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Abstract: Blind image deblurring (BID) is a long-standing challenging problem in low-level image
processing. To achieve visually pleasing results, it is of utmost importance to select good image priors.
In this work, we develop the ratio of the dark channel prior (DCP) to the bright channel prior (BCP) as
an image prior for solving the BID problem. Specifically, the above two channel priors obtained from
RGB images are used to construct an innovative sparse channel prior at first, and then the learned
prior is incorporated into the BID tasks. The proposed sparse channel prior enhances the sparsity
of the DCP. At the same time, it also shows the inverse relationship between the DCP and BCP. We
employ the auxiliary variable technique to integrate the proposed sparse prior information into the
iterative restoration procedure. Extensive experiments on real and synthetic blurry sets show that the
proposed algorithm is efficient and competitive compared with the state-of-the-art methods and that
the proposed sparse channel prior for blind deblurring is effective.

Keywords: blind image deblurring; image prior; sparse channel; sparsity

MSC: 68U10

1. Introduction

The goal of blind image deblurring is to restore a sharp image and a blur kernel
from the input degraded image. The degradation types include motion blur, noise, out-
of-focus and camera shake. Assuming that the blur is uniform and spatially invariant, the
mathematical formulation of the blurring process can be modeled as

b = l ∗ k + n (1)

where b is the blurry input, k is the blur kernel and n is the additive noise. The ∗ denotes
the convolution operator. This problem is highly ill-posed because both the latent sharp
image l and blur kernel k are unknown. In order to make this problem well-posed, most
existing methods utilize the statistics of natural images to estimate the blur kernel. For
example, a heavy-tailed distribution [1], patch recurrence prior [2], nuclear norm [3,4],
low-rank prior [5], sparse prior [6], multiscale latent prior [7] or additional information of a
specific image [8–10] have been used to estimate a better kernel.

Strong sparsity of image intensity and gradient has been widely used in low-level
computer vision processing problems. It also has mature applications in the field of image
deblurring [6,11–13], such as the L1/L2 [14] norm, the reweighted L1 norm [15], the L0
norm prior [16–19] and the sparse prior–local maximum gradient (LMG) [20]. For favoring
clear images over blurry ones, the edge selection method [21–23] is embedded in the blind
deconvolution framework. However, strong edges are not always available in many cases.
The channel prior was introduced by He et al. for image defogging in Ref. [24]. Then,
Pan et al. [18] enforced the sparsity of the dark channel by the L0 norm for kernel estimation.
Unfortunately, this prior does not work well on images with large noise and large numbers
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of pixels. To solve this problem, Yan et al. [19] proposed an extreme channel prior (ECP)
which utilizes both the dark channel and bright channel for estimating the blur kernel.

In this paper, a novel sparse channel prior is proposed for blind image deblurring.
Inspired by [18,19,24], we take the advantages of the DCP and BCP to construct a con-
frontation constraint D/B. We prove its characteristic from a mathematical perspective
and explore how these properties can be used to estimate the blur kernel. In the proposed
algorithm, the optimization of the proposed prior is a challenging problem. We use the idea
of auxiliary variables and the alternating minimization method to decompose the problem
into independent subproblems optimised by the alternating direction minimization (ADM)
method. The main contributions of this work can be stated as follows:

• A new D/B prior is presented for kernel estimation, which fully explores the relation-
ship between the DCP and BCP. We also verify the effectiveness of D/B.

• We develop an effective optimization strategy for kernel estimation based on the idea
of auxiliary variables and the alternating direction minimization (ADM) method.

• Experiments on four databases show that the proposed method is competitive com-
pared with the state-of-the-art blind deblurring algorithms.

The rest of this paper is organized as follows. Section 2 introduces the related work.
The proposed D/B is detailed in Section 3. Our blind deblurring model and optimization
strategy are presented in Section 4. Section 5 shows the experimental results. Further
discussion of our proposed deblurring algorithm is given in Section 6. Section 7 summarizes
this paper.

2. Related Work

Blind image deblurring algorithms have made great progress due to the use of the
proper kernel estimation model. In this part, we introduce the methods related to our work
in an appropriate context.

