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Abstract: An efficient algorithm is proposed to find an approximate solution via the wavelet colloca-
tion method for the fractional Fredholm integro-differential equations (FFIDEs). To do this, we reduce
the desired equation to an equivalent linear or nonlinear weakly singular Volterra–Fredholm integral
equation. In order to solve this integral equation, after a brief introduction of Müntz–Legendre
wavelets, and representing the fractional integral operator as a matrix, we apply the wavelet collo-
cation method to obtain a system of nonlinear or linear algebraic equations. An a posteriori error
estimate for the method is investigated. The numerical results confirm our theoretical analysis, and
comparing the method with existing ones demonstrates its ability and accuracy.

Keywords: wavelet collocation method; fractional integro-differential equation; Müntz–Legendre
wavelets

MSC: 65L60; 47G20; 65T60

1. Introduction

In this study, we propose an efficient scheme for solving the fractional Fredholm
integro-differential equations (FFIDEs) of order α (α ∈ R+) on the finite interval [0, 1]

CDα
0 y(x) = c1 f (x, y(x)) + c2

∫ 1

0
k(x, t)g(y(t))dt, x ∈ [0, 1], (1)

with the Caputo fractional derivative CDα
0 and initial conditions

yν(0) = yν, ν = 0, . . . , n− 1, (2)

in which c1, c2 are constants, [α] + 1 := n ∈ N, for α 6∈ N and n = α for α ∈ N. Here, the
function f is assumed to be a sufficiently smooth linear or nonlinear function on Ω×R
with Ω := [0, 1], k is a continuous function on Ω2 := Ω×Ω, and the linear or nonlinear
function g is assumed to be continuous and satisfies the Lipschitz condition

|g(y)− g(v)| ≤ ρ|y− v|, (3)

where ρ > 0 is the Lipschitz constant.
These types of equations have a very valuable role in modeling some physical phenom-

ena, such as glass-forming process [1], epidemic processes [2], and viscoelasticity [3]. There
exist several papers that offer analytical methods for solving such equations. However,
when the problem is complicated, the existing analytical methods no longer work and
we cannot find the exact solution. Therefore, numerical methods are often suggested to
solve this problem. In [4], the Spline collocation method is applied to solve the problem.
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Momani et al. [5,6] used the Adomian decomposition method for solving the fourth-order
and systems of FFIDEs. To solve a special type of these equations, i.e.,

CDα
0 y(x)− λ

∫ 1

0
k(x, t)[y(t)]υdt = f (x), υ > 1, (4)

with the initial conditions

y(i)(0) = δi, i = 0, . . . , n− 1, n− 1 < α ≤ n,

Zhu et al. [7] proposed the Galerkin method based on the Chebyshev wavelet.
After introducing the Chebyshev wavelet and the operational matrix of the Riemann–
Liouville fractional integral for this basis, they used the Galerkin method to reduce (4) to
a system of algebraic equations. The fractional differential transform scheme is used to
solve the equation [8]. Saeedi et al. [9] used the same procedure based on CAS wavelets.
Shahmorad et al. [10] proposed the Tau–like numerical algorithm to solve the delay frac-
tional integro-differential equation. To read more about the methods provided, please refer
to [11,12].

Recently, the Müntz–Legendre wavelets have been applied to find the numerical
solution of some equations, such as fractional pantograph differential equations [13],
fractional optimal control problems [14], fractional differential equations [15] and multi-
order fractional differential equations [16].

The outline of this article is as follows: In Section 2, we provide an introduction to
fractional calculation and introduce the Müntz–Legendre wavelets. Section 3 is dedicated
to the application of the wavelet collocation method for solving FFIDEs. In this section, an
a posteriori error estimate is also surveyed. In Section 4, some numerical implementations
are performed to demonstrate the accuracy and efficiency of the method.

2. Preliminaries

We begin this section with a brief introduction to fractional calculus and the Müntz–
Legendre wavelets (ML wavelets).

