
params 58.456 k 119.599 k 60.19 M 7.98 M

FLOPs 0.5 G 0.9 G 5.6 G 1.44 G

The space complexity of a CNN model is measured in terms of the number of learnable
parameters, whereas the number of FLOPS determines its time complexity. Table 4 gives the
statistics of the space and time complexities of the models. Overall, the DeepFKTNet model
got competitive performance with fewer layers and parameters. The DeepFKTNet models
designed for the two datasets have a small number of parameters, in thousands against
millions in ResNet152 and DensNet121 models. DeepFKTNet-5 and DeepFKTNet-11 have
fewer FLOPs than ResNet152 and DensNet121 and better performance. The DeepFKTNet-
11 is relatively more complex than DeepFKTNet-5; the reason is that the FingerPass dataset
involves a large number of sensors as compared to the FVC2004 dataset, and there is more
variety of patterns in the FingerPass dataset, and to encode the discriminative pattern,
more rich structure is needed.

Further, for investigating which features the DeepFKTNet models focus on for decision
making, we employed GradCam [69]. Figure 8 shows some heat maps generated with
GradCam for DeepFKTNet-11. The fingerprint images from class arches and their GradCam
visualizations are shown in Figure 8a,b, the fingerprint images from the class left loop and
their GradCam visualizations are shown in Figure 8c,d. Figure 8e,f depicts fingerprint
images from the class right loop and their GradCam visualization, whereas Figure 8g,h
show fingerprint images from the class whorls and their GradCam visualizations. The
visual analysis of the decision-making process of DeepFKTNet shows that it concentrates
on the discriminative regions of fingerprints and extracts class discriminative features.

Mathematics 2022, 10, 1285 13 of 17Mathematics 2022, 10, x FOR PEER REVIEW 13 of 18

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Visualizations of activation maps using the GradCam method for four samples from dif-

ferent classes of FingerPass dataset: (a) arches finger; (b) arches’s gradcam; (c) left loop finger; (d)

left loop’s gradcam; (e) right loop finger; (f) right loop’s gradcam; (g) whorls finger; and (h) whorls

gradcam.

For a fair comparison, the DeepFKTNet-5 has been compared with the state-of-the-

art fingerprint classification methods, which were validated on the benchmark public

FVC2004 dataset; the comparison results are given in Table 5.

The DeepFKTNet-5 model outperforms the state-of-the-art methods (handcraft and

CNN methods) on the same dataset in terms of accuracy. The method of Jeon et al. [70],

despite being a complex ensemble of CNN models, got an accuracy of 97.2%, which is less

than that of DeepFKTNet-5. Zia et al. [33] employed B-DCNNs with five convolution lay-

ers and two FC layers (with 1024 and 512 neurons) for fingerprint classification and vali-

dated on the FVC2004 dataset; it does not yield better accuracy than that of DeepFKTNet-

5 (95.3% vs. 98.89%). Its complexity is high; it has more FLOPs (0.65 G vs. 0.5 G) and more

learnable parameters (38.66 M vs. 58.456 k). Nguyen et al. [34] employed a two-stage CNN

model for enhancing and then training and prediction. They used LBCNN [71] method in

the first stage, which has 0.352 M learnable parameters, and then employed a three-ter-

nary model for training and prediction. They got an accuracy of 96.1% based on FVC2004

(three classes), which is less than DeepFKTNet-5. Nahar et al. [35] used a modified LNet-

5 model for fingerprint classification; they got 99.1% accuracy but with only a subset (DB1)

from FVC2004, whereas the DeepFKTNet-5 model evaluated on the combined multi-sensor

dataset of the four datasets (DB1, DB2, DB3, and DB4) from FVC2004. Also, the LNet-5

has a higher number of parameters, 19.25 M and 1.42 G FLOPs vs. 58.456 k and 0.5 G

FLOPs of DeepFKTNet-5. The reason for the better performance and less complexity of

DeepFKTNet-5 is that it is custom-designed, keeping in view the internal discriminative

structures of fingerprints.

Figure 8. Visualizations of activation maps using the GradCam method for four samples from different
classes of FingerPass dataset: (a) arches finger; (b) arches’s gradcam; (c) left loop finger; (d) left loop’s
gradcam; (e) right loop finger; (f) right loop’s gradcam; (g) whorls finger; and (h) whorls gradcam.

