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Abstract: We introduce Graphical TREX (GTREX), a novel method for graph estimation in high-
dimensional Gaussian graphical models. By conducting neighborhood selection with TREX, GTREX
avoids tuning parameters and is adaptive to the graph topology. We compared GTREX with stan-
dard methods on a new simulation setup that was designed to assess accurately the strengths
and shortcomings of different methods. These simulations showed that a neighborhood selection
scheme based on Lasso and an optimal (in practice unknown) tuning parameter outperformed other
standard methods over a large spectrum of scenarios. Moreover, we show that GTREX can rival
this scheme and, therefore, can provide competitive graph estimation without the need for tuning
parameter calibration.
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1. Introduction

Graphical models have become an important tool to find and describe patterns in
high-dimensional data ([1], Chapter 3). In biology, for example, graphical models have
been successfully applied to estimate interactions between genes from high-throughput
expression profiles [2,3], to predict contacts between protein residues from multiple se-
quence alignments [4], and to uncover the interactions of microbes from gene sequencing
data [5]. Graphical models represent the conditional dependence structure of the under-
lying random variables as a graph. Learning a graphical model from data requires a
simultaneous estimation of the graph and of the probability distribution that factorizes
according to this graph. In the Gaussian case, it is well known that the underlying graph is
determined by the non-zero entries of the precision matrix (the inverse of the population
covariance matrix). Gaussian graphical models have become particularly popular after
the advent of computationally efficient approaches, such as neighborhood selection [6]
and sparse covariance estimation [7,8], which can learn even high-dimensional graphical
models. Neighborhood selection, on the one hand, reconstructs the graph by estimating
the local neighborhood of each node via Lasso [9]. This approach is usually seen as a
proxy to the covariance selection problem [10]. On the other hand, References [7,8] showed
that the graph and the precision matrix can be simultaneously estimated by solving a
global optimization problem. State-of-the-art solvers are graphical Lasso [10] and the
Quadratic Approximation of Inverse Covariance (QUIC) method [11]. Both approaches can
be extended beyond the framework of Gaussian graphical models. To mention two of the
many examples, Reference [12] studied neighborhood selection for Ising models, and [13]
introduced a semi-parametric penalized likelihood estimator that allows for non-Gaussian
distributions of the data.
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Although the field has advanced tremendously in the past decade, there are still a
number of challenges, both from a practical and a theoretical point of view. First, the
conditions that are currently imposed [6,12,14,15] to show consistency in graph and/or
graphical model estimation are difficult to meet or verify in practice. Moreover, the per-
formance of any of the standard methods heavily depends on the simulation setup or
the data at hand [5,16,17]. Furthermore, standard neighborhood selection and covariance
estimation methods require a careful calibration of a tuning parameter, especially because
the model complexity is known a priori only in very few examples [4]. In practice, the
tuning parameters are calibrated via cross-validation, classical information criteria such as
the AIC and BIC [8], or stability criteria [18]. However, different calibration schemes can
result in largely disparate estimates [18].

To approach some of the practical challenges, we introduce Graphical TREX (GTREX),
a novel method for graph estimation based on neighborhood selection with TREX [19]. The
main feature of GTREX is that it can make tuning parameters superfluous, which renders
this method particularly useful in practice. We also introduce a novel simulation setup that
may serve as a benchmark to assess the strengths and shortcomings of different methods.

Our simulations showed that, if the tuning parameter is optimally chosen, standard
neighborhood selection with the “or-rule” outmatches other standard methods across a
wide range of scenarios. Our simulations also showed that GTREX can rival this method
in many scenarios. Since optimal tuning parameters depend on unknown quantities and,
therefore, are not accessible in practice, this demonstrates that GTREX is a promising
alternative for graph estimation in high-dimensional graphical models.

The remainder of the paper is structured as follows. After specifying the framework
and notation, we introduce GTREX in Section 2. We then describe the experimental
scenarios in Section 3 and present the numerical results in Section 4. We finally conclude in
Section 5.

Framework and Notation

We considered n samples from a p-dimensional Gaussian distribution NV, (0, X) with
positive-definite, symmetric covariance matrix ¥ € RP*?. The samples are summarized in
the matrix X € R"* such that X;; corresponds to the jth component of the ith sample. We
call Z~! the precision matrix and note that the precision matrix is symmetric.

