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Abstract: Invariant finite-difference schemes are considered for one-dimensional magnetohydro-
dynamics (MHD) equations in mass Lagrangian coordinates for the cases of finite and infinite
conductivity. The construction of these schemes makes use of results of the group classification of
MHD equations previously obtained by the authors. On the basis of the classical Samarskiy–Popov
scheme, new schemes are constructed for the case of finite conductivity. These schemes admit all sym-
metries of the original differential model and have difference analogues of all of its local differential
conservation laws. New, previously unknown, conservation laws are found using symmetries and
direct calculations. In the case of infinite conductivity, conservative invariant schemes are constructed
as well. For isentropic flows of a polytropic gas the proposed schemes possess the conservation law
of energy and preserve entropy on two time layers. This is achieved by means of specially selected
approximations for the equation of state of a polytropic gas. In addition, invariant difference schemes
with additional conservation laws are proposed. A new scheme for the case of finite conductivity is
tested numerically for various boundary conditions, which shows accurate preservation of difference
conservation laws.

Keywords: classical symmetries; conservation law; numerical scheme

MSC: 65M06; 76W05

1. Introduction

Magnetic hydrodynamics equations describe the flows of electrically conductive fluids
such as plasma, liquid metals, and electrolytes and are widely used in modeling processes
in various fields from engineering to geophysics and astrophysics.

In the present publication, we restrict ourselves to considering plane one-dimensional
MHD flows under the assumption that the medium is inviscid and thermally non-conducting.
A group classification of the MHD equations under the above conditions was carried out
recently in [1] (for some particular results see also [2–5]). The group classification splits
into four essentially different cases according to whether the conductivity of the medium is
finite or infinite, and the longitudinal component of the magnetic field vector is zero or a
non-zero constant.

The MHD equations are nonlinear, so that even in the one-dimensional case only
their particular solutions are known [6–10]. Therefore, numerical modeling in magneto-
hydrodynamics is of great practical interest. There are many approaches to numerically
modeling MHD equations, including finite-difference, finite element, and finite volume
methods (see, e.g., [11–19]). Further we consider finite-difference schemes taking as a
starting point the classical Samarsky–Popov schemes [12,13] for the MHD equations for the
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case of finite conductivity. The main properties of the considered schemes are invariance,
i.e., preservation of the symmetries of the original differential equations, and the presence
of difference analogues of local differential conservation laws. It is known that there is a
connection between the invariance of equations and the presence of conservation laws [20–23].
Recall that local conservation laws in the form of a divergence of some vector make it
possible to calculate flows through the boundary of a region using the Gauss–Ostrogradsky
theorem [24]. The latter has a clear physical meaning—the vector flux (electromagnetic
field, etc.) through the computational domain is preserved if there are no sources inside
the domain. The presence of a finite-difference analog of such a local conservation law
also makes it possible to sum it over the entire computational domain and preserve the
vector flow through the boundary of a domain. Thus, such a difference scheme retains the
geometric and physical meaning inherent in the differential model.

Invariant schemes have been studied for a long time [25–28], and over the past decades,
significant progress has been made in the development of methods for their construction
and integration. For schemes for ordinary differential equations with Lagrangian or Hamil-
tonian functions, a number of methods [29] have been developed that make it possible
to decrease the order or even integrate the schemes. A method based on the Lagrangian
identity has also been developed for the case when the equations do not admit a variational
formulation [30].

For partial difference schemes, the main methods used are the method of differential
invariants [28,31,32] and the difference analogue of the direct method [28]. Using these
methods, the authors have constructed invariant schemes for various shallow water mod-
els [33–36]. In addition, some previously known schemes have been investigated from
a group analysis point of view. In particular, symmetries and conservation laws of the
Samarskiy–Popov schemes for the one-dimensional gas dynamics equations of a polytropic
gas have been investigated in [37–39]. Based on the results of the group classification [1]
and Samarskiy–Popov schemes for the MHD equations, we further construct invariant
finite-difference schemes possessing conservation laws. The set and number of conser-
vation laws depend on the conductivity, the form of the magnetic field vector, and the
equation of state of the medium.

This paper is organized as follows. In Section 2, the simplest version of the finite-
conductivity MHD equations in mass Lagrangian coordinates in the case of one-dimensional
plane flows is considered. Electric and magnetic fields are represented by one-component
vectors, which greatly simplifies the form of the equations. This was the main case consid-
ered in Samarsky and Popov’s publications [12,13]. The section also provides basic notation
and definitions. Then, symmetries and conservation laws of the Samarsky–Popov scheme
for the MHD equations are investigated. In addition to the previously known conservation
laws, the center-of-mass conservation law is given, as well as new conservation laws for
the specific conductivity function, obtained on the basis of the group classification [1].

Section 3 is devoted to various generalizations of the scheme of Section 2. In Section 3.1,
the scheme for arbitrary electric and magnetic fields is considered. Its symmetries are
investigated and conservation laws are given. The case of infinite conductivity is considered
in Section 3.2. It is shown that in this case the Samarsky–Popov scheme requires some
additional modifications in order to possess the conservation law of angular momentum.
In the case of a polytropic gas, it turns out to be possible to preserve not only energy,
but also entropy along pathlines. This can be done using a specially selected equation of
state for a polytropic gas. At the end of the section, an example of an invariant scheme
is given that does not possess a conservation law of energy, but preserves entropy and
has additional conservation laws in the case of isentropic flows. In Section 4, one of the
invariant schemes for the case of finite conductivity is numerically implemented for the
example of plasma bunch deceleration by crossed electromagnetic fields. The results are
discussed in the Conclusions.
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2. Conservative Schemes for MHD Equations with Finite Conductivity

Problems of continuum mechanics and plasma physics are often considered in
mass Lagrangian coordinates [13,40] since for them the formulation of boundary conditions
is greatly simplified. In particular, conservative Samarsky–Popov schemes for the
equations of gas dynamics and magnetohydrodynamics have been constructed in mass
Lagrangian coordinates.

In mass Lagrangian coordinates the MHD equations, describing the plane one-dimensional
MHD flows, are [1,13] (

1
ρ

)
t
= us, (1a)

ut = −
(

p +
(Hy)2 + (Hz)2

2

)
s
, (1b)

vt = H0Hy
s , yt = v, (1c)

wt = H0Hz
s , zt = w, (1d)(

Hy

ρ

)
t
= (H0v + Ez)s, (1e)(

Hz

ρ

)
t
= (H0w− Ey)s, (1f)

σEy = −ρHz
s , σEz = ρHy

s , (1g)

εt = −pus +
1
ρ
(i · E), (1h)

xt = u, xs = 1/ρ, (1i)

where t is time, s is the mass Lagrangian coordinate, x is the Eulerian coordinate, ρ is density,
p is pressure, ε is internal energy, u = (u, v, w) is the velocity of a particle, E = (Ex, Ey, Ez)
is the electric field vector, H = (Hx, Hy, Hz) is the magnetic field vector, and i = (ix, iy, iz)
is the electric current. The conductivity σ is some function of p and ρ, i.e., σ = σ(p, ρ).