The success of many blind image deblurring algorithms is based on the use of the
statistical characteristics of the image intensity and gradient. Krishnan et al. [14] presented
the L1/L2 norm based on the sparsity of image intensity. The L1/L2 norm is a normalized
version of L1, which enhances the sparsity of L1. Levin et al. [1] observed the heavy-tailed
distribution of image intensities and introduced a maximum posteriori (MAP) framework.
Shan et al. [25] introduced a probability model to fit the sparse gradient distribution of a
natural image. Pan et al. [16] developed a method in which both intensity and gradient are
regularized by the L0 norm for text image deblurring. These methods are limited by the
modeling of more complex image structures and contexts.

Another group of blind image deblurring methods [22,23] employs a significant edge
detection step for kernel estimation. Specifically, Cho et al. [21] predicted sharp edges
by the bilateral and shock filters. Joshi et al. [26] detected image contours by locating
the subpixels’ extrema. These methods cannot capture the sparse kernel and structures,
which makes the restored image blurry and noisy sometimes. To solve these problems,
researchers have proposed many better models to estimate the blur kernel. Xu et al. [27]
presented a two-phase kernel estimation algorithm, which separates kernel initialization
from the iterative support detection (ISD)-based kernel refinement step, giving an efficient
estimation process and maintaining many small structures. Zoran and Weiss [28] proposed
the expected patch log likelihood (EPLL) method, which imposes a prior on the patches of
the final image. However, this will iteratively restore the degradation. Vardan et al. [29]
exploited the multiscale prior to further improve the EPLL and reduce the error to that
of the global modeling. Bai et al. [7] developed a multiscale latent structures (MSLS)
prior. Based on the MSLS prior, their deblurring algorithm consists of two stages: sharp
image estimation in the coarse scales and a refinement process in the finest scale. For the
patch-based methods, global modeling is a difficult problem.

With the rapid development of the deep learning method, remarkable results have
been achieved in the field of blind image deblurring [30–34]. For example, convolutional
neural networsk (CNN) [35], Wasserste generative adversarial networks (GAN) [36], deep
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hierarchical multipatch networks (DMPHN) [37], ConvLSTM [38] and scale-recurrent
networks (SRN) [39] are all designed for image deblurring. Zheng et al. [40] presented
an edge heuristic multiscale GAN, which utilizes the edge’s information to conduct the
deblurring process in a coarse-to-fine manner for nonuniform blur. Liang et al. [41] learned
novel neural network structures from RAW images and achieved superb performance.
Chang et al. [42] proposed a long–short-exposure fusion network (LSFNet) for low-light
image restoration by using the pairs of long- and short-exposure images. The success of
deep-learning-based methods mainly relies on the consistency between training and test
data, which limits the generalization ability of these methods.

Recently, the classical dark channel prior (DCP) has been proved effective for image
deblurring. The DCP was introduced by He et al. [24] for image defogging. It is based on
the observation that there is at least one color channel that has very low and close-to-zero
pixel values on outdoor haze-free nonsky image patches. Pan et al. [18] further found
that most elements of the dark channel are zero for nature images and then enhanced the
sparsity of dark channel for image deblurring. Inspired by the DCP, the bright channel
prior (BCP) is proposed. That is, in most of nature patches, at least one color channel has
very high pixel values. Yan et al. [19] used the simple addition of the DCP and BCP to
form an extreme channel prior (ECP) for a blind image deblurring algorithm. However, the
relationship between the BCP and DCP is not fully explored in the ECP.

3. Proposed Sparse Channel Prior

To explain that the proposed sparse channel vary after blurring, we model the blurring
process as described in [43]. For an image I, consider the noise is small enough to be
neglected. We have:

b(x) = ∑
z∈Ψ(x)

l
(

x +
[m

2

]
− z
)

k(z) (2)

where x and m denote the coordinates of the pixel and the size of the blur kernel k, respec-
tively. Ψ(x) represents an image patch centered at x, ∑z∈Ψ(x) k(z)= 1 and k(z) ≥ 0. [·] is a
rounding operator.