The Gaussian distribution N},(0,%) can be associated with an undirected graph
G = (V,€),whereV = {1,...,p} is the set of nodes and £ = V x V the set of (undirected)
edges that consists of all pairs (i,]), (j,i) € V x V that fulfill i # jand (71);; # 0. We
denote by e;; (and equivalently by ej;) the edge that corresponds to the pair (i, j), (j, i) and
by s := |&| the total number of edges in the graph G.

We denote by supp(B) the support of a vector B, by a V b and a A b the maximum and
minimum, respectively, of two constants a,b € R, and by | - | the cardinality of a set.

In this paper, we focused on estimating which entries of the precision matrix £ ! are
non-zero from the data X. This is equivalent to estimating the set of edges £ from X. We
assessed the quality of an estimate £ via the Hamming distance to the true set of edges &
givenby dH(g,g) = |{61']‘ 1ejj € c‘f,ei]' ¢ 5} @) {eij :€jj ¢ 5,6,’]’ S 5}|

2. Methodology

Before introducing our new estimator GTREX, we first recall the definitions of graphi-

cal Lasso and of neighborhood selection with Lasso. For a fixed tuning parameter A > 0,
Graphical Lasso (GLasso) estimates the precision matrix ¥~ 1 from X according to: [10]

o

GLasso

€ argmin{ — log det(®) + trace(20) + A[|®|)1 },

where the minimum is taken over all positive-definite matrices © € RP*?, S:=XT"X/nis
the sample covariance matrix, and ||©||; := ijzl |@;;] is the sum of the entries of @. The
corresponding estimator for the set of edges £ is then:
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(C:’G/\Lasso = {el] : ‘(®(/}Lasso)ij| > O}’ (1)

This defines a family of graph estimators indexed by the tuning parameter A. To
assess the potential of GLasso, we define £ := £A"_, where A* is the tuning parameter
that minimizes the Hamming distance to the true edge set £. We stress, however, that the
optimal tuning parameter A* is not accessible in practice and that there are no guarantees
that standard calibration schemes provide a tuning parameter close to A*. Therefore, the
performance of £ is to be understood as an upper bound for the performance of GLasso.

Besides GLasso, we also considered neighborhood selection with Lasso. To this end,
we define for any matrix X € R" *?, n’ < n, and for any node k € V), the vector X¥ € R"”
as the kth column of X and the matrix X% € R *(P~1) as X without the kth column. For
a fixed tuning parameter A > 0, the estimates of Lasso for node k are defined according
to [9]:

Blisolk; X) € argmin{ [|X* — X3+ A|Bll1 }. @)
BER?
Br=0

The corresponding set of edges £, (with the “and-rule”) and £} (with the “or-rule”)
are then defined via Algorithm 1 following Meinshausen and Biithlmann [6]. (An interesting
alternative would be the symmetric approach in [20].) Similarly as above, we define the
optimal representative (in terms of the Hamming distance) of these families of estimators
as £, called MB(and), and £, called MB(or). Again, in practice, it is not known which

tuning parameters are optimal; however, MB(and) and MB(or) can highlight the potential
of neighborhood selection with Lasso.

Algorithm 1: Neighborhood selection with Lasso.

Data: X € R"*P, A > 0;
Result: EAH)‘nd, E'jr‘;
Initialize a matrix C := Opxp;
fork =1topdo

Compute B\, (k; X) according to (2);

Update the kth column CF of the matrix C
according to C* := B . (k; X);

end

Set the estimated sets to
En, = {eij: |Cij| V|Cji| > 0} and
EN = {ejj: |Cij| A|Cji| > 0};

We finally introduce Graphical TREX (GTREX). To this end, we considered TREX for
node k on a subsample X according to [19]:

o N
Pl %) € arﬂgéﬂi?i“{ XHT & xpw 1P '1}' ©
Bx=0

For a fixed number of bootstraps b € {1,2,...} and threshold t > 0, we then define
GTREX as the set of edges £ provided by Algorithm 2. The bootstrap part of the algorithm
might remind us of the stability selection method [21], but has a different focus: it concerns
the edge selection directly rather than the calibration of a tuning parameter.