Following [13] we first consider the simplest case of one-component electric and
magnetic fields. Here, we also introduce the notation and some basic concepts. In the next
section some generalizations are considered, including the case of infinite conductivity.

For simplicity, the longitudinal component of the magnetic field H is set to zero, and
the coordinate system is chosen in such a way that H = (0, H, 0). Consequently, the
electric current i and the electric field E are also one-component vectors, i.e., i = (0, 0, i),
E = (0, 0, E). Electromagnetic force f = ( f , 0, 0) acts in the x-direction, and the velocity
is u = (u, 0, 0) (see Figure 1).

Figure 1. A plane one-dimensional flow for the chosen coordinates.
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Given the above, the system of the one-dimensional MHD equations with a finite
conductivity |σ| < ∞ in mass Lagrangian coordinates can be written as [13](

1
ρ

)
t
= us, (2a)

ut = −ps + f , f = −iH/ρ, (2b)(
H
ρ

)
t
= Es, (2c)

i = σE = κρHs, (2d)

εt = −pus + q, q = iE/ρ, (2e)

xt = u, xs = 1/ρ, (2f)

where κ = 1/(4π) and q is Joule heating per unit mass.
In particular, we consider a polytropic gas for which the following relation holds

ε =
1

γ− 1
p
ρ

, γ = const > 1. (3)

Equation (2e) for the energy evolution can be rewritten in the semi-divergent form(
ε +

u2

2

)
t
= −(pu)s + f u + q, (4)

or in the divergent form(
ε +

u2

2
+ κ

H2

2ρ

)
t
= −

[(
p + κ

H2

2

)
u
]

s
+ κ(EH)s. (5)

Note that the electromagnetic force f = −iH/ρ can be represented in the divergent
form f = −κ(H2/2)s, and Equation (2b) can be rewritten as

ut = −
(

p + κ
H2

2

)
s
. (6)

Further, we assume κ = 1 since it can be discarded by means of the scaling transformation

s̃ = κs, p̃ = κp, ρ̃ = κρ, σ̃ = κσ. (7)

2.1. Conservative Samarskiy–Popov Schemes for System (2)

The family of Samarskiy–Popov conservative difference schemes for system (2) is(
1
ρ

)
t
= u(0.5)

s , (8a)

ut = −p(α)s̄ + f , f = −
(

HĤ
2

)
s̄
= −1

2
[îH∗/ρ̂∗ + iĤ∗/ρ∗], (8b)(

H
ρ

)
t
= E(β)

s , (8c)

i = σ∗E = ρ∗Hs̄, (8d)

εt = −p(α)u(0.5)
s + q, q =

1
2
[(i/ρ∗)

(0.5)E(β) + (i+/(ρ+)∗)(0.5)E(β)
+ ], (8e)

xt = u(0.5), xs =
1
ρ

, (8f)
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where 0 6 (α, β) 6 1 are free parameters. For arbitrary α and β, scheme (8) approximates
system (2) up to O(τ + h2), and for α = β = 0.5, the scheme is of order O(τ2 + h2).

Here and further φt, φť and φs, φs̄ denote finite-difference derivatives of some quan-
tity φ = φ(tn, sm, un

m, ...)

φt =
S
+τ

(φ)− φ

τn
, φs =

S
+s
(φ)− φ

hm
,

φť =
φ− S

−τ
(φ)

τn−1
, φs̄ =

φ− S
−s
(φ)

hm−1
,

(9)

which are defined with the help of the finite-difference right and left shifts along the time
and space axes correspondingly

S
±τ

(φ(tn, sm, un
m, ...)) = φ(tn±1, sm, un±1

m , ...),

S
±s
(φ(tn, sm, un

m, ...)) = φ(tn, sm±1, un
m±1, ...).

The indices n and m are, respectively, changed along time and space axes t and s. The
time and space steps are defined as follows

τn = τ̂ = tn+1 − tn = t̂− t, τn−1 = τ̌ = tn − tn−1 = t− ť,

hm = h+ = sm+1 − sm = s+ − s, hm−1 = h− = sm − sm−1 = s− s−.
(10)

Following the Samarskiy–Popov notation throughout the text we denote

S
+s
(φ) = φ+, S

−s
(φ) = φ−, S

+τ
(φ) = φ̂, S

−τ
(φ) = φ̌, (11)

φ(α) = αφ̂ + (1− α)φ (12)

and

φ∗ = (φ∗)
j
i =

hiφ
j
i−1/2 + hi−1φ

j
i+1/2

hi + hi−1
. (13)

Note that on a uniform lattice hi = h = const in its integral nodes (13) becomes

φ∗ =
φ− + φ

2
. (14)

Remark 1. The energy Equation (8e) can be reduced to one of the three following forms [13] using
equivalent algebraic transformations:

εt = −p(α)u(0.5)
s + q, (15)(

ε +
u2 + u2

+

4

)
t

= −
(

p(α)∗ u(0.5)
)

s
+

1
2

[
f u(0.5) + f+u(0.5)

+

]
+ q, (16)

(
ε +

u2 + u2
+

4
+

H2

2ρ

)
t

+

[(
p(α)∗ +

(HĤ)∗
2

)
u(0.5) − E(β)H(0.5)

∗

]
s
= 0. (17)

These different forms of equation reflect the balance of certain types of energy, i.e., they express
the different physical aspects of energy conservation. To emphasize this property, such schemes are
also called completely conservative.
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2.2. Invariance of Samarskiy–Popov Schemes

System (2) can be rewritten in the following form that is more convenient for
symmetry analysis (

1
ρ

)
t
= us, (18a)

ut = −
(

p +
H2

2

)
s
, (18b)(

H
ρ

)
t
= Es, (18c)

σE = ρHs, (18d)

pt = −γρpus + (γ− 1)σE2, (18e)

xt = u, xs = 1/ρ. (18f)

Remark 2. Note that for the polytropic gas with the state Equation (3), one can rewrite the energy
evolution Equation (8e) of the Samarskiy–Popov scheme as

pt = −ρ̂(p+ (γ− 1)p(α))u(0.5) + (γ− 1)
ρ̂

2

[(
σ∗E
ρ∗

)(0.5)
E(β) +

(
(i+)∗E+

(ρ+)∗

)(0.5)

E(β)
+

]
. (19)

In this form the energy evolution equation corresponds to Equation (18e).