For a fair comparison, the DeepFKTNet-5 has been compared with the state-of-the-art
fingerprint classification methods, which were validated on the benchmark public FVC2004
dataset; the comparison results are given in Table 5.

The DeepFKTNet-5 model outperforms the state-of-the-art methods (handcraft and
CNN methods) on the same dataset in terms of accuracy. The method of Jeon et al. [70],
despite being a complex ensemble of CNN models, got an accuracy of 97.2%, which is less
than that of DeepFKTNet-5. Zia et al. [33] employed B-DCNNs with five convolution layers
and two FC layers (with 1024 and 512 neurons) for fingerprint classification and validated
on the FVC2004 dataset; it does not yield better accuracy than that of DeepFKTNet-5 (95.3%
vs. 98.89%). Its complexity is high; it has more FLOPs (0.65 G vs. 0.5 G) and more learnable
parameters (38.66 M vs. 58.456 k). Nguyen et al. [34] employed a two-stage CNN model
for enhancing and then training and prediction. They used LBCNN [71] method in the
first stage, which has 0.352 M learnable parameters, and then employed a three-ternary
model for training and prediction. They got an accuracy of 96.1% based on FVC2004 (three
classes), which is less than DeepFKTNet-5. Nahar et al. [35] used a modified LNet-5 model
for fingerprint classification; they got 99.1% accuracy but with only a subset (DB1) from
FVC2004, whereas the DeepFKTNet-5 model evaluated on the combined multi-sensor
dataset of the four datasets (DB1, DB2, DB3, and DB4) from FVC2004. Also, the LNet-5
has a higher number of parameters, 19.25 M and 1.42 G FLOPs vs. 58.456 k and 0.5 G
FLOPs of DeepFKTNet-5. The reason for the better performance and less complexity of
DeepFKTNet-5 is that it is custom-designed, keeping in view the internal discriminative
structures of fingerprints.

Mathematics 2022, 10, 1285 14 of 17

Table 5. Comparison between DeepFKTNet-5 and the state-of-the-art methods.

Paper Method
Performance (%)

ACC SE SP Kappa

Gupta et al. [72] 2015 Singular point 97.80 - - -
Darlow et al. [73] 2017 Minutiae and DL 94.55 - - -
Andono et al. [74] 2018 Bag-of-Visual-Words 90 - - -

Saeed et al. [19] 2018 statistics of D-SIFT descriptor 97.40 - - -
Saeed et al. [18] 2018 Modified HOG descriptor 98.70 - - -
Jeon et al. [70] 2017 Ensemble CNN model 97.2 - - -
Zia et al. [33] 2019 B-DCNNs 95.3

Nguyen et al. [34] 2019 CNN (tested on 3 classes of FVC2004) 96.1
Nahar et al. [35] 2022 Modified LeNet (tested on FVC2004-DB1) 99.1

DeepFKTNet-5 DeepFKTNet model 98.89 95.46 99.18 96.82

5. Conclusions

We introduced a technique for automatically creating a custom-designed CNN model
for multi-sensor fingerprint categorization. Since CNN models contain a large number of
parameters and are designed randomly, we used the FKT approach to build a low-cost,
high-speed CNN model tailored for the target fingerprint dataset. The developed DeepFK-
TNet model is data-dependent, with a distinctive architecture for each fingerprint dataset.
DeepFKTNet-11 for the FigerPass dataset and DeepFKTNet-5 for FVC2004 outperform
pre-trained deep ResNet152 and DenseNet121 models on identical datasets and assessment
processes. The performance, complexity, and number of parameters of the DeepFKTNet
models created are substantially fewer than those of ResNet152 and DenseNet. Compared
to the state-of-the-art techniques on the FVC2004 dataset, the DeepFKTNet-5 model is
simpler in terms of complexity and parameter count and achieves comparable performance.
In future work, we will enhance DeepFKTNet to address the problem of cross-sensor
fingerprint verification.

Author Contributions: Conceptualization, F.S. and M.H.; methodology, M.H. and F.S.; software,
F.S.; validation, F.S., M.H. and H.A.A.; formal analysis, H.A.A. and M.H.; investigation F.S., M.H.;
resources, F.S. and H.A.A.; data curation, F.S., M.H.; writing—original draft preparation, F.S.; writing—
review and editing, M.H.; visualization, H.A.A.; supervision, M.H.; project administration, M.H.;
funding acquisition, M.H and H.A.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This Project was funded by the National Plan for Science, Technology and Innovation
(MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, under
Project no. 13-INF946-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Used public domain datasets, FVC2004 dataset: available online:
http://bias.csr.unibo.it/fvc2004/download.asp (accessed on 26 February 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grabatin, M.; Steinke, M.; Pöhn, D.; Hommel, W. A Matrix for Systematic Selection of Authentication Mechanisms in Challenging

Healthcare related Environments. In Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems,
Virtually, TN, USA, 28 April 2021; pp. 88–97.

