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Abstract: The present work focuses on the attributes of flow, heat, and mass transfer together with
double diffusive Cattaneo–Christov mechanism with regards to their applications. The aim of this
study is to investigate the non-Newtonian Powell–Eyring fluid flow, taking into account the twofold
impact of the heat generation mechanism and the viscous dissipation due to an extensible sheet. The
chemical reaction between the fluid particles and the fluid variable properties is assumed in this
study. The motive behind this study is the continuous and great interest in the utilization of non-
Newtonian liquids in organic and technical disciplines. This model is administered and governed by
the momentum equation, energy equation, and concentration, all of which are in the form of partial
differential equations. With the help of the shooting technique, the numerical solution is obtained.
Graphs show the characteristics of flow, heat, and mass transfer mechanisms for various governing
parameters. Additionally, significant physical non-dimensional quantities have been presented in a
tabular form. The outcomes detect that increasing the Deborah number, which is connected with the
mass transfer field and the chemical reaction parameter, decreases the concentration distribution.

Keywords: Cattaneo–Christov model; Powell–Eyring fluid; chemical reaction; variable fluid properties

1. Introduction

With the rapid progress of engineering design innovations, the non-Newtonian fluid
as a new material has gained substantial attention. This wide interest is owing to their
importance in numerous industrial applications, such as modern technology, transportation,
biomedicine, and electronics. Important applications also include the expulsion of elastic
sheets, veins, water system channels and the cooling of continuous strips, etc. Because
of these diverse and novel technological and innovative applications for non-Newtonian
models, many researchers have looked into this topic and its various applications. For
example, a non-Newtonian micropolar type was presented by Haliza et al. [1], with further
subtleties on the topic of non-Newtonian Maxwell fluids able to be viewed in [2–4], while
the non-Newtonian Casson fluid has been evaluated under the impact of slip phenomena
by Imran et al. [5]. On the same topic, Sharma et al. [6] explored the non-Newtonian
Casson–Williamson fluid flow over a stretched sheet of non-uniform thickness, whereas
Muhammad and Samia [7] investigated the non-Newtonian Powell–Eyring fluid due to
a stratified sheet with mixed convection. Similarly, Megahed and Abbas [8] studied non-
Newtonian cross fluid under the impact of the thermal stratification phenomenon.

The investigations listed above are limited to traditional heat and mass transfer models
that are controlled by Fourier laws. The characteristics of heat transfer can be determined
precisely if we consider the fact that the relaxation time for velocity fields must occur during
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the fluid flow. The relaxation time phenomenon that influences both the concentration
and the temperature fields is governed by the Cattaneo–Christov model [9]. Nowadays,
the Cattaneo–Christov heat motion model is a type of Fourier law amended by fusing
the relaxation time term with the spread of heat flux through the physical model [10].
Hayat et al. [11] explored the impact of variable conductivity on the non-Newtonian Jeffrey
fluid with the Cattaneo–Christov model and variable thickness. Cattaneo–Christov double
diffusion influence in the non-Newtonian Walters-B nanofluid has been investigated by
Hayat et al. [12]. The Cattaneo–Christov model was further scrutinized by Sui et al. [13] for
Maxwell nanofluids with a slip velocity phenomenon, by Shehzad et al. [14] for third-grade
fluid flow, by Li et al. [15] for a viscoelastic fluid model under the effect of the magnetic
field, by Meraj et al. [16] for a Jeffrey fluid model together with Darcy–Forchheimer
flow, and by Shehzad et al. [17] for chemically non-Newtonian Maxwell liquid with 3D
hydromagnetic flow. Subsequent studies regarding the topic of the Cattaneo–Christov
model are introduced in Refs. [18–21]. The shooting method was used in most prior studies,
as it is in this one, although there are a variety of different numerical approaches that can
be used to solve the Navier–Stokes equations, which have been studied in Refs. [22,23].

The previously mentioned examinations reveal that a lot of investigations might be
cited regarding the matter of Cattaneo–Christov through different types of non-Newtonian
fluid. In any case, fewer studies are considered through the literature review that imply the
combination of the Cattaneo–Christov model and the non-Newtonian Powell–Eyring fluid.
Yet, no review has talked about the Cattaneo–Christov heat flux model on a dissipative
non-Newtonian Powell–Eyring fluid with variable fluid properties and a chemical reaction
mechanism. The creativity of the displayed problem is enhanced with the extra effects of
the heat generation mechanism and the viscous dissipation phenomenon. The current study
is performed with the assumption of the fluid flow due to the linear stretching of an elastic
sheet. Finally, we adopted a shooting procedure to deal with such a physical problem.