Inspired by the two channels (dark and bright channels) and the statistics of images,
we observe that when the dark channel is more different from the bright channel of one
image patch, the edges are more salient, which is helpful to estimate an accurate blur kernel.
To formally describe this observation, the proposed sparse channel prior is defined by:

R(x) = miny∈Ψ(x)

(
minc∈(r,g,b)(Ic(y))

)
/
(

maxy∈Ψ(x)

(
maxc∈(r,g,b)(Ic(y))

)
+ ε
)

=D(x)/(B(x) + ε)

(3)

where x and y denote the coordinates of the pixel, ε is a non-negative constant and Ψ(x)
represents an image patch centered at x. Ic is the c-th color channel of image I. As
described in Equation (3), B(x) = maxy∈Ψ(x)

(
maxc∈(r,g,b)(Ic(y))

)
represents the BCP and

D(x) = miny∈Ψ(x)

(
minc∈(r,g,b)(Ic(y))

)
represents the DCP. Dark channels are obtained

by two minimization operations: minc∈(r,g,b) and miny∈Ψ(x). The bright channel is obtained
by two maximization operations: maxc∈(r,g,b)and maxy∈Ψ(x). In the implementations of the
DCP and BCP, if I is a gray image, then only the latter operation is performed. A small
value of R(x) implies there are salient edges in the image patch. On the contrary, a large
R(x) implies that there are fine structures in an image patch. The reason is that when the
edge is salient, the pixel values are more different between the two sides of edges. It means
that the minimum value is more different from the maximum value of the image patch.
Conversely, when the difference between the DCP and BCP is not that large, the image
edge is unclear, and the value of R(x) is large. Therefore, it is natural to think that if the
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DCP is equal to or slightly smaller than the BCP, small edges can be accurately removed by
minimizing Equation (3).

Consider a natural image that was blurred by a blur kernel. Blur reduces the maximum
pixel value and increases the minimum pixel value of one patch. In other words, the
DCP of one patch will increase and the BCP will decrease. Let R(b) and R(l) denote the
proposed sparse channel of the blurred and clear image, respectively, when the l(x) =
maxy∈Ψ(x)l(y) = miny∈Ψ(x)l(y), R(b)(x) ≥ R(l)(x). To further apply this proposition to
the definition of the proposed sparse channel, we have:

R(b)(x)=
miny∈Ψ(x)

(
minc∈(r,g,b)(bc(y))

)
maxy∈Ψ(x)

(
maxc∈(r,g,b)(bc(y))

)
+ ε

=
miny∈Ψ(x) b(y)

maxy∈Ψ(x) b(y) + ε

=
miny∈Ψ(x) ∑z∈Φ(x) l

(
y +

[m
2
]
− z
)
k(z)

maxy∈Ψ(x) ∑z∈Φ(x) l
(
y +

[m
2
]
− z
)
k(z) + ε

≥
∑z∈Φ(x) miny∈Ψ(x) l

(
y +

[m
2
]
− z
)
k(z)

∑z∈Φ(x) maxy∈Ψ(x) l
(
y +

[m
2
]
− z
)
k(z) + ε

≥
∑z∈Φ(x) minŷ∈Ψ̂(x) l

(
ŷ +

[m
2
]
− z
)
k(z)

∑z∈Φ(x) maxŷ∈Ψ̂(x) l
(
ŷ +

[m
2
]
− z
)
k(z) + ε

=
minŷ∈Ψ̂(x) l(ŷ)

maxŷ∈Ψ̂(x) l(ŷ) + ε

=R(l)(x)

(4)

Let m̂ and SΨ denote the size of Ψ̂(x) and Ψ(x), respectively. Then we have m̂ = SΨ + m.
Equation (4) shows that R(x) of the image patch centered at x after blurring is no less than
the value of the original image patch centered at x.

Equation (4) proves R(l)(x) ≤ R(b)(x). This means that after blurring, the difference
between the DCP and the BCP is smaller than that of the corresponding patch in a sharp
image. In other words, R(x) always favors the sharp image. We further validate our
analysis on the dataset [44]. Figure 1a–c show the histogram of the average number of
dark channel pixels, bright channel pixels and D/B channel pixels, respectively. As can be
observed, a large portion of the pixels in the dark channels and bright channels possess
very small or large values, and our D/B channel pixels possess smaller values than those
of the DCP and BCP. As shown in Figure 1, the proposed sparse channels of clear images
have significantly more zero elements than those of blurred images. Thus, the sparsity of
the proposed channel is a natural metric to distinguish clear images from blurred images.
This observation motivates us to introduce a new regularization term to enforce sparsity of
the proposed channels in latent images.