2. Maltoni, D.; Maio, D.; Jain, A.K.; Prabhakar, S. Handbook of Fingerprint Recognition; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2009.

3. Pandey, F.; Dash, P.; Samanta, D.; Sarma, M. ASRA: Automatic singular value decomposition-based robust fingerprint image
alignment. Multimed. Tools Appl. 2021, 80, 15647–15675. [CrossRef]

http://bias.csr.unibo.it/fvc2004/download.asp
http://doi.org/10.1007/s11042-021-10560-5

Mathematics 2022, 10, 1285 15 of 17

4. Khosroshahi, M.E.; Woll-Morison, V. Visualization and fluorescence spectroscopy of fingerprints on glass slide using combined
405 nm laser and phase contrast microscope. J. Vis. 2021, 24, 665–670. [CrossRef]

5. Banik, A.; Ghosh, K.; Patil, U.K.; Gayen, S. Identification of molecular fingerprints of natural products for the inhibition of breast
cancer resistance protein (BCRP). Phytomedicine 2021, 85, 153523. [CrossRef] [PubMed]

6. Lugini, L.; Marasco, E.; Cukic, B.; Gashi, I. Interoperability in fingerprint recognition: A large-scale empirical study. In Proceedings
of the 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and Networks Workshop (DSN-W), Budapest, Hungary,
24–27 June 2013; pp. 1–6.

7. Alrashidi, A.; Alotaibi, A.; Hussain, M.; AlShehri, H.; AboAlSamh, H.A.; Bebis, G. Cross-Sensor Fingerprint Matching Using
Siamese Network and Adversarial Learning. Sensors 2021, 21, 3657. [CrossRef]

8. Priesnitz, J.; Rathgeb, C.; Buchmann, N.; Busch, C.; Margraf, M. An overview of touchless 2D fingerprint recognition. EURASIP J.
Image Video Process. 2021, 2021, 1–28. [CrossRef]

9. AlShehri, H.; Hussain, M.; AboAlSamh, H.; AlZuair, M. A large-scale study of fingerprint matching systems for sensor interoper-
ability problem. Sensors 2018, 18, 1008. [CrossRef]

10. Alshehri, H.; Hussain, M.; Aboalsamh, H.A.; Emad-Ul-Haq, Q.; Alzuair, M.; Azmi, A.M. Alignment-free cross-sensor fingerprint
matching based on the co-occurrence of ridge orientations and Gabor-HoG descriptor. IEEE Access 2019, 7, 86436–86452.
[CrossRef]

11. Marasco, E.; Feldman, A.; Romine, K.R. Enhancing Optical Cross-Sensor Fingerprint Matching Using Local Textural Features. In
Proceedings of the 2018 IEEE Winter Applications of Computer Vision Workshops (WACVW), Lake Tahoe, NV, USA, 15 March
2018; pp. 37–43.

12. Lin, C.; Kumar, A. A CNN-based framework for comparison of contactless to contact-based fingerprints. IEEE Trans. Inf. Forensics
Secur. 2018, 14, 662–676. [CrossRef]

13. Galar, M.; Derrac, J.; Peralta, D.; Triguero, I.; Paternain, D.; Lopez-Molina, C.; García, S.; Benítez, J.M.; Pagola, M.; Barrenechea, E.
A survey of fingerprint classification Part I: Taxonomies on feature extraction methods and learning models. Knowl.-Based Syst.
2015, 81, 76–97. [CrossRef]

14. Galar, M.; Derrac, J.; Peralta, D.; Triguero, I.; Paternain, D.; Lopez-Molina, C.; García, S.; Benítez, J.M.; Pagola, M.; Barrenechea, E.
A survey of fingerprint classification Part II: Experimental analysis and ensemble proposal. Knowl.-Based Syst. 2015, 81, 98–116.
[CrossRef]

15. Guo, J.-M.; Liu, Y.-F.; Chang, J.-Y.; Lee, J.-D. Fingerprint classification based on decision tree from singular points and orientation
field. Expert Syst. Appl. 2014, 41, 752–764. [CrossRef]

16. Bhalerao, B.V.; Manza, R.R. Development of Image Enhancement and the Feature Extraction Techniques on Rural Fingerprint
Images to Improve the Recognition and the Authentication Rate. IOSR J. Comput. Eng. 2013, 15, 1–5.