Calculations show [1] that the Lie algebra admitted by the system for an arbitrary

σ = σ(p, ρ) is as follows (here and further the notation ∂ f ≡
∂

∂ f
is used):

X1 = ∂t, X2 = ∂s, X3 = ∂x, X4 = t∂x + ∂u. (20)

The group generator
X = ξt∂t + ξs∂s + η∂x (21)

is prolonged to the finite-difference space as follows [25,28]

X̃ =
∞

∑
k,l=−∞

Sk
−τ

Sl
−s
(X), (22)

The scheme of the form

Φ(t, ť, t̂, s, s+, s−, u, u+, u−, û, ǔ, û+, ǔ+, û−, ǔ−, ...) = 0, (23a)

h+ = h− = h, τ̂ = τ̌ = τ, (~τ,~h) = 0 (23b)

defined on a uniform orthogonal mesh is invariant if the following criterion of invariance
holds [28]

X̃Φ|(23) = 0,

X̃(τ̂ − τ̌)|(23) = 0, X̃(h+ − h−)|(23) = 0.
(24)

To preserve uniformness and orthogonality of the mesh it is also required that [25,28]

D
+s

D
−s
(ξs) = 0, D

+τ
D
−τ

(ξt) = 0, (25)

D
±s
(ξt) = −D

±τ
(ξs), (26)
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where D
±τ

and D
±s

are finite-difference differentiation operators

D
+τ

=
S
+τ
− 1

τn
, D
−τ

=
1− S

−τ

τn−1
, D

+s
=

S
+s
− 1

hm
, D
−s

=
1− S

−s

hm−1
.

One can verify that scheme (8) is indeed invariant with respect to the generators
X1, ..., X4 and all the generators (20) satisfy the mesh orthogonality and uniformness
conditions (25) and (26). Hence, one can use an orthogonal uniform mesh (23b) that is an
invariant one.

2.3. Conservation Laws Possessed by the Samarskiy–Popov Scheme

All the conservation laws of system (18) have their finite-difference counterparts for
the Samarskiy–Popov scheme. They are given in Table 1. For convenience, the conservation
laws are numbered (see column “#”).

An additional conservation law(
sH
ρ

)
t
+ (H − sE)s = 0. (27)

only occurs in case σ = ρ [1]. In this case, system (18) admits two more symmetries, namely

X5 = s∂s − x∂x − u∂u + 2ρ∂ρ − E∂E,

X6 = 2t∂t + 2s∂s − 2u∂u + 2p∂p + 2ρ∂ρ − 3E∂E − H∂H .
(28)

Conservation law (27) has its finite-difference counterpart, which can be found by
direct calculations.

Table 1. Differential and difference conservation laws for system (18) and scheme (8).

# Conservation Laws of the System Conservation Laws of the Scheme Physics Interpretation

σ = σ(p, ρ)

1
(

1
ρ

)
t
− us = 0

(
1
ρ

)
t
−
(

u(0.5)
)

s
= 0 Mass conservation

2
(

H
ρ

)
t
− Es = 0

(
H
ρ

)
t
− (E(β))s = 0 Magnetic flux conservation

3 ut +
(

p + H2

2

)
s
= 0 ut +

(
p(α)− + H− Ĥ−

2

)
s
= 0 Momentum conservation

4 (tu− x)t +
(

t
(

p + H2

2

))
s
= 0

(
t + ť

2
u− x

)
t
+
[
t
(

p(α)− + H− Ĥ−
2

)]
s
= 0 Center of mass law

5
(

ε + u2

2 + H2

2ρ

)
t
+

+
((

p + H2

2

)
u− EH

)
s
= 0

(
ε +

u2+u2
+

4 + H2

2ρ

)
t
+

+
[(

p(α)∗ + (HĤ)∗
2

)
u(0.5) − E(β)H(0.5)

∗
]

s
= 0

Energy conservation

σ = ρ

6
(

sH
ρ

)
t
+ (H − sE)s = 0

(
sH
ρ

)
t
+ (H(β)

− − s−E(β))s = 0 Unknown

Note that neither conservation law (27) nor the center-of-mass law

(tu− x)t +

(
t
(

p +
H2

2

))
s
= 0 (29)

was mentioned in [13]. Perhaps the authors of [13] knew the finite-difference analogue
of (29).
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3. Generalizations of the Samarskiy–Popov Schemes for MHD Equations
3.1. The Case of Finite Conductivity

We consider a more general case H = (H0, Hy, Hz), E = (0, Ey, Ez), i = (0, iy, iz),
u = (u, v, w), x = (x, y, z), and H0 = const. Here we used the fact that the coordinate
system can always be chosen in such a way that the first component of the vector field E is
equal to zero.

Further, we consider Equations (1), where, by analogy with (18), the energy evolution
Equation (1h) is written as

pt = −γpρus + (γ− 1)σ((Ey)2 + (Ez)2), (30)

A generalization of scheme (8) for E = (0, Ey, 0) and H = (H0, 0, Hz) is given in [13].
Since the MHD equations are almost symmetric in terms of the components Ey, Ez and Hy,
Hz, one can extend the scheme proposed in [13] as follows(

1
ρ

)
t
= u(0.5)

s , (31a)

ut = −
(

p(α) +
Hy Ĥy + Hz Ĥz

2

)
s̄
, vt = H0(Hy)

(0.5)
s̄ , wt = H0(Hz)

(0.5)
s̄ , (31b)(

Hy

ρ

)
t
= H0v(0.5)

s + (Ez)
(β1)
s ,

(
Hz

ρ

)
t
= H0w(0.5)

s − (Ey)
(β2)
s , (31c)

iy = σ∗Ey = −ρ∗Hz
s̄ , iz = σ∗Ez = ρ∗H

y
s̄ , (31d)

εt = −p(α)u(0.5)
s + qy + qz, (31e)

xt = u(0.5), yt = v(0.5), zt = w(0.5), xs =
1
ρ

, (31f)

where 0 6 (α, β1, β2) 6 1 and

qy =
1
2
[(iy/ρ∗)

(0.5)(Ey)(β2) + (iy
+/(ρ+)∗)(0.5)(Ey)

(β2)
+ ],

qz =
1
2
[(iz/ρ∗)

(0.5)(Ez)(β1) + (iz
+/(ρ+)∗)(0.5)(Ez)

(β1)
+ ].

Note that this generalization of the scheme was discussed in [13] but it was not
given explicitly.

Remark 3. One can generalize (19) for scheme (31), (3) as follows

pt + ρ̂u(0.5)
s (p + (γ− 1)p(α)) + (1− γ)ρ̂(qy + qz) = 0. (32)

According to [1], the symmetries admitted by system (1) are the following.

1. If H0 = 0 and σ is arbitrary, then the admitted Lie algebra is

X1 = ∂t, X2 = ∂s, X3 = ∂x, X4 = t∂x + ∂u,

X5 = Ez∂Ey − Ey∂Ez + Hz∂Hy − Hy∂Hz .
(33)

In case σ = ρ, there are two additional generators that are admitted, namely

X1a = s∂s − x∂x − u∂u + 2ρ∂ρ − Ey∂Ey − Ez∂Ez ,

X2a = 2t∂t + 2x∂x − 2p∂p − 2ρ∂ρ − Ey∂Ey − Ez∂Ez − Hy∂Hy − Hz∂Hz .
(34)
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There are also two more conservation laws in the latter case (see Table 2). Additional
conservation laws do not occur for any other forms of the function σ.