Proposed Sparse Channel as an Image Prior

Equation (4) shows that after blurring, the difference between the DCP and BCP is
smaller than that of the corresponding patch in a sharp image. Therefore, in order to
generate sharp and reliable salient edges, we propose a novel sparse channel prior which
combines the D/B and L0 norm:

P(x) =
‖D(x)‖0
‖B(x)‖0 + ε

(5)
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(a) (b) (c)

Figure 1. The statistics of the DCP, the BCP and our proposed D/B prior: (a–c) average channel
pixels distribution of bright, dark and our D/B, respectively.

We define P(x) as a D/B prior, and the L0 norm is used for sparsity. Let Ψ(x) denote
one patch of the image I. If there exist some pixels x ∈ Ψ(x) such that I(x) = 0, we have

P(b)(x) ≥ P(l)(x) (6)

where P(b)(x) and P(l)(x) denote the D/B prior of the blurred and clear image, respectively.
This property directly follows from Equation (4). In the framework of MAP, by minimizing
the sparse prior P(x), we obtain a result that favors a sharp image. This property is also
validated using dataset [44]. As shown in Figure 1c, the average number of D/B channels
in clear images has significantly more zero elements than that of blurred ones.

4. Proposed Blind Deblurring Model

Based on the proposed D/B prior, we construct the blind deblurring model under the
maximum a posteriori (MAP) framework.

argminl,k‖l ⊗ k− b‖2
2 + µP(l) + ϑ‖∇l‖0 + γ‖k‖2

2 (7)

where P(l) is our proposed prior, ∇ denotes the gradient operation and µ, ϑ and γ are
non-negative weights. The data-fitting term of our model ensures that the latent sharp
image is consistent with the observed image. ‖∇l‖0 is the L0 norm of the image gradient,
which is used to suppress ringing and artifacts. Finally, we use the L2 norm to increase the
sparsity of the blur kernel.

4.1. Optimization

In this part, we adopt the ADM method to obtain the solution to the objective function.
By using the idea of alternating optimization, we can obtain two independent subproblems
about l and k, respectively:

argminl‖l ⊗ k− b‖2
2 + µ

‖D(l)‖0
‖B(l)‖0 + ε

+ ϑ‖∇l‖0 (8)

and
argmink‖l ⊗ k− b‖2

2 + γ‖k‖2
2 (9)

Equation (9) is a classical least squares problem with respect to k. By introducing the
auxiliary variable g, which is related to ∇l, Equation (8) can be written as follows:

argminl,g‖l ⊗ k− b‖2
2 + λ‖∇l − g‖2

2 + µ
‖D(l)‖0
‖B(l)‖0 + ε

+ ϑ‖g‖0 (10)
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Equation (10) can be decomposed into:

argminl‖l ⊗ k− b‖2
2 + λ‖∇l − g‖2

2 + µ
‖D(l)‖0
‖B(l)‖0 + ε

(11)

and
argmingλ‖∇l − g‖2

2 + ϑ‖g‖0 (12)

Equation (12) is an L0 norm minimization problem for g.

4.2. Estimating Intermediate Image l

For the k-th iteration, we consider B(l) estimated in the (k − 1)-th iteration as a
constant. Denoting

wk = µ/(‖B(l)‖0 + ε) (13)

Equation (11) can be rewritten as follows:

argminl‖l ⊗ k− b‖2
2 + λ‖∇l − g‖2

2 + wk‖D(l)‖0 (14)

By introducing an auxiliary variable, p, which is related to D(l), Equation (14) can be
reformulated as follows:

argminl,p‖l ⊗ k− b‖2
2 + ξ‖D(l)− p‖2

2 + λ‖∇l − g‖2
2 + wk‖p‖0 (15)

Using the idea of alternating optimization, we can obtain two independent subprob-
lems to solve for l and p, respectively:

argminl‖l ⊗ k− b‖2
2 + ξ‖D(l)− p‖2

2 + λ‖∇l − g‖2
2 (16)

and
argminpξ‖D(l)− p‖2

2 + wk‖p‖0 (17)

Equation (16) contains all quadratic terms, and we can obtain its solution by the least
squares method. In each iteration, the FFT (Fast Fourier Transform) is used to accelerate
the computation process. Its closed-form solution is given as follows:

l = F−1

(
F (k)F (b) + ξF (p) + λFg

F (k)F (k) + λF (∇)F (∇) + ξ

)
(18)

where Fg =
(
F (∇v)F (gv) +F (∇h)F (gh)

)
and F (·) and F−1(·) are the Fast Fourier

Transform (FFT) and its inverse, respectively. F (·) denotes the complex conjugate operator
of FFT and ∇v and ∇h are gradients in the vertical and horizontal directions, respectively.