17. Dorasamy, K.; Webb, L.; Tapamo, J.; Khanyile, N.P. Fingerprint classification using a simplified rule-set based on directional
patterns and singularity features. In Proceedings of the 2015 International Conference on Biometrics (ICB), Phuket, Thailand,
19–22 May 2015; pp. 400–407.

18. Saeed, F.; Hussain, M.; Aboalsamh, H.A. Classification of live scanned fingerprints using histogram of gradient descriptor.
In Proceedings of the 2018 21st Saudi Computer Society National Computer Conference (NCC), Riyadh, Saudi Arabia, 25–26
April 2018; pp. 1–5.

19. Saeed, F.; Hussain, M.; Aboalsamh, H.A. Classification of Live Scanned Fingerprints using Dense SIFT based Ridge Orientation
Features. In Proceedings of the 2018 1st International Conference on Computer Applications & Information Security (ICCAIS),
Riyadh, Saudi Arabia, 4–6 April 2018; pp. 1–4.

20. Dhaneshwar, R.; Kaur, M.; Kaur, M. An investigation of latent fingerprinting techniques. Egypt. J. Forensic Sci. 2021, 11, 1–15.
[CrossRef]

21. Jung, H.-W.; Lee, J.-H. Noisy and incomplete fingerprint classification using local ridge distribution models. Pattern Recognit.
2015, 48, 473–484. [CrossRef]

22. Vegad, S.; Shah, Z. Fingerprint Image Classification. In Data Science and Intelligent Applications; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 545–552.

23. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent advances in convolutional
neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

24. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.
2020, 37, 362–386. [CrossRef]

25. Abou Arkoub, S.; El Hassani, A.H.; Lauri, F.; Hajjar, M.; Daya, B.; Hecquet, S.; Aubry, S. Survey on Deep Learning Techniques for
Medical Imaging Application Area. In Machine Learning Paradigms; Springer: Berlin/Heidelberg, Germany, 2020; pp. 149–189.

26. Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [CrossRef]
27. Mishra, A.; Dehuri, S. An experimental study of filter bank approach and biogeography-based optimized ANN in fingerprint

classification. In Nanoelectronics, Circuits and Communication Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 229–237.
28. Jian, W.; Zhou, Y.; Liu, H. Lightweight Convolutional Neural Network Based on Singularity ROI for Fingerprint Classification.

IEEE Access 2020, 8, 54554–54563. [CrossRef]
29. Nahar, P.; Tanwani, S.; Chaudhari, N.S. Fingerprint classification using deep neural network model resnet50. Int. J. Res. Anal. Rev.

2018, 5, 1521–1537.

http://doi.org/10.1007/s12650-021-00745-3
http://doi.org/10.1016/j.phymed.2021.153523
http://www.ncbi.nlm.nih.gov/pubmed/33662771
http://doi.org/10.3390/s21113657
http://doi.org/10.1186/s13640-021-00548-4
http://doi.org/10.3390/s18041008
http://doi.org/10.1109/ACCESS.2019.2924127
http://doi.org/10.1109/TIFS.2018.2854765
http://doi.org/10.1016/j.knosys.2015.02.008
http://doi.org/10.1016/j.knosys.2015.02.015
http://doi.org/10.1016/j.eswa.2013.07.099
http://doi.org/10.1186/s41935-021-00252-4
http://doi.org/10.1016/j.patcog.2014.07.030
http://doi.org/10.1016/j.patcog.2017.10.013
http://doi.org/10.1002/rob.21918
http://doi.org/10.1016/j.cosrev.2021.100379
http://doi.org/10.1109/ACCESS.2020.2981515

Mathematics 2022, 10, 1285 16 of 17

30. Rim, B.; Kim, J.; Hong, M. Fingerprint classification using deep learning approach. Multimed. Tools Appl. 2020, 1–17. [CrossRef]
31. Ali, S.F.; Khan, M.A.; Aslam, A.S. Fingerprint matching, spoof and liveness detection: Classification and literature review. Front.