2.1. Fractional Calculation

Definition 1. Let α ∈ R+, we specify the Riemann–Liouville (RL) fractional integral operator Iα
a via

Iα
a ( f )(x) :=

1
Γ(α)

∫ x

a
(x− ζ)α−1 f (ζ)dζ, x ∈ [a, b], f ∈ L1[a, b], (5)

in which Γ(α) is the Gamma function.

With this definition, it is easy to verify that

Iα
a (xβ) =

Γ(β + 1)
Γ(β + α + 1)

xβ+α. (6)

Lemma 1 (cf. Lemma 2.1 (a), [17]). Given 1 ≤ p ≤ ∞, the operator Iα
a is bounded in

Lp([a, b]), i.e.,

‖Iα
a ( f )‖p ≤

(b− a)α

Γ(α + 1)
‖ f ‖p. (7)

Definition 2. The Riemann—Liouville operator of fractional derivative is defined by

RDα
a ( f )(x) := DnIn−α

a ( f )(x) =
1

Γ(n− α)
Dn

∫ x

a
(x− t)n−α−1 f (t)dt, (8)

where α ∈ R+, [α] + 1 := n ∈ N and Dn := dn

dx .
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There exists another fractional derivative operator that can replace the Riemann–
Liouville fractional derivative.

Definition 3. The Caputo fractional derivative is determined by [17].

cDα
a ( f )(x) : =

1
Γ(n− α)

∫ x

a

f (n)(ζ)dζ

(x− ζ)α−n+1 =: In−α
a Dn( f )(x), (9)

in which α ∈ R+ and [α] + 1 := n ∈ N.

Lemma 2 (cf. Corollary 2.3 (a), [17]). It can be proved that the Caputo fractional derivative
operator cDα

a is bounded via

‖cDα
a ( f )‖C ≤

1
Γ(n− α)(n− α + 1)

‖ f ‖Cn , (10)

where α ∈ R+, α 6∈ N0 and n = −[−α].

2.2. Müntz–Legendre Wavelets

For J ∈ N0 and r ∈ N, let R := {0, 1, . . . , r − 1} and B := {0, 1, . . . , 2J − 1}. Then
assume that the sub-space AJ ∈ L2(Λ) is spanned by

AJ = span{φn
J,b : n ∈ R, b ∈ B},

in which φn
J,b is the scaled and translated version of φn, and Λ is a bounded interval

or Λ := R. Furthermore, the parameters J and r are called the refinement level and
multiplicity, respectively.

At the sequel, we give a brief introduction to the ML wavelets that, in addition to spanned
VJ , they also satisfy certain circumstances [18] (namely, multiresolution analysis (MRA)).

Motivated by [19], an increasing sequence L = {0 = λ0 < λ1 < . . .} guarantees that
the vector space

P(L) :=
∞⋃

n=0
Pn(L) = span{xλn , n = 0, 1, . . .}, x ∈ (0, 1),

spanned by {xλn}∞
n=0 and is a dense subset of C[0, 1]. Here Pn(L) := span{xλ0 , xλ1 , . . . , xλn}

for each n. The Russian mathematician S. N. Bernstein specifically proved that the sufficient
and necessary conditions to have P(L) = C[0, 1] are

∑
λk>0

1 + log λk
λk

= ∞,

and
lim
k→∞

λk
k log k

= 0,

respectively. He also conjectured that the necessary and sufficient condition to have
L = {0 = λ0 < λ1 < . . .} is

∞

∑
k=1

1
λk

= ∞.