For the actual implementation, we followed [19] and invoked that ||a||e = |||, for q
sufficiently large. We then used a projected sub-gradient method to minimize the objective:

G G 77
é’“‘{ R T - xp), P @
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which corresponds to (3).

Algorithm 2: GTREX.

Data: X e R"™*?, b e {1,2,...},t € [0,1];
Result: &, F € RP*P;
Initialize all frequencies F := 0,x;
fork =1topdo
for/ =1tobdo
Generate sequential bootstrap sample X of X;
Compute B(k; X) according to (3);
Update the frequencies for the edges adjacent
to node k
form =1topdo
if m € supp(B(k; X)) then
Fm = Frm + %;
end
end
end
end
Set the estimated set of edges to
&= {6‘1']' : Fl] \/F]'l' > t},‘

3. Experimental Scenarios

Besides the number of parameters p, the sample size 1, and the level of sparsity of

the graph, the graph topology can have a considerable impact on the performance of the
different methods [15]. For example, standard estimators require many samples for graphs
with many hub nodes (nodes that are connected to many other nodes). Reference [15]
presented a number of toy examples that confirmed these theoretical predictions. The
following experimental setup was motivated by these insights. We considered six different
graph topologies with varying hub structures, ranging from a single-hub case to Erd6s—
Rényi graphs:

1.

Single-hub graph:

The set of edges is first set to & = {ey; : j € {2,..., p} }. Until the number of edges s is
exhausted, edges are then uniformly at random added to &;

Double-hub graph

The set of edges is first set to & = {e1; : j € {2,...,p/2}} U{e(p/241)j 1 ] € {p/2+
2,...,p}}. Until the number of edges s is exhausted, edges are then uniformly at
random added to &;

Four-hub graph

The set of edges is first set to & = {ey;:j € {2,...,p/4}} U{e(yjarnyj i j € {p/4+
2,...,p/2 y Udearny 17 € {p/2+2,...,3p/4 y Ulepapn) o ] € {3p/4+
2,...,p}}. Until the number of edges s is exhausted, edges are then uniformly at
random added to &;

Four-niche graph:

Within each set of nodes {1,..., p/4},{p/4+1,..., 2p/4}, {2p/4+1,..., 3p/4},
p/4 — 1 edges are uniformly selected at random and added to the set of edges. Until
the number of edges s is exhausted, edges (connecting any nodes of the entire graph)
are then uniformly at random added to &;

Erd6s—Rényi graph:

Until the number of edges s is exhausted, edges are uniformly at random added to &;
Scale-free graph:

First, a set of edges is constructed with the preferential attachment algorithm [22]:
The set of edges is first set to £ = {e12}. For eachnodei € V' \ {1,2}, an edge ¢;; is
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then iteratively added to £ until the number of edges s is exhausted. The probability
of selecting the edge ¢;; is set proportional to the degree of node j € V (that is, the
number of edges at node j) in the current set of edges. One could also change this
probability; for example, one could weight the degree more heavily, that is put more
emphasis on nodes that already have edges connected to them. In general, the more
weight on the degree, the more the graphs look the same as hub graphs and, therefore,
the better the performance of our method relative to GLasso and MB.

Given a graph G that consists of a set of nodes V and a set of edges £ as described
above, a precision matrix > 1is generated as follows: The set of edges £ determines which
off-diagonal entries of the precision matrix £ ! are non-zero. The values of these entries
are independently sampled uniformly at random in [—@max, —@min] U [Amin, Amax] for some
Amax > Amin > 0. The diagonal entries of Y. ~1 are then set to a common value, which is
chosen to ensure a given condition number cond := cond(Z7!) (the ratio of the largest
eigenvalue to the smallest eigenvalue of Z71).