Comput. Sci. 2021, 15, 1–18. [CrossRef]
32. Bolhasani, H.; Mohseni, M.; Rahmani, A.M. Deep learning applications for IoT in health care: A systematic review. Inform. Med.

Unlocked 2021, 23, 100550. [CrossRef]
33. Zia, T.; Ghafoor, M.; Tariq, S.A.; Taj, I.A. Robust fingerprint classification with Bayesian convolutional networks. IET Image Process.

2019, 13, 1280–1288. [CrossRef]
34. Nguyen, H.T.; Nguyen, L.T. Fingerprints classification through image analysis and machine learning method. Algorithms 2019,

12, 241. [CrossRef]
35. Nahar, P.; Chaudhari, N.S.; Tanwani, S.K. Fingerprint classification system using CNN. Multimed. Tools Appl. 2022, 1–13.

[CrossRef]
36. Saeed, F.; Hussain, M.; Aboalsamh, H.A. Method for Fingerprint Classification. U.S. Patent 9,530,042, 13 June 2016.
37. Zhang, Q.; Couloigner, I. A new and efficient k-medoid algorithm for spatial clustering. In Proceedings of the International

Conference on Computational Science and Its Applications, Singapore, 9–12 May 2005; pp. 181–189.
38. Huo, X. A statistical analysis of Fukunaga-Koontz transform. IEEE Signal Process. Lett. 2004, 11, 123–126. [CrossRef]
39. Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection.

Prog. Artif. Intell. 2020, 9, 85–112. [CrossRef]
40. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;

Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8,
1–74. [CrossRef]

41. Abdullah, S.M.S.A.; Ameen, S.Y.A.; Sadeeq, M.A.; Zeebaree, S. Multimodal emotion recognition using deep learning. J. Appl. Sci.
Technol. Trends 2021, 2, 52–58. [CrossRef]

42. Jena, B.; Saxena, S.; Nayak, G.K.; Saba, L.; Sharma, N.; Suri, J.S. Artificial intelligence-based hybrid deep learning models for
image classification: The first narrative review. Comput. Biol. Med. 2021, 137, 104803. [CrossRef]

43. Lu, J.; Tan, L.; Jiang, H. Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture
2021, 11, 707. [CrossRef]

44. Fang, W.; Love, P.E.; Luo, H.; Ding, L. Computer vision for behaviour-based safety in construction: A review and future directions.
Adv. Eng. Inform. 2020, 43, 100980. [CrossRef]

45. Lavanya, P.; Sasikala, E. Deep learning techniques on text classification using Natural language processing (NLP) in social
healthcare network: A comprehensive survey. In Proceedings of the 2021 3rd International Conference on Signal Processing and
Communication (ICPSC), Coimbatore, India, 13–14 May 2021; pp. 603–609.

46. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.
Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

47. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25. [CrossRef]

48. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
49. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

50. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

51. Hamel, P.; Eck, D. Learning features from music audio with deep belief networks. In Proceedings of the ISMIR, Utrecht, The
Netherlands, 9–13 August 2010; pp. 339–344.

52. Khan, A.; Sohail, A.; Ali, A. A new channel boosted convolutional neural network using transfer learning. arXiv 2018,
arXiv:1804.08528.

53. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
54. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
55. Huang, G.; Liu, Z.; Weinberger, K.; van der Maaten, L. Densely connected convolutional networks. CVPR 2017. arXiv 2016,

arXiv:1608.06993.
56. Izenman, A.J. Linear discriminant analysis. In Modern Multivariate Statistical Techniques; Springer: Berlin/Heidelberg, Germany,

2013; pp. 237–280.
57. Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K.-R. Fisher discriminant analysis with kernels. In Proceedings of the

Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No. 98th8468),
Madison, WI, USA, 25 August 1999; pp. 41–48.

58. Cook, A. Global Average Pooling Layers for Object Localization. 2017. Available online: https://alexisbcook.github.io/2017
/globalaverage-poolinglayers-for-object-localization/ (accessed on 19 August 2019).