2. If H0 6= 0 and σ is arbitrary then the admitted Lie algebra is

X1 = ∂t, X2 = ∂s, X3 = ∂x, X4 = t∂x + ∂u,

X5 = Ez∂Ey − Ey∂Ez + Hz∂Hy − Hy∂Hz + w∂v − v∂w + z∂y − y∂z,

X6 = t∂y + ∂v, X7 = t∂z + ∂w, X8 = h1(s)∂y, X9 = h2(s)∂z,

(35)

where h1 and h2 are arbitrary functions of s.
Additional conservation laws do not occur for any specific σ.

In both the cases above, scheme (31) is invariant. The rotation generator X5 is only
admitted for β1 = β2. The remaining generators are admitted by the scheme for any set of
parameters α, β1, β2 and γ > 1.

The conservation laws possessed by system (31) and their finite-difference counterparts
are given in Table 2. Here and further, conservation laws whose fluxes vanish for H0 = 0
are marked with †. In case H0 = 0, their densities preserve along the pathlines.

Table 2. Differential and difference conservation laws for the extended scheme.

# Conservation Laws of the System Conservation Laws of the Scheme Physics Interpretation

σ = σ(p, ρ)

1
(

1
ρ

)
t
− us = 0

(
1
ρ

)
t
−
(

u(0.5)
)

s
= 0 Mass conservation

2
(

Hy

ρ

)
t
− (Ez + H0v)s = 0

(
Hy

ρ

)
t
−
(
(Ez)(β1) + H0v(0.5)

)
s
= 0 Magnetic flux conservation

3
(

Hz

ρ

)
t
+ (Ey − H0w)s = 0

(
Hz

ρ

)
t
+
(
(Ey)(β2) − H0w(0.5)

)
s
= 0 Magnetic flux conservation

4 ut +
(

p + (Hy)2+(Hz)2

2

)
s
= 0 ut +

(
p(α)− +

Hy
− Ĥy
−+Hz

− Ĥz
−

2

)
s
= 0 Momentum conservation

5 † vt − (H0Hy)s = 0 vt −
(

H0(Hy
−)

(0.5)
)

s
= 0 Momentum conservation

6 † wt − (H0Hz)s = 0 wt −
(

H0(Hz
−)

(0.5)
)

s
= 0 Momentum conservation

7 (tu− x)t +
[
t
(

p + (Hy)2+(Hz)2

2

)]
s
= 0

(
t + ť

2
u− x

)
t
+[

t
(

p(α)− +
Hy
− Ĥy
−+Hz

− Ĥz
−

2

)]
s
= 0

Center of mass law

8 † (tv− y)t − (tH0Hy)s = 0
(

t + ť
2

v− y
)

t
−
(

tH0(Hy
−)

(0.5)
)

s
= 0 Center of mass law

9 † (tw− z)t − (tH0Hz)s = 0
(

t + ť
2

w− z
)

t
−
(

tH0(Hz
−)

(0.5)
)

s
= 0 Center of mass law

10

(
ε + u2+v2+w2

2 + (Hy)2+(Hz)2

2ρ

)
t
+

+
[(

p + (Hy)2+(Hz)2

2

)
u + Ey Hz − Ez Hy

−H0(vHy + wHz)
]

s = 0

(
ε +

u2+u2
++v2+v2

++w2+w2
+

4 + (Hy)2+(Hz)2

2ρ

)
t
+

+
[(

p(α)∗ + (Hy Ĥy+Hz Ĥz)∗
2

)
u(0.5)

+(Ey)(β2)(Hz
∗)

(0.5) − (Ez)(β1)(Hy
∗)

(0.5)

−H0(v(0.5)(Hy
∗)

(0.5) + w(0.5)(Hz
∗)

(0.5))
]

s
= 0

Energy conservation

H0 = 0

11 † (zv− yw)t = 0 (zv(0.5) − yw(0.5))ť = 0 Angular momentum conservation

H0 = 0, σ = ρ

12
(

sHy

ρ

)
t
+ (Hy − sEz)s = 0

(
sHy

ρ

)
t
+ ((Hy

−)
(β1)− s−(Ez)(β1))s = 0 Unknown

13
(

sHz

ρ

)
t
+ (Hz + sEy)s = 0

(
sHz

ρ

)
t
+((Hz

−)
(β2) + s−(Ey)(β2))s = 0 Unknown
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3.2. The Case of Infinite Conductivity σ→ ∞

In this case, system (1) reduces to (
1
ρ

)
t
= us, (36a)

ut = −
(

p +
(Hy)2 + (Hz)2

2

)
s
, xt = u, (36b)

vt = H0Hy
s , yt = v, (36c)

wt = H0Hz
s , zt = w, (36d)(

Hy

ρ

)
t
= (H0v)s, (36e)(

Hz

ρ

)
t
= (H0w)s, (36f)

pt = −γpρus, (36g)

where the internal energy is given by (3).
In addition to the analogues of conservation laws presented in the previous section,

system (36) possesses the conservation law of angular momentum, namely

(zv− yw)t +
(

H0(yHz − zHy)
)

s
= 0. (37)

As σ→ ∞, scheme (31) becomes(
1
ρ

)
t
= u(0.5)

s , (38a)

ut = −
(

p(α) +
Hy Ĥy + Hz Ĥz

2

)
s̄
, vt = H0(Hy)

(0.5)
s̄ , wt = H0(Hz)

(0.5)
s̄ , (38b)(

Hy

ρ

)
t
= H0v(0.5)

s ,
(

Hz

ρ

)
t
= H0w(0.5)

s , (38c)

εt = −p(α)u(0.5)
s , (38d)

xt = u(0.5), yt = v(0.5), zt = w(0.5), xs =
1
ρ

. (38e)

One can verify that scheme (38) is an invariant one. As the symmetries of (36) and the
corresponding difference schemes are reviewed in Section 3.2.3, we defer our discussion
until then.

3.2.1. Conservation of Angular Momentum and Energy

Apparently, the latter scheme does not preserve angular momentum, i.e., it does not
possess a difference analogue of the conservation law (37). One can verify it by algebraic
manipulations with the scheme or with the help of the finite-difference analogue of the
direct method [33]. We overcome this issue by modifying the latter scheme as follows(

1
ρ

)
t
= u(0.5)

s , (39a)

ut = −
(

p(α) +
Hy Ĥy + HzĤz

2

)
s̄
, vt = H0Ĥy

s̄ , wt = H0Ĥz
s̄ , (39b)
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(
Hy

ρ

)
t
= H0vs,

(
Hz

ρ

)
t
= H0ws, (39c)

εt = −p(α)u(0.5)
s , (39d)

xt = u(0.5), yt = v, zt = w, xs =
1
ρ

. (39e)

The latter modification allows one to obtain the whole set of finite-difference analogues
of the conservation laws of Equation (36) excluding the conservation of the entropy along
the pathlines. The conservation laws are presented in Table 3. Note that the three-layer
conservation law of energy given in the table can be rewritten in the following two-layer
form by means of (39c)[

ε +
u2 + u2

+ + v2 + v2
+ + w2 + w2

+

4
+

(Hy)2 + (Hz)2

2ρ
+

τ

2
H0(Hyvs + Hzws)

]
t

+

[(
p(α)∗ +

(Hy Ĥy + HzĤz)∗
2

)
u(0.5) − H0(v(0.5)Ĥy

∗ + w(0.5)Ĥz
∗)

]
s
= 0 (40)

In addition, in order to verify the conservation law (37), one has to consider the
following equations, which can be obtained by integration of (39c)

ys =
Hy

H0ρ
, zs =

Hz

H0ρ
. (41)

We also note that the modified scheme (39) is still invariant and a completely conser-
vative one.