4.3. Estimating p and g

Equations (12) and (17) are minimization problems of the L0 norm. Due to the difficulty
of solving the L0 norm minimization problem, we adopt the method described in Ref. [13].
As a result, the solution of Equation (17) can be expressed as:

p =

{
D(l), D(l) ≥ wk

ξ

0, otherwise
(19)

Given l, the solution of Equation (12) can be expressed as:

g =

{
∇l, |∇l|2 ≥ ϑ

λ
0, otherwise

(20)
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4.4. Estimating Blur Kernel k

Since the updating of the blur kernel is an independent subproblem, we estimate k in
the gradient space. Specifically, we obtain the solution to the blur kernel by minimizing the
following problem though the known intermediate image l:

mink‖∇l ⊗ k−∇y‖2
2 + γ‖k‖2

2 (21)

where ∇ denotes the gradient operation. Note that we use Equation (21) to estimate the
blur kernel instead of Equation (9), which helps to suppress ringing artifacts and eliminate
noise. The closed-form solution to Equation (21) is obtained by FFT.

k = F−1

(
F (∇l)F (∇y)
F (∇l)F (∇l) + γ

)
(22)

The coarse-to-fine strategy is used in the process of blur kernel estimation, which is
similar to that used in [26,45]. In the process of solving the problem, it is very important to
restrict the small values of the blur kernel by thresholding at fine scale, which enhances the
robustness of the algorithm to noise.

4.5. Estimating Latent Sharp Image

Although the latent sharp images can be estimated from Equation (18), this formulation
is less effective for fine-texture details. For the purpose of suppressing ringing and artifacts,
we fine-tune the final restored image. With the estimated blur kernel and blur input image
y, we can use the nonblind deconvolution method to obtain the final latent sharp image
llatent. Algorithm 1 summarizes the main steps of the final latent sharp image restoration
method. Firstly, we estimate the restored image lh by the method in Ref. [46] using the
hyper-Laplacian prior. Then we restore image lr according to the method in Ref. [47] using
the total variation prior. Finally, the latent sharp image llatent is calculated by the average of
the two restored images, i.e., llatent = (lh + lr)/2. The main steps of our proposed algorithm
are summarized as Algorithm 2.

Algorithm 1 Final latent sharp image restoration.
Input: Blurry image b and estimated kernel k.

1: Estimate latent image lh by using the method described in [46] with Laplacian prior;
2: Estimate latent image lr by using the method described in [47] with total variation prior;

3: Restore the final sharp image llatent:
llatent = (lh + lr)/2.

Output: Sharp latent image llatent.

Algorithm 2 The proposed blind deblurring algorithm.
Input: Blurry image y;

1: Initialize the intermediate image l and blur kernel k;
2: Estimate blur kernel k from b;
3: Alternately calculate l and k by the manner of coarse-to-fine levels:
4: Estimate intermediate image l by Equation (18);
5: Estimate blur kernel k by Equation (22);
6: Interpolate solution to finer level as initialization;
7: Calculate the latent sharp image according to Algorithm 1.

Output: Sharp latent image llatent.

We first initialize the intermediate image l and blur kernel k according to the blurry
input. Then we alternately update l and k. In order to avoid falling into a local minimum,
our algorithm is executed in a coarse-to-fine manner. The results of the coarse layer are
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up-sampled with the bilinear interpolation method as the initialization of the next fine layer.
Finally, a latent sharp image is obtained by Algorithm 1 with the estimated blur kernel.

5. Results

We examine our method and compare it with the state-of-the-art BID methods on
different image datasets, including a synthetic image dataset and real-world blurred images.
We then evaluate the quality of deblurring models by different metrics, including the peak
signal-to-noise ratio (PSNR, unit: dB), which is a measure of image quality, and cumulative
error ratio (CER). The higher the CER value, the better the model.