59. Jia, X.; Yang, X.; Zang, Y.; Zhang, N.; Tian, J. A cross-device matching fingerprint database from multi-type sensors. In Proceedings
of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 3001–3004.

http://doi.org/10.1007/s11042-020-09314-6
http://doi.org/10.1007/s11704-020-9236-4
http://doi.org/10.1016/j.imu.2021.100550
http://doi.org/10.1049/iet-ipr.2018.5466
http://doi.org/10.3390/a12110241
http://doi.org/10.1007/s11042-022-12294-4
http://doi.org/10.1109/LSP.2003.821650
http://doi.org/10.1007/s13748-019-00203-0
http://doi.org/10.1186/s40537-021-00444-8
http://doi.org/10.38094/jastt20291
http://doi.org/10.1016/j.compbiomed.2021.104803
http://doi.org/10.3390/agriculture11080707
http://doi.org/10.1016/j.aei.2019.100980
http://doi.org/10.1007/s10462-020-09825-6
http://doi.org/10.1145/3065386
http://doi.org/10.1016/0377-0427(87)90125-7
https://alexisbcook.github.io/2017/globalaverage-poolinglayers-for-object-localization/
https://alexisbcook.github.io/2017/globalaverage-poolinglayers-for-object-localization/

Mathematics 2022, 10, 1285 17 of 17

60. Maio, D.; Maltoni, D.; Cappelli, R.; Wayman, J.L.; Jain, A.K. FVC2004: Third fingerprint verification competition. In Proceedings
of the International Conference on Biometric Authentication, Hong Kong, China, 15–17 July 2004; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 1–7.

61. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK,
USA, 4–8 August 2019; pp. 2623–2631.

62. Gao, Z.; Li, J.; Guo, J.; Chen, Y.; Yi, Z.; Zhong, J. Diagnosis of Diabetic Retinopathy Using Deep Neural Networks. IEEE Access
2019, 7, 3360–3370. [CrossRef]

63. Quellec, G.; Charrière, K.; Boudi, Y.; Cochener, B.; Lamard, M. Deep image mining for diabetic retinopathy screening. Med. Image
Anal. 2017, 39, 178–193. [CrossRef] [PubMed]

64. Chowdhury, A.R.; Chatterjee, T.; Banerjee, S. A Random Forest classifier-based approach in the detection of abnormalities in the
retina. Med. Biol. Eng. Comput. 2019, 57, 193–203. [CrossRef]

65. Zhang, W.; Zhong, J.; Yang, S.; Gao, Z.; Hu, J.; Chen, Y.; Yi, Z. Automated identification and grading system of diabetic retinopathy
using deep neural networks. Knowl. -Based Syst. 2019, 175, 12–25. [CrossRef]

66. Haghighi, S.; Jasemi, M.; Hessabi, S.; Zolanvari, A. PyCM: Multiclass confusion matrix library in Python. J. Open Source Softw.
2018, 3, 729. [CrossRef]

67. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2011,
arXiv:2010.16061.

68. Fleiss, J.L.; Cohen, J.; Everitt, B.S. Large sample standard errors of kappa and weighted kappa. Psychol. Bull. 1969, 72, 323.
[CrossRef]

69. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

70. Jeon, W.-S.; Rhee, S.-Y. Fingerprint pattern classification using convolution neural network. Int. J. Fuzzy Log. Intell. Syst. 2017, 17,
170–176. [CrossRef]

71. Juefei-Xu, F.; Naresh Boddeti, V.; Savvides, M. Local binary convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 19–28.

72. Gupta, P.; Gupta, P. A robust singular point detection algorithm. Appl. Soft Comput. 2015, 29, 411–423. [CrossRef]
73. Darlow, L.N.; Rosman, B. Fingerprint minutiae extraction using deep learning. In Proceedings of the 2017 IEEE International

Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 22–30.
74. Andono, P.; Supriyanto, C. Bag-of-visual-words model for fingerprint classification. Int. Arab J. Inf. Technol. 2018, 15, 37–43.

http://doi.org/10.1109/ACCESS.2018.2888639
http://doi.org/10.1016/j.media.2017.04.012
http://www.ncbi.nlm.nih.gov/pubmed/28511066
http://doi.org/10.1007/s11517-018-1878-0
http://doi.org/10.1016/j.knosys.2019.03.016
http://doi.org/10.21105/joss.00729
http://doi.org/10.1037/h0028106
http://doi.org/10.5391/IJFIS.2017.17.3.170
http://doi.org/10.1016/j.asoc.2015.01.027

	Introduction
	Proposed Method
	Problem Formulation
	Adaptive CNN Model
	Selection of Representative Fingerprints
	Design of the Main DeepFKTNet Architecture

	Addition of Global Pool and Softmax Layers
	Fine-Tuning the Model
	Datasets and the Adaptive Architectures
	Evaluation Procedure

	Experimental Results
	Discussions
	Conclusions
	References