3.2.2. Conservation of the Entropy along the Pathlines

From the latter system (36) it follows that(
p

ργ

)
t
= St = 0. (42)

This represents the conservation of the entropy S along pathlines, which is a crucial differ-
ence between the finite and infinite conductivity cases.

It is known [37] that the Samarskiy–Popov scheme for polytropic gas does not preserve
the entropy S for arbitrary γ. However, the following relation holds on solutions of
the system

p̂− p
p(α)

= γ
ρ̂− ρ

ρ(α)
, (43)

which approximates the differential relation

dp
p

= γ
dρ

ρ
. (44)

The latter relation holds along trajectories of the particles up to O(τ) for α 6= 0.5 or up
to O(τ2) for α = 0.5.

In [37], an entropy-preserving invariant scheme for gas dynamics equations in the case
of a polytropic gas with γ = 3 was proposed. This scheme conserves the entropy along
the pathlines but has only one conservation law, namely the conservation law of mass. It
seems that the conservation of entropy by the difference scheme usually leads to the “loss”
of some other conservation laws.

Here, we propose a way of preserving the entropy along the pathlines for polytropic
gas with integer values of adiabatic exponent γ > 2 for scheme (39). We show that this can
be done by choosing appropriate approximations of the state Equation (3).
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We note that by means of (3) and (36a), Equation (36g) can be represented as
the identity (

1
γ− 1

ργ−1
)

t
= ργ−2ρt. (45)

In the finite-difference case, the rules of differentiation are different. As a result, not
every approximation of the latter identity is a finite-difference identity. For a proper discrete
analogue of (45) the right hand side of the identity should also be expressed in the divergent
form as well as the left hand side. Choosing the difference approximation for the scheme
in the case of a polytropic gas, one has an additional “degree of freedom”: the choice of
approximation for the state Equation (3). This should be done so that both the left and right
hand sides of the resulting approximation for (45) are divergent expressions. Note that this
does not affect the conservativeness of the total energy conservation law equation since it
does not depend on any specific form of the equation of state.

Further, we consider the shifted version of Equation (38d)

ε̌t = − p̌(α)ǔ(0.5)
s = − p̌(α)

(
1
ρ̌

)
t
. (46)

First, we choose the following approximation of the state Equation (3) for γ = 2,

ε =
p(α)

ρ̂
. (47)

Substituting (47) into (46), one derives

p(α)

ρ̂
− p̌(α)

ρ
= −τ p̌(α)

(
1
ρ̌

)
t
. (48)

Solving with resect to p̌(α), one obtains

p̌(α) =
p(α)ρ̌

ρ̂
. (49)

The latter equation can be rewritten as

p(α)

p̌(α)
=

ρρ̂

ρ̌ρ
. (50)

Equation (50) can be integrated, i.e.,(
p̌(α)

ρρ̌

)
t

= St = 0. (51)

This means conservation of entropy S along pathlines for γ = 2 on two time layers.
We have achieved the integrability of the difference analogue of Equation (36g) by choosing
a suitable approximation for the state equation.

In a similar way one can arrive at the conservation of entropy for γ = 3, namely

ε =
ρp(α)

ρ̂(ρ̂ + ρ)
,

(
2p̌(α)

ρρ̌(ρ + ρ̌)

)
t

= 0. (52)

Similarly, for γ = 4

ε =
ρ2 p(α)

ρ̂(ρ̂2 + ρρ̂ + ρ2)
,

(
3p̌(α)

ρρ̌(ρ2 + ρρ̌ + ρ̌2)

)
t

= 0, (53)
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etc.
Thus, by induction, one establishes the following general formula for an arbitrary

natural γ > 2

ε =
p(α)

∑γ−2
k=0 ρ̂γ−k−1ρk−γ+2

,

(
(γ− 1) p̌(α)

∑γ−2
k=0 ργ−k−1ρ̌k+1

)
t

= 0. (54)

Entropy-preservation Formulas (54) are presented in Table 3 among the other conser-
vation laws.

Table 3. Differential and difference conservation laws for the modified scheme (39) (and the corre-
sponding system (36) for an arbitrary entropy S(s) in case σ→ ∞.

# Conservation Laws of the System Conservation Laws of the Scheme Physics Interpretation

1
(

1
ρ

)
t
− us = 0

(
1
ρ

)
t
−
(

u(0.5)
)

s
= 0 Mass conservation

2 †
(

Hy

ρ

)
t
− (H0v)s = 0

(
Hy

ρ

)
t
−
(

H0v
)

s = 0 Magnetic flux conservation

3 †
(

Hz

ρ

)
t
− (H0w)s = 0

(
Hz

ρ

)
t
−
(

H0w
)

s = 0 Magnetic flux conservation

4 ut +
(

p + (Hy)2+(Hz)2

2

)
s
= 0 ut +

(
p(α)− +

Hy
− Ĥy
−+Hz

− Ĥz
−

2

)
s
= 0 Momentum conservation

5 † vt − (H0Hy)s = 0 vt −
(

H0Hy
−

)
s
= 0 Momentum conservation

6 † wt − (H0Hz)s = 0 wt −
(

H0Hz
−
)

s = 0 Momentum conservation

7 (tu− x)t +
[
t
(

p + (Hy)2+(Hz)2

2

)]
s
= 0

(
t + ť

2
u− x

)
t
+[

t
(

p(α)− +
Hy
− Ĥy
−+Hz

− Ĥz
−

2

)]
s
= 0

Center of mass law

8 † (tv− y)t − (tH0Hy)s = 0 (tv− y)t −
(

t̂H0Ĥy
−

)
s
= 0 Center of mass law

9† (tw− z)t − (tH0Hz)s = 0 (tw− z)t −
(
t̂H0Ĥz

−
)

s = 0 Center of mass law

10

(
ε + u2+v2+w2

2 + (Hy)2+(Hz)2

2ρ

)
t
+

+
[(

p + (Hy)2+(Hz)2

2

)
u + Ey Hz − Ez Hy

−H0(vHy + wHz)
]

s = 0

(
ε̌ +

ǔ2+ǔ2
++v̌2+v̌2

++w̌2+w̌2
+

4 + Hy Ȟy+Hz Ȟz

2ρ

)
t

+
[(

p̌(α)∗ + (Hy Ȟy+Hz Ȟz)∗
2

)
ǔ(0.5)