Two years later, Müntz proved this conjecture [20]. It can be shown that the same
result can be held for L2(0, 1) [21]. It is worth noting that the functions {xλn}∞

n=0 are not
suitable as basis functions. Thus, in the sequel, the Müntz–Legendre functions will be
introduced such that they are easy to evaluate and are orthogonal.
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Motivated by [21,22], the ML polynomials are determined by

Ln(x;L) :=
1

2πi

∫
A

n−1

∏
k=1

s + λk + 1
s− λk

xs

s− λn
ds, (11)

where A is a simple contour which is circumambient to all zeros of the denominator in the
integrand. The aforementioned polynomials can be shown via

Ln(x;L) =
n

∑
l=0

ll,nxλl , x ∈ [0, 1], (12)

where the coefficient ll,n is obtained by

ll,n :=
∏n−1

i=0 (λl + λi + 1)
∏n

i=0,i 6=l(λl − λi)
. (13)

in which λl := {lµ : µ ∈ R, l = 0, . . . n}. It can easily be shown that the ML polynomials
are orthogonal [21,22].

For simplicity, assume that Ln(x) := Ln(x;L) from now on. According to the definition
of Ln(x), the ML wavelets [16] can be obtained via

φn
J,b =

{
2J/2√2λn + 1Ln(2J x− b), b

2J ≤ x ≤ b+1
2J ,

0, otherwise.
(14)

Motivated by ML wavelets, we introduce a projection operator PJ that maps any
function y ∈ L2([0, 1]) onto AJ as follows.

y(x) ≈ PJ(y)(x) =
2J−1

∑
b=0

r−1

∑
n=0

yb,nφn
J,b(x) = UTΦ(x) ∈ AJ , (15)

where Φ(x) is a N = 2Jr dimensional vector function whose (br + n + 1)-th element is
φn

J,b(x). To evaluate the element of vector U, we have

yb,n = 〈y, φn
J,b〉 =

∫ 1

0
y(x)φn

J,b(x)dx. (16)

The aforementioned expansion (15) can be bounded as follows [13].

Lemma 3 ([13]). If y ∈ Hm([0, 1]) for r > m, then

‖y−PJ(y)‖L2([0,1]) ≤ c(r− 1)−m(2J−1)−m‖y(m)‖L2([0,1]), (17)

and when s ≥ 1, we get

‖y−PJ(y)‖Hs([0,1]) ≤ c(2J−1)s−m(r− 1)2s− 1
2−m‖y(m)‖L2([0,1]), (18)

in which Hm([0, 1]) is the Sobolev space and the related norm is determined by

‖y‖Hm([0,1]) =

(
m

∑
j=0
‖y(j)‖2

L2([0,1])

)1/2

.

2.3. Representation of Fractional Integral Operator in ML Wavelets

The fractional integration of the vector function ΦJ(x) can be expressed by

PJ(Iα
0 )(Φ(x)) ≈ IαΦ(x), x ∈ (0, 1), (19)
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where Iα is called the Riemann–Liouville fractional operational matrix.
In order to find the elements of Iα for ML wavelets, we need to introduce the piecewise

fractional-order Taylor functions, i.e.,

ψn
J,b =

{
tλn , b

2J ≤ x ≤ b+1
2J ,

0, otherwise,
b ∈ B, n ∈ R, J ∈ Z+ ∪ {0}. (20)

Using the vector function Ψ(x) whose elements are ψn
J,b, the vector function Φ(x) (ML

wavelets) can be represented by

Φ(x) = T−1Ψ(x), (21)

where the transformation matrix T is the square matrix of dimension N × N with elements

Ti,j = 〈Φi(x), Ψj(x)〉 =
∫ 1

0
Φi(x)Ψj(x)dx, i, j = 1, . . . , N. (22)

It can be shown that
Ψ(x) = [V, . . . , V]T , (23)

in which V is assumed to be a r-dimension vector whose i-th element is xλi . From (6), one
can calculate the fractional integral of the i-th element Ψ(x), i.e.,

Iα
0 (Ψi)(x) =

Γ(λi + 1)
Γ(λi + α + 1)

xλi+α. (24)

Therefore, there exists a matrix IΨ,α(x) such that

Iα
0 (Ψ)(x) = IΨ,α(x)Ψ(x). (25)

It can easily be demonstrated that

IΨ,α(x) = diag[Pα(x), . . . , Pα(x)],

in which Pα(x) := xαQ (Iα
0 (V)(x) = Pα(x)V(x)), and Q is a diagonal matrix

(Q)i,i = (Γ(λi + 1))(Γ(λi + α + 1))−1.