2. Fundamental Governing Equations

Herein, we will consider consistent two-dimensional laminar Powell–Eyring fluid
flow and heat mass transfer together with the Cattaneo–Christov phenomenon. This type
of non-Newtonian fluid can be evermore characterized by the parameters β and c. The fluid
velocity components are assumed to be symbolized by u and v in x− and y− directions,
respectively (Figure 1). The fluid particles are likewise assumed to chemically react together
with their gaining warmth due to the presence of the heat generation source. It is also
presumed that the sheet has a constant temperature Tw and it is extended with speed
uw = ax.

                   

x

y

wu , wC , wT

T Thermal boundary layer

Momentum boundary layer

v

u

ForceSlot

Concentration boundary layer
C

Stretching sheet

Figure 1. Physical configuration.
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Furthermore, the impact of the viscous dissipation on the heat transfer mechanism
through the thermal boundary layer is taken into account. Considering the above physical
assumptions, the administering equations for the Powell–Eyring model can be introduced
as follows [24]:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=
1

ρ∞

∂

∂y

(
µ

∂u
∂y

+
1
βc

∂u
∂y
− 1

6βc3 (
∂u
∂y

)3
)

, (2)

u
∂T
∂x

+ v
∂T
∂y

+ λ1ΦE =
1

ρ∞cp

∂

∂y

(
κ

∂T
∂y

)
+

Q
ρ∞cp

(T − T∞)

+
1

ρ∞cp

(
µ(

∂u
∂y

)2 +
1
βc

(
∂u
∂y

)2 − 1
6βc3 (

∂u
∂y

)4
) (3)

u
∂C
∂x

+ v
∂C
∂y

+ λ2ΦC = D
∂2C
∂y2 − k0(C− C∞). (4)

The fluid flow is exposed to the following boundary conditions:

u = uw = ax, v = 0, T = Tw, C = Cw at y = 0, (5)

u→ 0, T → T∞, C → C∞, at y→ ∞, (6)

where

ΦE = u
∂u
∂x

∂T
∂x

+ v
∂v
∂y

∂T
∂y

+ u
∂v
∂x

∂T
∂y

+ v
∂u
∂y

∂T
∂x

+ 2uv
∂2T
∂x∂y

+ u2 ∂2T
∂x2 + v2 ∂2T

∂y2 , (7)

ΦC = u
∂u
∂x

∂C
∂x

+ v
∂v
∂y

∂C
∂y

+ u
∂v
∂x

∂C
∂y

+ v
∂u
∂y

∂C
∂x

+ 2uv
∂2C
∂x∂y

+ u2 ∂2C
∂x2 + v2 ∂2C

∂y2 . (8)

where κ is the fluid thermal conductivity, ρ∞ is the ambient density, µ is the Powell–
Eyring viscosity, T is the fluid temperature, C is the fluid concentration, Tw is the sheet
temperature, Cw is the sheet concentration, T∞ is the encompassing fluid temperature,
C∞ is the encompassing fluid concentration, k0 is the rate of chemical reaction, λ1 is the
relaxation time for the heat flux, D is the coefficient of diffusion, λ2 is the relaxation time
for the mass flux and Q is the coefficient of heat generation (absorption).

In light of Equations (1)–(4), pick the following proper dimensionless transformations as:

u = ax f ′(η), v = −
√

aν∞ f (η), η = y
√

a
ν∞

, θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C− C∞

Cw − C∞
. (9)

Considering that the liquid conductivity and the liquid viscosity modifies with tem-
perature as indicated by the accompanying relations [25]:

µ = µ∞e−γθ , (10)

κ = κ∞(1 + εθ), (11)

where µ∞ is the viscosity of the Powell–Eyring fluid at the ambient, γ is the viscosity
parameter, κ∞ is the liquid thermal conductivity at the surrounding and ε is the thermal
conductivity parameter. Now, considering the last supposition for both the liquid viscosity
and the liquid conductivity, Equation (1) is consequentially fulfilled while the remaining
equations reduce to the following system:

f ′′′
(

e−γθ + α(1− δ f ′′2)
)
− γ f ′′θ′e−γθ − f ′2 + f f ′′ = 0, (12)
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1
Pr