−H0(v̌(0.5)Hy
∗ + w̌(0.5)Hz

∗)
]

s
= 0

Energy conservation

11 † (zv− yw)t +
(

H0(yHz − zHy)
)

s = 0. (zv− yw)t +
(

H0(ŷĤz
− − ẑĤy

−)
)

s
= 0 Angular momentum conservation

ε =
p(α)

∑γ−2
k=0 ρ̂γ−k−1ρk−γ+2

, γ ∈ N\{1}

12
(

p
ργ

)
t
= 0

(
(γ− 1) p̌(α)

∑γ−2
k=0 ργ−k−1ρ̌k+1

)
t

= 0 Entropy conservation

Remark 4. From the preservation of entropy St = 0 in the differential case it follows that (for
simplicity, we consider the specific case γ = 2)∫ T

0

(
p
ρ2

)
t
dt =

p(T, s)
ρ2(T, s)

− p(0, s)
ρ2(0, s)

= const. (55)

Since the constant can be omitted, this means

p(0, s)
ρ2(0, s)

=
p(T, s)
ρ2(T, s)

.

In the finite-difference case, by means of (51), one derives the following analogue of (55)

N

∑
k=0

(
αpn+k

m + (1− α)pn−1+k
m

ρn+k
m ρn−1+k

m

)
t

τ =
αpn+N

m + (1− α)pn−1+N
m

ρn+N
m ρn−1+N

m
− αpn

m + (1− α)pn−1
m

ρn
mρn−1

m
= 0,
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where N = dT/τe and we recall that p(α) = α p̂ + (1− α)p. Similar to the differential case, the
latter gives

αpn
m + (1− α)pn−1

m

ρn
mρn−1

m
=

αpn+N
m + (1− α)pn−1+N

m

ρn+N
m ρn−1+N

m

which means entropy preservation for a given liquid particle.

Remark 5. The approach described above can also lead to entropy conservation for rational values
of γ. Without proof of the existence of a general formula we present the result for γ = 5/3, which
occurs for one-atomic ideal gas. One can verify that for γ = 5/3 the approximation

ε = p(α)
ρ̂2/3 + (ρρ̂)1/3 + ρ2/3

ρ1/3ρ̂(ρ̂1/3 + ρ1/3)
=

3
2

p
ρ
+ O(τ) (56)

for the internal energy ε leads to the following preservation of entropy(
2
3

p̌(α)
ρ̌2/3 + (ρρ̌)1/3 + ρ2/3

ρρ̌(ρ̌1/3 + ρ1/3)

)
t

= 0. (57)

Remark 6. Note that in the case H0 = 0, according to Table 3, scheme (39) possesses an infinite
set of conservation laws for the following form{

Φ

(
(γ− 1)p(α)

∑γ−2
k=0 ρ̂γ−k−1ρk+1

,
Hy

ρ
,

Hz

ρ
, v, w, y− tv, z− tw

)}
t

= 0 (58)

where γ ∈ N\{1} and Φ is an arbitrary function of its arguments.

Remark 7. From (51) it follows that

p̌(α)

ρρ̌
− S = 0. (59)

The Taylor series expansion of the latter equation is

p
ρ2 − S +

[
pρt

ρ3 + (α− 1)
pt

ρ2

]
τ + O(τ2) = 0. (60)

Equation (43) for γ = 2 can be represented as

p(α)

(ρ(α))2
− ρ2

t
pt

= 0. (61)

The corresponding expansion is

p
ρ2 −

ρ2
t

pt
+

[
ρpt − 2ρt p

ρ3 α +
(ρt ptt − 2ptρtt)ρt

2p2
t

]
τ + O(τ2) = 0. (62)

Equations (61) and (59) approximate the conservation of entropy with the same order O(τ). In
contrast to (61), approximation (59) can be written in a divergent form. Thus, it represents a
conservation law of the scheme, while (61) does not. This gives an advantage in the case of isentropic
flows when additional conservation laws include entropy. Then, the expression for the entropy given
by Equation (59) can be considered as a constant and included in conserved quantities. Invariant
schemes and their conservation laws in the case of isentropic flows are discussed in the next section.
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3.2.3. On Specific Symmetries and Conservation Laws in the Case of Isentropic Flows
(S = const)

According to [1], in case S = p/ργ = const, Equations (36) admit the following
symmetries.

1. If H0 6= 0, the admitted Lie algebra is

X1 = ∂t, X2 = ∂s, X3 = ∂x, X4 = t∂x + ∂u,

X5 = z∂y − y∂z + w∂v − v∂w + Ez∂Ey − Ey∂Ez + Hz∂Hy − Hy∂Hz ,

X6 = t∂t + 2s∂s − u∂u − v∂v − w∂w + 2ρ∂ρ,

X7 = −s∂s + x∂x + y∂y + z∂z + u∂u + v∂v + w∂w − 2ρ∂ρ,

X8 = q1(s)∂y, X9 = q2(s)∂z, X10 = t∂y + ∂v, X11 = t∂z + ∂w,

(63)

where q1, q2 are arbitrary functions of s.
Scheme (39) supplemented by the state Equation (54) admits all the generators (63).

2. In case H0 = 0, the admitted Lie algebra is

X1 = ∂t, X2 = ∂s, X3 = ∂x, X4 = t∂x + ∂u, X5 = q3(s)(Hz∂Hy − Hy∂Hz),

X6 = t∂t + 2s∂s − u∂u + 2ρ∂ρ, X7 = −s∂s + x∂x + u∂u − 2ρ∂ρ,

X8 = 2s∂s + 2ρ∂ρ + p∂p + Hy∂Hy + Hz∂Hz .
(64)

In case γ = 2, there are two additional generators, namely

X9 = q4(s)ρ(∂Hy − Hy∂p), X10 = q5(s)ρ(∂Hz − Hz∂p). (65)

Here, q3, q4, and q5 are arbitrary functions of s.
Scheme (39), (54) admits all the generators (64). However, the scheme does not admit
the generators X9 and X10.

There are the following additional conservation laws for system (36).

(a) In case H0 6= 0, there is an additional conservation law that corresponds to the
generator ∂s(

u
ρ
+

vHy + wHz

H0ρ

)
t
+

(
γS

γ− 1
ργ−1 − u2 + v2 + w2

2

)
s
= 0. (66)

(b) Case H0 = 0.

• The conservation law corresponding to the generator ∂s is(
u
ρ

)
t
+

(
γS0

γ− 1
ργ−1 − u2

2
+ ρB0

)
s
= 0 (67)

provided

S0 = S = const and B0 =
(Hy)2 + (Hz)2

ρ2 = const. (68)

The latter follows from system (36). When conductivity of the medium tends to
infinity, the phenomenon of frozen-in magnetic field is observed (see, e.g., [41]).
In this case, in the absence of the longitudinal component H0 of the magnetic
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field, the quantity B0, which is proportional to the magnetic pressure, turns out
to be preserved along the pathlines.