Now, we can obtain the fractional integral operational matrix for the ML wavelets

PJ(Iα
0 )(Φ(x)) = PJ(Iα

0 )(T
−1Ψ(x))

= T−1 IΨ,α(x)Ψ(x)

= T−1 IΨ,α(x)TΦ(x).

Thus we obtain
Iα(x) := T−1 IΨ,α(x)T. (26)

3. Wavelet Collocation Method

In the present section, we utilize the collocation method based on ML wavelets to
obtain an approximate solution of the fractional Fredholm integro-differential Equation (1).
In the operator form, Equation (1) may be written as

(CDα
0 − c2K)y = c1 f , (27)

in which the operator K is denoted by
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K(y)(x) :=
∫ 1

0
k(x, t)g(y(t))dt. (28)

If y is a sufficiently smooth function on [0, 1], it can be proved that Equation (1) has a
unique solution y(x) on [0, 1].

Lemma 4. Given α ∈ R+, let n = −[−α]. Assume that f , k, and u are continuous functions.
Then y(x) is the solution of (1) if, and only if, y(x) satisfies the integral equation

y(x) =
n−1

∑
j=0

y(i)(0)
j!

xj + c1Iα
0 ( f )(x, y(x)) + c2Iα

0K(y)(x), (29)

Proof. The proof is similar to the proof of Theorem 3.24 in [17].

To obtain the discretization of (29), the numerical solution may be approximated by
the operator PJ , i.e.,

y(x) ≈ PJ(y)(x) = UTΦ(x) := yJ(x), (30)

where U is a N-dimension vector whose elements should be found. Replacing (30) into (29),
we get

yJ(x) =
n−1

∑
j=0

y(i)(0)
j!

xj + c1Iα
0 ( f )(x, yJ(x)) + c2Iα

0 (K)(yJ)(x). (31)

Now, we transfer all terms in (31) onto AJ via the projection operator PJ as follows

• Let us put p1(x) := ∑n−1
j=0

y(i)(0)
j! xj, then we can write

p1(x) ≈ PJ(p1)(x) = PT
1 Φ(x), (32)

where the j-th element of the N dimensional vector P1 is obtained by 〈p1, Φj〉.
• After putting the approximate solution yJ into g(y(t)) and then approximating it and

the kernel function k(x, t) using operator PJ , we have

p2(t) := g(yJ(t)) ≈ PJ(g(yJ(t))) = GTΦ(t),

k(x, t) ≈ PJ(k)(x, t) = ΦT(x)KΦ(t), (33)

where G is an N-dimensional vector whose j-th element is 〈p2, Φj〉, and K is a square
matrix of dimension N × N whose (i, j)-element is

Ki,j =
∫ 1

0

∫ 1

0
k(x, t)Φi(x)Φj(t)dxdt.

Replacing (33) into K(yJ)(x), we obtain

PJK(yJ)(x) ≈ GTKTΦ(x) ∈ AJ , (34)

To give rise to the discretized form of Iα
0K(yJ)(x), using the operational matrix Iα

and (35), we obtain
Iα

0K(yJ)(x) ≈ GTKT Iα(x)Φ(x). (35)

• In the same way as the previous item, we can use the projection PJ for the term
Iα

0 ( f )(s, y(s)), as

Iα
0 ( f )(s, yJ(s)) ≈ Iα

0 (FTΦ(x))

≈ FT Iα(x)Φ(x), (36)

where F is a N-dimension vector whose j-th element is 〈 f , Φj〉.
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Now we refer to (29) and rewrite it using (32), (35) and (36) as follows.

r(x) :=
(

UT − PT
1 − c1FT Iα(x)− GTKT Iα(x)

)
Φ(x) = 0, (37)

where r(x) is the residual function that our goal is to reduce to zero. By choosing the
collocation points {xi} ∈ Ω which satisfy r(xi) = 0, we obtain a system of nonlinear or
linear algebraic equations. After solving this system, we can find the unknown coefficients
U. Here, the collocation points are chosen so that they are the roots of the shifted Chebyshev
and Legendre polynomials.