(
(1 + εθ)θ′′ + εθ′2

)
+ f θ′ − De1

(
f f ′θ′ + f 2θ′′

)
+ β1θ + Ec f ′′2

(
(e−γθ + α)− αδ

3
f ′′2
)
= 0 (13)

φ′′ + Sc f φ′ − ScDe2

(
f f ′φ′ + f 2φ′′

)
− Scξφ = 0. (14)

Additionally, after invoking the previous dimensionless variables, the related physical
boundary conditions are transformed as

f = 0, f ′ = 1, θ = 1, φ = 1 at η = 0, (15)

f ′ → 0, θ → 0, φ→ 0 at η → ∞, (16)

The arisen dimensionless governing parameters are the Powell–Eyring parameters
α, δ, the thermal Deborah number De1, the Eckert number Ec, the Prandtl number Pr, the
heat generation (absorption) parameter β1, the Deborah number which related to the mass
transfer field De2 and the chemical reaction parameter ξ which can be characterized as
follows:

α =
1

µ∞βc
, δ =

au2
wρ∞

2c2µ∞
, De1 = λ1a, Ec =

u2
w

cp(Tw − T∞)
, (17)

Pr =
µ∞cp

κ∞
, β1 =

Q
aρcp

, De2 = λ2a, ξ =
k0

a
. (18)

Moreover, as indicated by the previous dimensionless variables in Equation (9), the
local skin friction C fx, local Nusselt number Nux and local Sherwood number Shx are
introduced as follows:

C fxRe
1
2 = −

(
(e−γθ(0) + α) f ′′(0)− αδ

3
f ′′3(0)

)
, NuxRe

−1
2 = −θ′(0), ShxRe

−1
2 = −φ′(0) (19)

where Re = uwx
ν∞

is the local Reynolds number.

3. Solution Approach

The goal of this part is to use the numerical method known as the shooting method
to come up with numerical solutions to our problem. In terms of ordinary differential
equations, this method can be used to solve the initial value problem. This method’s tech-
nique entails converting the governing system of ordinary differential Equations (12)–(14)
into a new first-order system. The resulting system is numerically integrated with the
updated boundary conditions using the Runge–Kutta (RK) technique, which incorporates
a shooting scheme. The most notable characteristic of the present method is the selection
of appropriate finite values of η → ∞. To obtain f ′′(0), θ′(0) and φ′(0) for the mentioned
boundary value problem, we use some initial guessed values on a specified set of miscella-
neous parameters. This approach instantly turns the previously governing equations into
the following equations:

W1 = f (η), W
′
1 = W2, W

′
2 = W3, (20)

W
′
3 =

γW3W5e−γW4 + W2
2 −W1W3

e−γW4 + α(1− δW2
3 )

, (21)

W4 = θ(η), W
′
4 = W5, (22)

W
′
5 =

De1

(
W1W2W5 + W2

1 W
′
5

)
−W5(W1 +

ε
Pr )− β1W4 − Ec((e−αW4 + α)W2

3 −
αδ
3 W4

3 )

1
Pr (1 + εW4)

(23)
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W6 = φ(η), W
′
6 = W7, (24)

W
′
7 = ScDe2(W1W2W7 + W2

1 W
′
7)− ScW1W7 + ScξW6. (25)

The boundary conditions are now as follows:

W1(0) = 0, W2(0) = 1, W4(0) = 1, W6(0) = 1, (26)

W3(0) = ε1, W5(0) = ε2, W7(0) = ε3, (27)

where ε1, ε2 and ε3 are determined using Newton’s methodology so that the outer boundary
conditions W2(∞), W4(∞) and W6(∞) are fulfilled. To obtain the required solution, we
employ the traditional RK technique to integrate the generated ODEs with the specified set
of parameters. Finally, to meet the convergence condition, the process is repeated until the
results are precise to the anticipated level of 10−7 accuracy.