In all the experiments, the parameter settings of our model are as follows: µ = ϑ = 0.003,
γ = 2 and the size of image patch to compute the D/B channel is set to be 35. The maximum
iteration is empirically set to 5 as a trade-off between accuracy and speed.

5.1. Synthetic Image Deblurring

We first test our method on the synthetic image dataset [44] for quantitative evalua-
tions. This dataset includes 4 ground truth images and 12 different kernels. We compare
our results with the state-of-the-art methods [11,14,18,19,21,27,48]. Our algorithm performs
well with other methods on this benchmark dataset. Additionally, we present a challenging
example in Figure 2. We record the largest PSNR calculated by comparing each restored
result with 199 ground truth images captured along the camera shake trajectory in Figure 3.
Since the proposed method considers not only BCP and DCP information but also the
relationship between them, the PSNR values of the restored images achieved by our method
are higher than those of the state-of-the-art algorithms [11,14,18,19,25,45,48–50].

Figure 2. Visual comparison of the results using one challenging image from dataset [44]. The image
(a) is blurry input; (b–h) are deblurring results of Ref. [21], Ref. [27], Ref. [14], Ref. [48], Ref. [18],
Ref. [19] and our proposed method, respectively.

We also test our algorithm against the competing methods [6,14,18,19,21,48,51,52]
on another benchmark dataset [12], which includes four ground truth images and eight
different kernels. One example is shown in Figure 4 with a visual result comparison against
the state-of-the-art methods [18,19]. Although the image restored by Pan et al. [18] performs
well against other approaches, the generated image still contains significant fake textures
and blur regions in Figure 4b. The algorithm proposed by Yan et al. [19] considers both the
DCP and BCP, but the generated result still has unclear edges, as Figure 4c shows. However,
our method generates a sharp image with fine textures, as shown in Figure 4d. We can
observe that the result is more visually pleasing than that of others. The main reason is
that the enhanced edges in local patches help to remove the small textures and fine details.
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Figure 5a plots the cumulative error ratios of our method and the other competing methods.
Note that our D/B-based method outperforms state-of-the-art algorithms by 100% under
error ratio 2. All the experimental results consistently show that our method is competitive
on this dataset.

Figure 3. Quantitative evaluations on benchmark dataset [44]. Our method performs competitively
against the state-of-the-art deblurring approaches.

(a) (b) (c) (d)

Figure 4. A comparison of our method with state-of-the-art methods. The images (a–d) are blurry
input, result of Pan et al. [18], result of Yan et al. [19] and our result, respectively. The PSNR values
of (b–d) are 30.19, 30.33 and 32.15, respectively.

We further carry out experiments of our method against the state-of-the-art ap-
proaches [16,19] on text images from the dataset [16]. This dataset consists of 15 images and
eight different kernels ranging in size from 13× 13 to 27× 27. Figure 6 visually shows that
our method performs well on a challenging blurry image in comparison with [19] and the
method designed for text images [16]. As shown in the figure, the DCP and ECP also help
the blind deblurring of text images. Our deblurred result in Figure 6d utilizing the proposed
D/B generates sharper edges and clearer text compared to other results [16,19]. Another
text example is shown in Figure 7. Note that the text becomes extremely sharper after the
deblurring process, which demonstrates that our proposed L0 norm based on the D/B is
helpful for kernel estimation and image deblurring. In particular, sharp text images contain
more salient edges in local patches, which drives our D/B to perform well. Table 1 presents
the average PSNR values of the deblurred results on the text image dataset [16] compared
with the state-of-the-art methods. Our method achieves the maximum PSNR value.
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(a) (b)

Figure 5. Quantitative results of our method on two benchmark datasets [12,22]: (a) error ratios com-
parison between our approach and the other methods on the benchmark dataset [12]; (b) quantitative
evaluations on the benchmark dataset [22].

(a) (b) (c) (d)

Figure 6. A comparison of our method with state-of-the-art methods. The images (a–d) are blurry
input, result of Pan et al. [16], result of Yan et al. [19] and our result, respectively.