Error Analysis

Theorem 1. Assume that k(x, t) is a sufficiently smooth function on [0, 1]×R and the functions
g and f are continuous and satisfy the Lipschitz conditions (3) and

| f (x, y(x))− f (x, v(x))| ≤ $|y− v|, (38)

respectively.
If c1

ρM1
αΓ(α) + c2

$
Γ(α+1) < 1 with α ∈ (0, 1), and M1 = maxx,t∈[0,1] |k(x, t)|, then the a

posteriori error estimate can be found as,

‖y(x)− yJ(x)‖ ≤ C
1− η

(r− 1)−m(2J−1)−m.

Proof. Motivated by Lemma 3, we have

‖Iα
0K(yJ)−PJIα

0K(yJ)‖ ≤ c0(r− 1)−m(2J−1)−m M2, (39)

where M2 = max{DmIα
0K(yJ)}, and to approximate it, we can consider two situations.

1. if m < n, then we have
DmIα

0K(yJ) = Iα−m
0 K(yJ), (40)

and it follows from Lemma 1 that

‖DmIα
0K(yJ)‖ = ‖Iα−m

0 K(yJ)‖ ≤
1

Γ(α−m + 1)
‖K(yJ)‖

≤ M1

Γ(α−m + 1)
‖
∫ 1

0
g(yJ(t))dt‖

≤ M1

Γ(α−m + 1)

∫ 1

0
‖g(yJ(t))‖dt (41)

Since the function g is continuous, then ‖DmIα
0KyJ‖ is bounded.

2. Let m ≥ n. Motivated by the Lemma 2.21 [17], it is easy to write

DmIα
0K(yJ) =

CDm−αCDαIα
0K(yJ) =

CDm−αK(yJ). (42)

Taking the norm from both sides of (42) and using Lemma 2, we have

‖DmIα
0K(yJ)‖ = ‖CDm−αK(yJ)‖

≤ 1
Γ(m′ −m + α)(m′ −m + α + 1)

‖K(yJ)‖ (m′ = [m− α] + 1). (43)

As a result, we can bound this case according to the previous one.

Further, we can obtain

‖Iα
0 ( f )(x, yJ)−PJIα

0 ( f )(x, yJ)‖ ≤ c3(r− 1)−m(2J−1)−m M3, (44)
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and
‖Iα

0 (p1)(x, yJ)−PJIα
0 (p1)(x, yJ)‖ ≤ c4(r− 1)−m(2J−1)−m M4, (45)

in which M3 = maxξ∈[0,1]{DmIα
0 f (ξ, yJ(ξ))}, and M4 = maxξ∈[0,1]{DmIα

0 p1(ξ, yJ(ξ))}.
Similar to the process used to calculate M2, it can be used to approximate M3 and M4.

If k is a continuous function and g satisfies the Lipschitz condition (3), then we
can write

‖Iα
0K(y)− Iα

0K(yJ)‖ = ‖Iα
0

(∫ 1

0
k(x, t)g(y(t))dt−

∫ 1

0
k(x, t)g(yJ(t))dt

)
‖

≤ ‖Iα
0

(
ρ
∫ 1

0
k(x, t)(y(t)− yJ(t))dt

)
‖

≤ ‖Iα
0

(
ρM1

∫ 1

0
(y(t)− yJ(t))dt

)
‖ (M1 := maxx,t∈[0,1]|k(x, t)|)

≤ ρM1

Γ(α)

∫ x

0
(x− t)α−1

∫ 1

0
‖y− yJ‖dsdt

≤ ρM1

Γ(α)
‖y− yJ‖

∫ x

0
(x− t)α−1dt

≤ ρM1

αΓ(α)
‖y− yJ‖. (46)