• In case γ = 2, the admitted generator

5X6 + 3X7 − 4X8 (69)

corresponds to the conservation law(
5tρA0 + 5t

u2

2
− s

u
ρ
− 3xu

)
t
+

(
((5tu− 3x)ρ2 − 2sρ)A0 + s

u2

2

)
s
= 0 (70)

provided

A0 =

[
S

γ− 1
+

(Hy)2 + (Hz)2

2ρ2

]
γ=2

=
p
ρ2 +

(Hy)2 + (Hz)2

2ρ2 = const (71)

which follows from system (36).

Remark 8. Conservation law (70) is a basis one. Its partial derivative with respect to s is equivalent
to (67), and its partial derivative with respect to t is

A0(ρt + ρ2us) + u(ut + (A0ρ2)s) = 0 (72)

which is a combination of (36a) and (36b) provided (71).

By virtue of the content of Remark 6, one can verify that the finite-difference analogues
of (68) and (71) hold along the pathlines for scheme (39), namely(

(Hy)2 + (Hz)2

ρ2

)
t
= 0 or

(
Hy Ȟy + HzȞz

ρρ̌

)
t
= 0 if H0 = 0, (73)

and (
p(α)

ρ̌ρ
+

(Hy)2 + (Hz)2

2ρ2

)
t

= 0 or

(
p(α)

ρ̌ρ
+

Hy Ȟy + Hz Ȟz

2ρρ̌

)
t

= 0 if H0 = 0, γ = 2. (74)

Scheme (39) also admits the generators ∂s and (69) under the same conditions as for
the differential case.

Analyzing scheme (39), one can conclude that for the additional conservation laws (66),
(67), and (70) there are no approximations in terms of rational expressions. This means
that construction of finite difference analogues of the mentioned conservation laws is
extremely hard.

Further, we restrict ourselves to the case γ = 2 and S = S1 = const, and consider
another invariant scheme on an extended finite-difference stencil.

We introduce the pressure for the polytropic gas as

p = S1ρ̂ρ̂+. (75)

Then, the conservation law of entropy(
p̌

ρρ+

)
t
= (S1)t = 0 (76)

is defined by the following invariant expression

p
ρ̂ρ̂+

=
p̌

ρρ+
=

p̌−
ρρ−

=
p−

ρ̂ρ̂−
= S1. (77)
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The scheme under consideration is based on scheme (39) and it has the following form(
1
ρ

)
t
= u∗s , (78a)

ut = −
(

p +
Ĥy
+Ĥy + Ĥz

+Ĥz

2

)
s̄

, vt = H0Ĥy
s , wt = H0Ĥz

s , (78b)

(
Hy

ρ

)
t
= H0vs̄,

(
Hz

ρ

)
t
= H0ws̄, (78c)

p
ρ̂ρ̂+

=
p̌

ρρ+
=

p̌−
ρρ−

=
p−

ρ̂ρ̂−
= S1, (78d)

xt = u∗, y+t = v, z+t = w, xs =
1
ρ

. (78e)

One can verify that the latter scheme is invariant. It admits the same symmetries as
scheme (39) and (54). The following quantities hold for (78)(

Hy
+Hy + Hz

+Hz

ρρ+

)
t

= (B1)t = 0 if H0 = 0, (79)

(
p̌

ρρ+
+

Hy
+Hy + Hz

+Hz

2ρρ+

)
t

=
1
2
(2S1 + B1)t = 0 if H0 = 0, γ = 2. (80)

Scheme (78) possesses the difference analogues of (66) and (67), namely(
u
ρ
+

v∗Ĥy + w∗Ĥz

H0ρ̂

)
t
+

(
2ρ̂∗S1 −

uu− + v̂2
− + ŵ2

−
2

)
s

= 0, (81)

(
u
ρ

)
t
+
(

ρ̂∗(2S1 + B1)−
uu−

2

)
s
= 0. (82)

To construct the latter conservation law one should use the following relation

Ĥy
+Ĥy + Ĥz

+Ĥz

2
=

Ĥy
+Ĥy + Ĥz

+Ĥz

2ρ̂ρ̂+
=

1
2

ρ̂ρ̂+B1. (83)

Remark 9. The angular momentum and center of mass conservation laws are

(zv− − yw−)t +
(

H0(ŷĤz
− − ẑĤy

−)
)

s
= 0, (84)

(tu∗ − x)t +

(
t̂

[
p− +

Ĥy
−Ĥy + Ĥz

−Ĥz

2

]
∗

)
s

= 0, (85)

(tv− y+)t −
(

t̂H0Ĥy
)

s
= 0, (86)

(tu− z+)t −
(

t̂H0Ĥz
)

s
= 0. (87)

The remaining conservation laws of mass, momentum, magnetic flux, and entropy follow
directly from the scheme as it is written in a divergent form.

4. Numerical Experiments

In this section, we consider the problem of deceleration of a plasma bunch in a crossed
electromagnetic field under the presence and absence of a longitudinal component of
magnetic field. We use scheme (31), and consider how the conservation laws hold on the
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solutions of this scheme. In addition to the transverse component Hy of the magnetic field,
we also consider the case of the presence of a longitudinal magnetic field H0 6= 0.

A plasma bunch is considered, which moves from left to right in a railgun channel. The
channel is filled with a relatively cold weakly conducting gas. With the help of an external
electric circuit, a strong transverse magnetic field is generated in the channel, which causes
the bunch to decelerate. During its motion, the plasma bunch closes the electric circuit
and moves along the background gas; therefore, the magnetic field and pressure at the
left boundary of the computational domain are considered equal to zero. The differential
boundary conditions are as follows

p(0, t) = 0, Hy(0, t) = 0, Hz(0, t) = 0, (88a)

u(S, t) = 0, Ey(S, t) = 0, Hy(S, t) = 4π J(t), (88b)

L0
dJ
dt

+ R0 J −V(t) + Ez(S, t) = 0, (88c)

dV
dt

= −J/C0, V(0) = V0, J(0) = 0, (88d)

where 0 6 s 6 S and 0 6 t 6 tmax, S is the total mass of the gas, J and V are current and
voltage, and C0, L0, R0 are the external circuit parameters. The boundary conditions (88c)
and (88d) are approximated in the same way as in [13], namely

L0 Jt + R0 J(0.5) −V(0.5) + Ez
M
(0.5) = 0, Vt = −J(0.5)/C0, (89)

where M = bS/hc.
All calculations were carried out using the dimensionless version of scheme (31) with

the value of the coefficient κ = 4π. For the dimensionless form of the scheme, the initial
conditions are: ρ0 = 1.0, p0 = 0.0056, R0 = 1.17, C0 = 1.64, L0 = 0.0035, S = 4.0, the
temperature of the plasma T0 = 3.0, and the initial speed of the plasma bunch u0 = 0.75.
The gas is considered polytropic with γ = 5/3. The uniform mesh steps are h = 0.067
and τ = 0.003, and tmax = 0.7. The initial voltage V0 is varied between 1.67 and 2.6
which approximately correspond to the voltage 650 and 1000 V. In experiments where
the longitudinal magnetic field H0 is present, a value close to 1 is taken for H0. In the
calculations, a linear artificial viscosity is used, with a viscosity coefficient ν = 2h.