4. Verification of Numerical Methodology

The motivation behind this segment is to prove the effectiveness and trustworthiness
of the numerical results obtained via the shooting technique. For this reason, Table 1 is
set up below as an examination between our results and the recently published work by
Javed et al. [26]. The viscosity parameter was disregarded γ = 0, but both Powell–Eyring
parameters α and δ were changed to see how they affected the local skin friction coefficient
C fxRe

1
2 . By alluding to this table, the validity and unwavering quality of all the numerical

results of this exploration are confirmed.

Table 1. Comparison of C fxRe
1
2 with the results of Javed et al. [26] when γ = 0.

α δ Javed et al. [26] Present Work

0.0 0.0 1.0000 1.0000000000
0.2 0.0 1.0954 1.0953998521
0.4 0.0 1.1832 1.1831852914

0.2 0.0 1.0954 1.0953998521
0.2 0.1 1.0940 1.0940001201
0.2 0.2 1.0924 1.0923898767

5. Outcomes with Discussion

This section intends to investigate the impact of the current problem’s parameters
on the momentum, temperature, and concentration of the non-Newtonian Powell–Eyring
fluid through the following graphical representations. To this end, some figures are created
by varying the value of a parameter within a specified range, while the others are rigidly
assigned, such as δ = 0.3, γ = 0.2, α = 0.3, De1 = 0.2, β1 = 0.1, ε = 0.2, Sc = 0.7, De2 = 0.2,
Ec = 0.2, ξ = 0.2 and Pr = 1.5. Figure 2 shows the impact of the α parameter on the velocity
field f ′(η), temperature field θ(η) and the concentration field φ(η). The ascent in the value
of this parameter causes an upgrade in the speed field f ′(η), although the converse pattern
is noticed for both the temperature θ(η) and the concentration field φ(η). Physically, the
stimulation effect occurs as the α parameter increases, causing the fluid velocity to increase
while the concentration and temperature distributions decrease.
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Figure 2. (a) f ′(η) for picked α. (b) θ(η) and φ(η) for picked α.

The impact of the δ parameter on the velocity profile, temperature profile, and con-
centration profile is shown in Figure 3. The heightening values of the δ parameter slightly
improve both the temperature θ(η) and the concentration fields φ(η), whereas the opposite
with the same marginal effect is noticed for the velocity field f ′(η). The Powell–Eyring
parameter δ is physically dependent on the fluid density. As a result, as the Powell–Eyring
parameter δ is increased, the density of the fluid particle increases, and the velocity profile
decreases.
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Figure 3. (a) f ′(η) for picked δ. (b) θ(η) and φ(η) for picked δ.

Figure 4 is plotted to examine the velocity profiles f ′(η), the temperature profiles θ(η)
and the concentration fields φ(η), for expanding values of the viscosity parameter γ. The
dependence of fluid viscosity on the temperature through the presence of γ invigorates
both the fluid temperature θ(η) and the fluid concentration φ(η) distribution, while the
presence of the γ parameter hinders the liquid velocity f ′(η) through the boundary layer.
Physically, increasing the magnitude of the viscosity parameter acts as a retarding factor,
causing the fluid velocity to slow down and, as a result, the friction between the fluid layers
increases, causing the fluid temperature to enhance.

Figure 5 has been portrayed to delineate the impact of the thermal conductivity
parameter ε. The larger values of the thermal conductivity parameter ε relate to the larger
temperature distribution and marginal increments in the concentration field, while the
growth in a same parameter makes insignificant decreases in the speed profiles. Physically,
increasing the value of ε enhances the fluid thermal conductivity, which increases both the
fluid temperature and the thickness of the thermal layer.
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Figure 4. (a) f ′(η) for picked γ. (b) θ(η) and φ(η) for picked γ.
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Figure 5. (a) f ′(η) and φ(η) for picked ε. (b) θ(η) for picked ε.