It is easy to find a bound for ‖(Iα
0 ( f )(x, y(x))− Iα

0 ( f )(x, yJ(x)))‖ according to the
Lemma 1, via

‖Iα
0 ( f )(x, y(x))− Iα

0 ( f )(x, yJ(x))‖ ≤ $‖Iα
0 (y− yJ)‖

≤ $

Γ(α + 1)
‖y− yJ‖. (47)

Subtracting (29) from

yJ(x) = PJ(p1)(x) + c1PJ(Iα
0 )( f )(x, yJ(x)) + c2PJ(Iα

0 )(K)(yJ)(x), (48)

and taking the norm from both sides, it follows from (39), (44)–(47) that

‖y− yJ‖ ≤ ‖p1 −PJ(p1)‖+ c1‖Iα
0 ( f )(x, y(x))− Iα

0 ( f )(x, yJ(x))‖
+ c1‖Iα

0 ( f )(x, yJ(x))− c1PJIα
0 ( f )(x, yJ(x))‖

+ c2‖Iα
0K(y)(x)− Iα

0K(yJ)(x)‖
+ c2‖Iα

0K(yJ)(x)−PJ(Iα
0 )K(yJ)(x)‖

≤ C(r− 1)−m(2J−1)−m + η‖y− yJ‖ (49)

in which C = c4M4 + c1c3M3 + c2c0M2 and η = c1
$

Γ(α+1) + c2
ρM1

αΓ(α) . If η < 1, then we can
bound the error as follows.

‖y(x)− yJ(x)‖ ≤ C
1− η

(r− 1)−m(2J−1)−m. (50)

4. Numerical Experiments

All numerical computations were carried out simultaneously using Maple and Mat-
lab software.



Mathematics 2022, 10, 1272 9 of 12

Example 1. Consider the following equation [23] as the first example.

CD5/6
0 u(x) +

∫ 1

0
xet(u(t))2dt =

3
Γ(1/6)

(
2 6
√

x− 432
91

6√
x13
)
− x(248e− 674),

with initial condition u(0) = 0. The exact solution is reported in [23] as u(x) = x− x3.
Table 1 gives a comparison between the proposed method and Alpert’s multi-wavelets method.

It can be seen that our method offers better accuracy. The L∞-error is reported for different values of
r (N = r2J) and x in Table 2. To show the effect of the parameters µ and r in the L2-error, we plot
the Figure 1.

Table 1. The comparison between Alpert’s multiwavelets method and the proposed method taking
µ = 5/6 and Chebyshev nodes for Example 1.

Proposed Method Alpert’s Multiwavelets Method [23]

N = 4 N = 5 N = 7 N = 96

L2-error 1.78× 10−3 4.08× 10−4 1.72× 10−4 1.43× 10−3

Table 2. The L∞–error taking µ = 5/6 for Example 1.

x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

Chebyshev nodes N = 5 6.62× 10−4 3.41× 10−4 2.17× 10−4 1.98× 10−6 1.89× 10−4

N = 7 1.65× 10−5 2.09× 10−6 9.63× 10−6 2.77× 10−5 6.68× 10−5

Legendre nodes N = 5 2.84× 10−4 6.80× 10−5 2.19× 10−4 2.70× 10−4 4.69× 10−5

N = 7 2.95× 10−4 1.07× 10−4 9.61× 10−6 8.85× 10−5 1.48× 10−4
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Figure 1. The L2–errors for µ = 1 (right) and µ = 5/6 (left) at the Chebyshev and Legendre nodes
for Example 1.