The problem under consideration is close to the problem described in [42] (see also [43])
in which, however, tabulated real plasma parameters, including electrical conductivity,
were used. In our problem, we used the ideal gas equation and an exponential conductiv-
ity function.

Scheme (31) is implemented using the iterative methods described in [13]. In this case,
the scheme equations are divided into two parts, dynamic and magnetic. The dynamic
part is preliminarily linearized using the Newton method, and for the magnetic part a
flow version of the sweep method is used [44], which is well suited for the case of finite
conductivity, especially when its values are small. The bunch motion is modeled by a shock
wave. Conductivity σ of the plasma bunch is proportional to T3/2, and the conductivity
function σ = σ(ρ, T) is very sensitive to the density ρ in such a way that in the rarefied
background gas region it has values close to zero.

Three essentially different cases are considered:

1. The bunch is decelerated using a transverse magnetic field Hy at a relatively low
voltage in the circuit.

2. The bunch is decelerated using a transverse magnetic field at a high voltage in
the circuit.

3. A rather strong longitudinal magnetic field H0 is added to the previous case. (Calculations
show that a weak longitudinal magnetic field has little effect on the experimental results.)

In all cases, at the initial moment of time, the gas particles are given a small constant
transverse velocity v > 0. This is necessary in order to track the influence of the longitudinal



Mathematics 2022, 10, 1250 19 of 24

magnetic field on the transverse component of the particle velocity, which should be
observed only in the third numerical experiment.

Figure 2 shows the evolution of the magnetic field and plasma temperature in the
first experiment. The magnetic field is not strong enough to stop the bunch. If the bunch
reaches the right boundary of the computational domain, the reflection of the wave can
be observed due to the boundary condition u(S, t) = 0. Figure 3 shows the second case
where the transverse magnetic field is strong enough. The plasma bunch is decelerated by
the magnetic field and after a short period of time begins to move backward. Adding a
sufficiently strong longitudinal magnetic field H0 to the previous experiment leads to an
intermediate picture: the magnetic field is “smeared” over the computational domain, the
plasma deceleration process is not as intense as in the previous case, and is inhomogeneous
along the mass coordinate, which leads to a kind of fragmentation of the temperature
profile (see Figure 4).

Figure 2. Evolution of the magnetic field Hy and the temperature T for the first experiment.

Figure 3. Evolution of the magnetic field Hy and the temperature T for the second experiment.

Figure 4. Evolution of the magnetic field Hy and the temperature T for the third experiment.

In Figures 5–7 the evolution of the work A = −p us performed on the gas and the
electromagnetic force f x in the direction of the x axis are shown. At the beginning of the
process at the shock wave front, A is positive, which corresponds to gas heating due to
compression. At the left boundary of the computational domain, A is negative, and the
rarefaction wave cools the gas. The electromagnetic force f is mainly localized in the front
part of the bunch. With an increase in the total current, the electromagnetic force increases,
which leads to the deceleration of the wave and further to its stop and reverse motion.
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Note that the component f y = H0Hy
s̄ appears only in the third experiment (H0 6= 0). Its

evolution is depicted in Figure 8. In addition, recall that, as follows from (31),

f x = −1
2

(
σ̂∗
ρ̂∗

(Êz Hy
∗ − Êy Hz

∗) +
σ∗
ρ∗

(EzĤy
∗ − Ey Ĥz

∗)

)
. (90)

Figure 5. Evolution of the electromagnetic force − f x and the work on gas A for the first experiment.

Figure 6. Evolution of the electromagnetic force − f x and the work on gas A for the second experiment.

Figure 7. Evolution of the electromagnetic force − f x and the work on gas A for the third experiment.

Figure 8. Evolution of the electromagnetic force f y for the third experiment (H0 > 0).

In Figure 9 the trajectories of particles under the action of magnetic fields are shown.
The left part (Figure 9a–c) shows x-trajectories of particles for three experiments. The right
side of the figure shows y-trajectories associated with the transverse velocity component v.
Figure 9d corresponds to the first and second experiments where v has a constant value
and H0 = 0. Figure 9e,f correspond to the third experiment at H0 > 0 and H0 < 0 where
under the action of the longitudinal magnetic field the transverse velocity component
increases or slows down accordingly. Note that the choice of sign of the value H0 otherwise
does not affect the results of the third experiment.
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Figure 9. The trajectories of particles under the action of magnetic fields: (a–c) show x-trajectories
for cases 1, 2, and 3; (d) y-trajectories for H0 = 0; (e) y-trajectories for H0 > 0; (f) y-trajectories
for H0 < 0.

In Figures 10–12 the finite-difference conservation laws of energy, magnetic flux
(along the y axis), momentum, and center-of-mass motion (along the x axis) are given
for the selected moment in time, when the interaction of magnetic fields and the plasma
bunch is already quite intense. The results are provided only for the third experiment,
since in other cases the control of conservation laws gives similar results. The accurate
enough preservation of the conservation laws on solutions is due to the conservativeness
of scheme (31).

Figure 10. Conservation laws of energy (solid line) and y-flux (dashed line) at t = 0.64.

Figure 11. Conservation law of x-momentum at t = 0.64.

Figure 12. Conservation law of center-of-mass along axis x at t = 0.64.
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5. Conclusions

Finite-difference schemes for MHD equations in the case of plane one-dimensional
flows were considered. The Samarsky–Popov classical scheme for the case of finite conduc-
tivity was taken as a starting point. Symmetries and conservation laws of this scheme were
investigated. It was shown that the scheme admits the same symmetries as the original
differential model. It also has difference analogues of the conservation laws of the original
model. In addition to the conservation laws previously known for the scheme, new con-
servation laws were given, which were obtained on the basis of the group classification
recently carried out in [1].

The classical Samarskiy–Popov scheme was generalized to the case of arbitrary vectors
of electric and magnetic fields, as well as to the case of infinite conductivity. In the case
of finite conductivity the scheme possesses difference analogues of all differential local
conservation laws obtained in [1], some of which were not previously known. In the case
of infinite conductivity, straightforward generalization of the scheme leads to a scheme that
does not preserve angular momentum. The proposed modification makes it possible to
obtain an invariant scheme that also possesses the conservation law of angular momentum.
In addition, it was shown how to approximate the equation of state for a polytropic gas to
preserve the entropy along the pathlines on the extended stencil for two time layers.

A numerical implementation of the generalized Samarsky–Popov scheme for the case
of finite conductivity was performed for the problem of deceleration of a plasma bunch
by crossed electromagnetic fields. Various cases of the action of fields on a plasma were
considered. Calculations showed that the finite-difference conservation laws are preserved
on the solutions of the scheme quite accurately.
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