The actions of the velocity profiles f ′(η), the temperature profiles θ(η) and the concen-
tration fields φ(η) for escalating values of the thermal Deborah number De1 are depicted in
Figure 6. The velocity distribution f ′(η) barely rises for the larger De1 parameter, while the
concentration profiles φ(η) are somewhat marginally decreased with the expansion of the
same parameter De1. In addition, expanded values of the same parameter De1 lower both
the temperature profiles and the thermal boundary thickness. In terms of physics, when the
thermal Deborah number rises, the relaxation time for the heat flux also increases, mean-
ing that both the thermal boundary layer thickness and the mechanism of heat diffusion
become low.
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Figure 6. (a) f ′(η) and φ(η) for picked De1. (b) θ(η) for picked De1.
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Figure 7 demonstrates the impact of the Eckert number Ec on the velocity f ′(η),
thermal θ(η) and concentration φ(η) profiles. The upsurge in Eckert number Ec clearly
works by improving both the thermal boundary thickness and the temperature profile.
Further, a barely noticeable upgrade for the concentration profiles φ(η) is made due to
the Eckert number Ec, while the inverse marginally noticeable pattern is noticed for the
speed profile f ′(η). In physical terms, due to the dissipation phenomena, enhancing the
value of Ec causes more heat energy to be created. This could explain why the temperature
distribution within the thermal boundary layer is improving.
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Figure 7. (a) f ′(η) and φ(η) for picked Ec. (b) θ(η) for picked Ec.

Finally, the endeavor to evoke the impact of both the Deborah number, which con-
nected with the mass transfer De2, and the chemical reaction parameter ξ on the mass
transfer mechanism φ(η) has been made by drawing Figure 8. It is obvious that the incre-
ment in both parameters De2 and ξ may help in creating an obstruction for the behavior of
the fluid concentration mechanism φ(η). Physically, a higher De2 indicates a longer period
for the mass flux to relax. As a result, with greater De2, the minimum mass diffusion rate
occurs, lowering the fluid concentration.
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Figure 8. (a) φ(η) for picked De2. (b) φ(η) for picked ξ.

The numerical outcomes for the local Nusselt number, the local Sherwood number,
and the local skin-friction coefficient are displayed in Table 2 for different values of the
arising parameters. From Table 2, it may be seen that because of an increment in the
Powell–Eyring parameter α there is an expansion in the local skin-friction coefficient, the
local Nusselt number, and the local Sherwood number, whereas the inverse pattern is
noticed for the Powell–Eyring parameter δ. Additionally, from the same table, we note
that the viscosity parameter decreases the local skin-friction coefficient, the local Nusselt
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number, and the local Sherwood number. Further, Table 2 shows that the local skin-friction
coefficient increments with expanding values of the thermal Deborah number, whereas
it diminishes with the expanding values of the thermal conductivity parameter and the
Eckert number. Furthermore, it is discernible that both the Eckert number and the chemical
reaction parameter contribute to strengthening the local Sherwood number.

Table 2. Values for C fx(Rex)
1
2 , Nux(Rex)

−1
2 and Shx(Rex)

−1
2 for various values of α, δ, ε, γ, De1, Ec,

De2 and ξ with Pr = 1.5 and β1 = 0.1.

α δ γ ε De1 Ec De2 ξ C fx(Rex)
1
2 Nux(Rex)

−1
2 Shx(Rex)

−1
2

0.0 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.920887 0.468142 0.599312
0.4 0.3 0.2 0.2 0.2 0.2 0.2 0.2 1.112051 0.502697 0.622836
0.6 0.3 0.2 0.2 0.2 0.2 0.2 0.2 1.197817 0.513244 0.631776
1.0 0.3 0.2 0.2 0.2 0.2 0.2 0.2 1.354441 0.527314 0.646012

0.3 0.0 0.2 0.2 0.2 0.2 0.2 0.2 1.074721 0.497792 0.618709
0.3 0.4 0.2 0.2 0.2 0.2 0.2 0.2 1.064221 0.495515 0.617431
0.3 0.6 0.2 0.2 0.2 0.2 0.2 0.2 1.058640 0.494284 0.616745
0.3 1.0 0.2 0.2 0.2 0.2 0.2 0.2 1.046602 0.491591 0.615261

0.3 0.3 0.0 0.2 0.2 0.2 0.2 0.2 1.134321 0.508799 0.625702
0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 1.064230 0.496106 0.617760
0.3 0.3 0.5 0.2 0.2 0.2 0.2 0.2 0.973111 0.476591 0.606035
0.3 0.3 0.8 0.2 0.2 0.2 0.2 0.2 0.888698 0.456668 0.594712