Example 2. Consider the nonlinear FFIDEs [23]

CD1/2
0 u(x) +

∫ 1

0
xt(u(t))4dt =

1
Γ(1/2)

(
8/3x3/2 − 2x1/2

)
− x

1260
, x ∈ [0, 1]

subject to the initial condition u(0) = 0. The exact solution is u(x) = x2 − x [23].
To show the effect of the parameter r in the L2-error, we plot the Figure 2. A comparison between

the proposed method and Alpert’s multi-wavelets method is reported in Table 3. The L∞-error is
reported for different values of r (N = r2J) and x in Table 4. With fewer bases, the proposed method
shows better accuracy than the Alpert’s multi-wavelets method. Figure 3 illustrates the exact and
approximate solutions at the Chebyshev nodes with different numbers of bases.
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Figure 2. The L2–errors for µ = 1 at the Chebyshev and Legendre nodes for Example 2.
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Figure 3. Plot of the exact and approximate solutions taking r = 7 (left) and r = 5 (right) at
Chebyshev nodes for Example 2.

Table 3. The L∞–error taking µ = 1 for Example 2.

x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

Chebyshev nodes N = 5 4.39× 10−4 8.10× 10−4 9.42× 10−4 1.10× 10−3 4.81× 10−4

N = 7 5.03× 10−4 4.94× 10−4 2.88× 10−4 7.34× 10−4 3.57× 10−4

Legendre nodes N = 5 8.95× 10−5 1.30× 10−4 9.42× 10−4 3.22× 10−4 8.72× 10−4

N = 7 2.56× 10−5 8.63× 10−5 2.88× 10−4 9.01× 10−5 7.25× 10−4

Table 4. Comparison between Alpert’s multiwavelets method and the proposed method taking µ = 1
and Legendre nodes for Example 2.

Proposed Method Alpert’s Multiwavelets Method [23]

N = 5 N = 6 N = 7 N = 96

L2-error 9.01× 10−4 6.54× 10−4 6.34× 10−4 1.17× 10−4

Example 3. Let us dedicate the third example to the nonlinear equation

CDβ
0 u(x) + 3x2u4(x)−

∫ 1

0
x2(t + 1)u2(t)dt =

18x4Γ
( 3

2 − β
)
− 5x2Γ

( 3
2 − β

)
+ 3
√

πx1/2−β

6Γ( 3
2 − β)

where 0 < β ≤ 1 and the exact solution is u(x) =
√

x.
Figure 4 is plotted to verify the effect of the parameter r. The L∞-error is reported for different

values of r (N = r2J) and x in Table 5. Figure 5 illustrates the exact and approximate solutions at
the Chebyshev and Legendre nodes.
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Table 5. The L∞–error taking β = 1/3 and µ = 1/3 for Example 3.

x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

Chebyshev nodes N = 5 8.60× 10−4 1.59× 10−4 1.46× 10−4 6.49× 10−5 3.36× 10−5

N = 8 5.58× 10−5 1.05× 10−5 1.67× 10−5 1.66× 10−5 1.36× 10−5

Legendre nodes N = 5 6.62× 10−4 1.16× 10−4 1.48× 10−4 5.55× 10−5 3.25× 10−5

N = 8 2.28× 10−5 8.03× 10−6 1.71× 10−5 1.53× 10−5 1.44× 10−5
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Figure 4. The L2–errors for β = 1/2 and µ = 1 at the Chebyshev and Legendre nodes for Example 3.
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Figure 5. Plot of the exact and approximate solutions (left) and absolute error (right) taking r = 7
and β = µ = 1/3 at Chebyshev and Legendre nodes for Example 3.

5. Conclusions

In the present paper, the wavelet collocation method has been used to solve the
fractional Fredholm integral differential equations. After converting this problem to an
equivalent linear or nonlinear weakly singular Volterra–Fredholm integral equation, we
apply the wavelet collocation method based on ML wavelets to solve this integral equation.
To do this, the fractional integral operator based on ML wavelets is represented as a matrix
and then the collocation method is used to reduce the problem to a linear or nonlinear
system of algebraic equations. An a posteriori error estimate for the method is investigated.
To demonstrate the ability and accuracy of the method, some numerical examples are
presented. The results are compared with other existing methods and demonstrate that
this method offers better results.
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