4. Numerical Results

We performed all numerical computations in MATLAB 2014a on a standard MacBook
Pro with a 2.8 GHz Dual-core Intel i7 and 16 GB 1600 MHz DDR3 memory. To compute the
GLasso paths, we used the C implementation of the QUIC algorithm and the corresponding
MATLAB wrapper [11]. We set the maximum number of iterations to 200, which ensured
the global convergence of the algorithm in our settings. To compute the Lasso paths for
the neighborhood selection schemes, we used the MATLAB internal procedure lasso.m,
which follows the popular glmnet R code. We implemented a neighborhood selection
wrapper mblasso.m that returns the graph traces over the entire path for the “and-rule”
and the “or-rule.” Both for GLasso and neighborhood selection, we used a fine grid of
step size 0.01 on the unit interval for the tuning parameter A, resulting in a path over
100 values of A. To compute TREX, we optimized the approximate TREX objective function
with g = 40 using Schmidt’s PSS algorithm implemented in L1General2_PSSgb.m. We
used the PSS algorithm with the standard parameter settings and set the initial solution
to the parsimonious all-zeros vector Byt = (0,...,0)7 € RP. We used the following
PSS stopping criteria: minimum relative progress tolerance optTol = 1 x 1077, minimum
gradient tolerance progTol = 1 x 10~?, and maximum number of iterations maxlter = 0.2p.
We implemented a wrapper gtrex.m that integrates the nodewise TREX solutions and
returns the frequency table for each edge and the resulting graph estimate. We used
b = 31 bootstrap samples in B-TREX; increasing the number of bootstraps did not result in
significant changes of the GTREX solutions.

We generated the graphical models as outlined in Section 3. We set the number of
nodes to p € {100,200}, the number of edges to s = p — 1, the bounds for the absolute
values of the off-diagonal entries of the precision matrix to amin = 0.2 and amax = 1, and
the condition number to cond = 100. We then drew n € {p,2p,4p, 10p} samples from the
resulting normal distribution and normalized each sample to have the Euclidean norm
equal to \/n. We measured the performance of the estimators in terms of the Hamming
distance to the true graph and in terms of the Precision/Recall. We stress that for GLasso,
MB(or), and MB(and), we selected the (in practice unknown) tuning parameter A that
minimizes the Hamming distance to the true graph. For GTREX, we set the frequency
threshold to t = 0.75; however, it turned out that GTREX is robust with respect to the choice
of the threshold. For each graph, we report the averaged results over 20 repetitions.

The results are summarized in Figure 1 and in Tables 1-3. The results with respect
to the Hamming distance in Figure 1 provide three interesting insights: First, GLasso
performed poorly in the Hamming distance for all considered scenarios. We suspect that
this is connected with the chosen value for the condition of the precision matrix. Second, we
observed marked differences between MB(and) and MB(or). In particular, the two methods
had a similar performance in the scenarios with the four-niche and the Erdos—Rényi graphs,
but a completely different performance in the scenarios with the hub graphs. Third, GTREX
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Figure 1. Hamming distances of the true graphs to GLasso, MB(or), and MB(and) with optimal tuning
parameter A* and to GTREX as a function of the sample size n. In the top row, examples of the
corresponding graphs are displayed.

We also note that neither GTREX nor its competitors worked reasonably well when
p > n in our simulation framework. In general, we recommend using graphical modeling
with care when p is larger than n.

TREX does not contain a tuning parameter, but one can argue that the frequency
threshold f could be adapted to the model or the data and, therefore, plays the role of a
tuning parameter in GTREX. However, the above results demonstrate that the universal
value t = 0.75 works for a large variety of scenarios. Moreover, GTREX is robust with
respect to the choice of ¢. This is illustrated in Figure 2, where for two scenarios, we report
the Hamming distances of GTREX to the true graphs as a function of f. We observed that
the Hamming distances were similar over wide ranges of t. In the same figure, we also
report the Hamming distances of the standard methods to the true graphs as a function
of the tuning parameter A. We see that these paths have narrow peaks, which suggests
that the tuning parameters of GLasso and of neighborhood selection with Lasso need to be
carefully calibrated.