0.3 0.3 0.2 0.0 0.2 0.2 0.2 0.2 1.068531 0.567536 0.617941
0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 1.066933 0.496106 0.617760
0.3 0.3 0.2 0.5 0.2 0.2 0.2 0.2 1.064971 0.420572 0.617541
0.3 0.3 0.2 0.8 0.2 0.2 0.2 0.2 1.063412 0.366929 0.617372

0.3 0.3 0.2 0.2 0.0 0.2 0.2 0.2 1.065840 0.465177 0.617651
0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 1.066933 0.496106 0.617760
0.3 0.3 0.2 0.2 0.4 0.2 0.2 0.2 1.068043 0.528122 0.617781

0.3 0.3 0.2 0.2 0.2 0.0 0.2 0.2 1.068581 0.609484 0.617951
0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 1.066933 0.496106 0.617760
0.3 0.3 0.2 0.2 0.2 0.5 0.2 0.2 1.064471 0.326569 0.617477

0.3 0.3 0.2 0.2 0.2 0.2 0.0 0.2 1.066930 0.496106 0.609967
0.3 0.3 0.2 0.2 0.2 0.2 0.5 0.2 1.066930 0.496106 0.631066
0.3 0.3 0.2 0.2 0.2 0.2 1.0 0.2 1.066930 0.496106 0.658297

0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.0 1.066930 0.496106 0.481006
0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 1.066930 0.496106 0.617760
0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.5 1.066930 0.496106 0.775697

6. Conclusions

In this research, we have examined the impact of the double diffusive Cattaneo–
Christov phenomenon on the non-Newtonian Powell–Eyring fluid flow and heat mass
transfer, together with viscous dissipation due to a stretching sheet. The controlling non-
linear equations were formed and tackled numerically by means of shooting technique.
The acquired outcomes suggest the accompanying pronouncements.

1. The temperature distribution improves as the thermal conductivity parameter and
the Eckert number improve, whereas the concentration distribution is affected by the
chemical reaction parameter, which has a decreasing effect.

2. The higher the viscosity parameter, the slower the fluid velocity becomes, and the
lower the thermal Deborah number, the higher the thermal distribution becomes.

3. The Nusselt number value diminishes for both higher values of thermal conductivity
parameter and viscosity parameter.

4. There is an increase in the Sherwood number with an increment in the chemical
reaction parameter or with a decline in the viscosity parameter.
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5. The impact of diminishing the thermal Deborah number or expanding the thermal
conductivity parameter reduces the speed profiles.

6. In the future, we intend to expand on this research by looking at chemically reactive
mixed convective non-Newtonian fluid flows, as well as heat and mass fluxes, in
order to control the cooling process.

Author Contributions: Conceptualization, K.M.K. and A.S.; methodology, A.M.M. and W.A.; soft-
ware, A.M.M. and W.A.; validation, A.S. and K.M.K.; formal analysis, A.M.M. and W.A.; investigation,
K.M.K.; resources, A.S.; writing—original draft preparation, A.M.M. and W.A.; writing—review and
editing, K.M.K. and A.M.M.; visualization, W.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express their sincere thanks to the honorable referees for
their valuable comments and suggestions to improve the quality of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

a velocity coefficient
c Powell–Eyring parameter
cp specific heat at constant pressure
C nanoparticles concentration
C fx skin friction coefficient
Cw surface nanoparticles concentration
C∞ ambient nanoparticles concentration
De1 thermal Deborah number
De2 the mass Deborah number
Ec Eckret number
f dimensionless stream function
k0 the rate of chemical reaction
Nux local Nusselt number
Pr Prandtl number
Q heat generation (absorption) coefficient
Rex local Reynolds number
Sc Schmidt number
T fluid temperature
Tw surface temperature
T∞ ambient temperature
u velocity component in the x− direction
v velocity component in the y− direction
x, y Cartesian coordinates
Greek symbols
ρ density of the fluid
µ coefficient of viscosity
ν kinematic viscosity
θ dimensionless temperature
φ dimensionless concentration
λ1 relaxation time for heat flux
λ2 relaxation time for mass flux
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η similarity variable
γ viscosity parameter
ε thermal conductivity parameter
ξ chemical reaction parameter
β Powell–Eyring parameter
β1 the heat generation (absorption) parameter
κ thermal conductivity
Superscripts
′ differentiation with respect to η

∞ free stream condition
w wall condition
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