Figure 7. Visual comparison of the results using one challenging image: (a) blurry image; (b–h) deblur-
ring results generated by Ref. [14], Ref. [6], Ref. [52], Ref. [48], Ref. [19], Ref. [18] and our method,
respectively. The recovered image by the proposed algorithm is visually more pleasing.
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Table 1. PSNR values of state-of-the-art text image deblurring methods.

Method Cho et al. [21] Xu et al. [13] Levin et al. [1] Pan et al. [16] Ours

PSNR 23.80 26.21 24.90 27.94 28.23

5.2. Real Image Delurring

In this part, we test our method on real-world blurred images against the recent
state-of-the-art blind single image deblurring methods [11,14,18,19,21,48]. We analyze
the deblurring results qualitatively as the blur kernels and ground truth images are un-
known. Figure 8 shows one challenging real-world blurred image. The recovered im-
ages generated by the proposed algorithm are sharper and clearer than those generated
by [11,14,18,19,21,48]. As shown in Figure 8, the blurry image contains large and small
edges and textures, which causes trouble for deblurring with the methods designed for
natural images. Pan et al. [18] exploited the dark channel and achieved encouraging results.
However, the deblurred image still contains visually blurry artifacts. In contrast, by further
utilizing the edge information in local patches, our method generates sharper and clearer
image details compared with other methods as shown in Figure 8. As a second example,
we present deblurring results on a challenging image in Figure 9. Note that our deblurred
image has clear background and sharp edges against other results.

Figure 8. Visual comparison of the results using one challenging image. (a) is blurry input and
(b–h) are generated by [11,14,18,19,21,48] and our proposed method, respectively.

(a) (b) (c) (d) (e)

Figure 9. An example of real-world image results. The images (a–e) are blurry input, result of
Krishnan et al. [14], result of Pan et al. [18], result of Yan et al. [19] and our result, respectively

5.3. The Effectiveness of Proposed Sparse Channel Prior

In this subsection, experiments are conducted to verify the performance of the pro-
posed D/B for blind image deblurring. As mentioned above, the proposed D/B regu-
larization term considers the contrast and salient edges’ information in local patches. To
demonstrate the effectiveness of the proposed prior, we compare the proposed method with
the DCP-based method [18] and the ECP-based method [19] in image deblurring. Figure 10
shows the changes of the DCP, the BCP and the proposed sparse channel prior in each
phase of the image. Initially, the contrast and clarity of the DCP, the BCP and the proposed
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sparse channel prior of the proceeding blurred images are very low, while the contrast
of the middle layer is significantly improved and the final restored images have a higher
contrast and sharper contour. At this time, the ringing and artifacts in the images are greatly
reduced. Note in each stage, the proposed sparse channel prior has a clearer outline than
the DCP and BCP. Compared with the literature [18], the proposed method estimates the
blur kernels better with less artifacts. Figure 11 shows the quantitative evaluations on the
benchmark dataset [12] by the ECP and our method with and without the proposed D/B.
Note that the PSNR (Figure 11a) of the proposed D/B-based method is higher than that
of the ECP and our method without D/B. Moreover, our method with the proposed D/B
prior performs more favorably in terms of error ratio (Figure 11b) than without the D/B
regularization, which further demonstrates the effectiveness of the proposed D/B-based
methods. The proposed D/B-based algorithm generates the results with PSNR values
higher than the other two methods.

Figure 10. Visual comparison of the intermediate results generated during iteration. (a–c) are intermedi-
ate results generated during iteration using the DCP, ECP and our sparse channel prior, respectively.

(a) (b)

Figure 11. Quantitative results of our method on benchmark dataset [12]: (a) quantitative evaluations
on the benchmark dataset by [12] and our method with and without D/B; (b) error comparison
between our approach and the other methods.
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In addition, our method has a higher success rate on the dataset [22], as shown in
Figure 5b. All the results consistently demonstrate that the proposed sparse channel prior
improves the deblurring performance.

6. Discussion
6.1. Comparison with Other Related Methods

In this part, we will discuss some methods most related to the algorithm in this paper.
The dark channel prior was used by Pan et al. [18] for blind image deblurring. They
enhanced the sparsity of the DCP and achieved good results on low-light images. Yan
et al. [19] used the ECP to solve the problem that the DCP has less effect on sky images.
However, the ECP is a simple addition of the DCP and BCP, and the relationship between
them has not been deeply studied.