Note that the results especially of Figure 1, including the tuning of the standard
methods, were based on the Hamming distance as a measure of accuracy. We chose the
Hamming distance, because it is a very general and widely accepted measure and, most
importantly, readily comparable across different setups. However, different measures of
accuracy could give different results, for example in terms of how the false estimates split
into false positives and false negatives.
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Figure 2. Paths over the tuning parameter A in GLasso, MB(or), and MB(and) and paths over the

threshold t in GTREX.
Table 1. Precision and Recall for the single-hub graph with apyj, = 0.2, amax = 1,5 = p— 1, and
cond = 100.
n =100, p = 100
Method P R
GLasso 0.99 0.35
MB(or) 0.99 0.48
MB(and) 0.99 0.49
GTREX 0.99 0.13
n =500, p = 100
Method P R
GLasso 0.99 0.59
MB(or) 0.99 0.87
MB(and) 0.99 0.92
GTREX 1.00 0.99
n =200, p = 200
Method P R
GLasso 1.00 0.25
MB(or) 1.00 0.30
MB(and) 1.00 0.29
GTREX 0.99 0.05
n = 1000, p = 200
Method P R
GLasso 1.00 0.44
MB(or) 1.00 0.58
MB(and) 1.00 0.59
GTREX 1.00 0.60
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Table 2. Precision and Recall for the four-hub graph with anin = 0.2, 4max = 1,5 = p—1, and

cond = 100.

n =100, p = 100

Method P R
GLasso 1.00 0.17
MB(or) 1.00 0.55
MB(and) 0.99 0.59
GTREX 0.99 0.26
n =500, p = 100
Method P R
GLasso 0.99 0.19
MB(or) 1.00 0.86
MB(and) 1.00 0.93
GTREX 1.00 0.80
n =200, p = 200
Method P R
GLasso 1.00 0.15
MB(or) 1.00 0.36
MB(and) 1.00 0.40
GTREX 1.00 0.20
n = 1000, p = 200
Method P R
GLasso 0.99 0.17
MB(or) 1.00 0.54
MB(and) 1.00 0.57
GTREX 1.00 0.53

Table 3. Precision and Recall for the Erdés—Rényi graph with apyin = 0.2, dmax = 1, s

cond = 100.

=p-1and

n =100, p = 100

Method P R
GLasso 1.00 0.31
MB(or) 1.00 0.61
MB(and) 0.99 0.69
GTREX 0.99 0.36
n =500, p = 100
Method P R
GLasso 0.99 0.42
MB(or) 1.00 0.89
MB(and) 1.00 0.94
GTREX 1.00 0.71
n =200, p = 200
Method P R
GLasso 1.00 0.30
MB(or) 1.00 0.43
MB(and) 1.00 0.46
GTREX 1.00 0.34
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Table 3. Cont.

n = 1000, p = 200

Method P R

GLasso 0.99 0.42
MB(or) 1.00 0.57
MB(and) 1.00 0.58
GTREX 1.00 0.45

Note finally that there has been recent progress in the computational aspects of
TREX. Reference [23] introduced a new algorithm that is guaranteed to converge to a
global optimum (even though it is a non-convex problem) and requires solving at most
p reasonably simple subproblems. Reference [24] developed this idea further in the
context of prospective functions. In any case, the computational costs of GTREX are
|V| x b x (costs of solving Equation (3)). In our current non-convex implementation, solv-
ing Equation (3) took about a second; in a convex implementation, it took about half a
second—cf. ([23], Figure 3), and ([24], Figure 1). Hence, estimating a graph in our cur-
rent simulations took about one hour on a single CPU (of course, the algorithm can be
parallelized very easily).

5. Conclusions

We introduced a new method for graph estimation in high-dimensional graphical
models. Unlike any other method, our estimator avoided the tuning parameter, which
is usually part of the regularizer. Beyond establishing the mere fact that this is possible
to begin with, we made two main contributions: First, since the method rivals standard
methods even if they are calibrated with an optimal, in practice unknown tuning parameter,
our paper can directly lead to more accurate estimation in practice.

Second, deriving statistical theory for tuning parameter calibration has turned out to
be very difficult in all parts of high-dimensional statistics. Recent developments focused
mainly on linear and logistic regression [25,26]. For graphical modeling, standard esti-
mators are currently not equipped with a rigorously justified tuning scheme. We have
not established a statistical theory for GTREX yet, but it has been shown recently that
the TREX idea can provide new ways to establish such a theory [27]. Hence, we hope
that our approach can indeed be complemented with comprehensive statistical theories in
future research, thereby furthering the mathematical understanding of graphical modeling
in general.
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