Figure 10 shows the intermediate images of three different methods (Refs. [18,19] and
ours). Although the intermediate results become clearer and sharper as iterations increase,
the images (Figure 10c) generated by our method have sharper edges and clearer contents
than those of Refs. [18] (Figure 10a) and [19] (Figure 10b). Figure 12 shows the results
generated by these three methods on some challenging images, including real blurred and
low-light images. Our results have fewer blurred areas and ringings, which look more
pleasant. Table 2 shows the error ratio of two related approaches [18,19] on dataset [22],
and the proposed method fails on one image in which the error ratio value is larger than 4.

(a) (b) (c) (d)

Figure 12. Deblurring results on some challenging examples. (a) Blurry inputs. (b–d) Deblurring
results generated by Ref. [18], Ref. [19] and our method, respectively.

In order to analyze the three methods in more detail, we show the different maps of
the DCP, the BCP and our D/B in Figure 13. Although the dark channel, bright channel
and our D/B map of the recovered image all have improvement with respect to that of
the corresponding blurry image, our D/B map improves more than the dark channel and
bright channel. Moreover, our D/B map is clearer (higher contrast and sharper edges) than
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the dark channel and bright channel in both the blurry image and recovered image. All
have improvement with respect to that of the corresponding blurry image.

Table 2. Quality evaluation of competitive methods on dataset [22] in terms of error ratio.

Error Ratio ≤2 ≤3 ≤4

Pan et al. [18] 594/640 627/640 633/640
Yan et al. [19] 596/640 636/640 638/640

Ours 623/640 639/640 639/640

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Visual comparison of different maps. (a) is blurry image. (b–d) are dark channel, bright
channel and our D/B map of (a), respectively. (e) is recovered image. (f,g) are dark channel, bright
channel and our D/B map of (h), respectively.

6.2. Convergence Analysis

Blind deconvolution is a highly ill-posed problem and we introduce a new spare prior
to make the problem produce feasible results in this paper. The optimization scheme of our
model is challenging, and with the idea of auxiliary variables and the alternating direction
minimization (ADM) method, one may question the convergence. Thus, we show the
traces of the objective function (computed from Equation (8)) and kernel similarity [53] on
dataset [12] with respect to iterations in Figure 14. Figure 14a shows our method converges
after less than 30 iterations, and Figure 14b shows the kernel similarity [53] becomes higher
with more iterations. Overall, our method converges well after less than 30 iterations.

(a) (b)

Figure 14. Convergence analysis of the proposed algorithm. (a) Energy value computed from
Equation (8). (b) Average kernel similarity [53] becomes higher with more iterations.
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6.3. Running Time

We simply explain the computational complexity through the running time of the
algorithms. We select several competing algorithms closely related to this paper to run
on the same database as this algorithm. All experiments were carried out under the same
computer. The running time on different sizes of images is summarized in Table 3. As can
be seen from the table, our algorithm is faster than [19] and slower than [14].

Table 3. Running time (s) of competing approaches.

Image Size Krishnan et al. [14] Pan et al. [18] Yan et al. [19] Ours

255 × 255 4.80 111.51 306.56 115.04

600 × 600 21.82 563.33 1250.12 571.57

800 × 800 95.62 1150.17 2331.02 1202.51

7. Conclusions

In this paper, a novel, simple yet efficient image prior D/B for blind image deblurring
is proposed, which builds on the DCP and BCP. An extensive investigation on natural
images shows that the DCP behaves inversely to the BCP, and a large difference between
the DCP and BCP preserves salient edges. For blind image deblurring, salient edges are
helpful to estimate the blur kernel. In order to utilize the advantages of the DCP and
BCP and further exploit the edge information in a local patch, we propose the D/B prior
for image deblurring. The D/B prior preserves the main edges and eliminates the fine
textures of intermediate latent images. Meanwhile, it retains the advantages of the DCP
and BCP. The feasibility and effectiveness of using the D/B prior to estimate the blur kernel
are discussed. The experimental results show that our algorithm is competitive with the
state-of-the-art algorithms. In addition, experiments with our proposed prior show that it
can significantly improve the performance of the deblurring algorithm.
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